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Abstract: The main idea of this work is to characterize chirps construct on Sobolev spaces by studying the behavior of ‖f‖L2[−ε,ε]

or ‖f‖Hs[−ε,ε]. We expect that the behavior is in order of εα+(β+1)(|s|+ 1
2
) when s tend to −∞, and we believe that we

have equivalence between this and the definition of chirps construct on Sobolev spaces. The formula of a chirp is given in

the form f (x) = |x|αg(|x|−β), where β > 0 and g is an indefinitely oscillating function on L2 or Hs. Which means that

g has for all m integer one primitive of the order m in the same space.
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1. Introduction

Chirps are known to exist in a variety of signals:

(1). First example gravitational waves [15]:

(a). By theoretical calculations based on the work of Einstein, Thibault Damour established the analytical form that

should have a gravitational wave produced by the collapse on one another of two fast rotating neutrons stars.

(b). The gravitational waves have been measured and observed from September 14, 2015 at LIGO laboratory in Cal-

ifornia produced by the merger of two black holes in space and formalized in 2016 such phenomenon could never

be observed.

(c). This first detection is a spectacular discovery : the gravitational waves were produced during the fi-

nal fraction of a second of the merger of two black holes had been predicted but never observed.

[LIGO, Laser Interferometer Gravitational − wave Obervatory]

(2). Ultra-sounds emitted by bats:

(a). The example considered here in is the cry of a bat. The signal is given by the formula: F (x) = e
−i
x − 1 which is

a function of real variable.. We have then a discontinuity at the origin, this is obviously shown by the fact that

e
−i
x − 1 ∼ −i

x
at the infinity.
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(b). A second example is the emission of chirps to localize petroleum fields. It concerns signals with large band of

frequency with short-lived. So that the detection possibility of a large range of objects by avoiding the interference

thanks to short duration of those signals.

Let us take ϕ into C∞0 (IR), and we suppose that ϕ = 1 in the neighborhood of 0. And we will give an estimation of∥∥ϕ (x
ε

)
[f (x)− P (x− x0)]

∥∥
Hs(IR)

, where Hs(IR) is a non homogeneous Sobolev space defined by usual conditions.

2. Main Results

Theorem 2.1. The three following properties are equivalent:

(1). f is chirps of type (α, β)

f (x) = xαg±(x−β) (1)

g± are defined on [T0,+∞). g± are indefinitely oscillating in Hs sense.

(2). ∀ r ∈ IN

αj,k =

∫
f (x)ψj,k (x) dx

where ψj,k (x) = 2jψ
(
2jx− k

)
, Ψ has a compact support and ψ ∈ Cr and

∫
xpψ (x) dx = 0 for 0 ≤ p ≤ r

∑
j,k

|αj, k|22j(2α+1)(1 + |k|)−2α

[
2jβ

(1 + |k|)β+1

]1−2s

<∞ (2)

for all real s such that |s| < r and all couple (j, k) such that 2−j + |k| 2−j is sufficiently small.

(3). By designing Hs(IR) the non homogeneous Sobolev space we have:

∥∥∥xm [f (x)− P (x− x0)]ϕ
(x
ε

)∥∥∥
Hs(IR)

≤ C(m, s)εm+α+(β+1)(−s+ 1
2
) (3)

even then m+ α+ (β + 1)
(
−s+ 1

2

)
≥ 0, m ∈ IN with ϕ ∈ C∞0 , ϕ = 1 in the neighborhood of 0.

Proof. (1)⇒ (2) is given in the Ph.D. of T.Elbouayachi. We will focus on the following problem.

(3)⇒ (2) We suppose that the support of ψj,k is included in [−ε, ε], we bigen by the case m = 0 and we suppose that

0 ≤ α+ (β + 1)

(
−s+

1

2

)
≤ 1

Then we have

αj,k =

∫
f (x)ψj,k (x) dx

⇒ αj,k =

∫
(f (x)− P (x− x0))ψj,k (x) dx

|αj,k|2 =

∣∣∣∣∫ f (x)ψj,k (x) dx

∣∣∣∣2
‖(f (x)− P (x− x0)‖2Ḣs(IR) ≥

∑ ∑
S(j,k)⊂Bε

|αj,k|24js

where S(j, k) is the support of ψj,k. The condition S(j, k) ⊂ Bε is the consequence of 2−j +
∣∣k2−j − x0

∣∣ ≤ Cε where C is a

positive constant. So we have ∑ ∑
S(j,k)⊂Bε

|αj,k|24js ≤ C′
(
εα+(β+1)(−s+ 1

2
)
)2
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And now as we have

α+ (β + 1)

(
−s+

1

2

)
≥ 0.

We take the minimum of ε with j, k fixed:

∑
j,k

|αj,k|24js
(

2j

1 + |k|

)2α+2(β+1)(−s+ 1
2
)

≤ C′

⇒
∑
j,k

|αj,k|222jα(1 + |k|)−2

[
2jβ

1 + |k|β+1

](1−2s)

2j ≤ C′

And this is the wanted estimation. Now if we have

−1 ≤ α+ (β + 1)

(
−s+

1

2

)
≤ 0.

We compute the wavelets coefficients of

x [f (x)− P (x− x0)]ϕ
(x
ε

)
With this hypothesis

2−j + 2−j |k| ≤ ε

C0

Thanks to the fact that ψ admits r + 1 vanishing moments and r > |s| we have:

αj,k = 〈f − P (x− x0) , ψj,k〉

= 〈f, ψj,k〉∫
xϕ
(x
ε

)
ψj,k (x) [f (x)− P (x− x0)] dx =

∫
[f (x)− P (x− x0)]ϕ

(x
ε

)(
x− k2−j

)
2jψ

(
x− k2−j

)
dx

+ k2−j
∫

[f (x)− P (x− x0)]ϕ
(x
ε

)
ψj,k (x) dx

We know that ψ̃ = xψ(x) has the same qualitative properties than a wavelet. It results that

βj,k =

∫
[f (x)− P (x− x0)]ϕ

(x
ε

)(
x− k2−j

)
ψj,k (x) dx

=

∫
[f (x)− P (x− x0)]ϕ

(x
ε

)(
x− k2−j

)
2jψ

(
2jx− k

)
dx

= 2−j
∫

[f (x)− P (x− x0)]ϕ
(x
ε

)(
2jx− k

)
2jψ

(
2jx− k

)
dx

We have then:

∫
xϕ
(x
ε

)
ψj,k (x) [f (x)− P (x− x0)]dx = 2−j

∫
[f (x)− P (x− x0)] ψ̃j,k (x)dx+ k2−jαj,k

So: ∫
xϕ
(x
ε

)
f(x)ψj,k (x) = 2−j

∫
f (x)ϕ

(x
ε

)
ψ̃j,k (x) dx+ k2−j

∫
f (x)ϕ

(x
ε

)
ψj,k (x) dx

We can use this new notation:

γj,k = 2−jβj,k + k2−jαj,k

⇒
∣∣∣k2−jαj,k

∣∣∣ ≤√γ2
j,k + 2−2jβ2

j,k
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Then it’s obvious to conclude:

(1 + |k|)
∣∣∣2−jαj,k∣∣∣ ≤ C0

√
γ2
j,k + 2−2jβ2

j,k

So

|αj,k|2 ≤ C0

[
2j

1 + |k|

]2 [
γ2
j,k + 2−2jβ2

j,k

]
The estimation on β2

j,k is given by the previous case m = 0

βj,k = 2−j
∫
f (x)ϕ

(x
ε

)
ψ̃j,k (x) dx

So we have ∑ ∑
S(j,k)⊂Bε

|βj,k|24js ≤ C′
(
εα+(β+1)(−s+ 1

2
)
)2

Then

βj,k2js ≤ C0
j,kε

α+(β+1)(−s+ 1
2
)

where ∑
j,k

∣∣C0
j,k

∣∣2 <∞
and thanks to the fact that

2−j + 2−j |k| ≤ ε

C0
⇒ 2−j ≤ Cε

We deduct then

βj,k2js2j ≤ C0
j,kε

1+α+(β+1)(−s+ 1
2
)

The estimation on γ2
j,k is given by:

‖x(f − P (x− x0)‖2Ḣs(IR) ≥
∑ ∑

S(j,k)⊂Bε

|γj,k|24js

Where S(j, k) is the support of ψ(j,k). The condition S(j, k) ⊂ Bε is the consequence of 2−j + |k2−j − x0| ≤ Cε where C is

appositive constant. So we have ∑ ∑
S(j,k)⊂Bε

|γj,k|24js ≤ C′
(
ε1+α+(β+1)(−s+ 1

2
)
)2

which is equivalent to

γj,k ≤ C1
j,kε

1+α+(β+1)(−s+ 1
2 )

where ∑
j,k

∣∣C1
j,k

∣∣2 <∞
Then it’s obvious to conclude that:

(1 + |k|)2−j |αj,k| 2js ≤ Cj,kε1+α+(β+1)(−s+ 1
2
)

Where ∑
j,k

|Cj,k|2 <∞

34



T. Elbouayachi

Optimizing by 2−j +
∣∣k2−j

∣∣ ≤ Cε, we obtain

(1 + |k|)2−j |αj,k| 2js ≤ Cj,k(1 + |k|)2−jεα+(β+1)(−s+ 1
2
)

And that is simplified in the wanted estimation. And by an analogue reasoning we can treat the case

−2 ≤ α+ (β + 1)

(
−s+

1

2

)
≤ −1

and so on.

(1)⇒ (3) Now let us give the definition of homogeneous space Ḣs(IR), we can definite it for s > 0 by:

1. Fourier Transform

‖f‖2Ḣs(IR) =

∫
IR

|ξ|2s
∣∣∣f̂(ξ)

∣∣∣2dξ <∞
2. Or by derivative

‖f‖Ḣs(IR) = ‖Dsf‖L2(IR)

Now let us give the definition of Ḣs[−ε, ε]: We define Ḣs[−ε, ε] by the following norm:

‖f‖2Ḣs[−ε,ε] = ε−2s‖f‖2L2[−ε,ε] +
∥∥∥ḟ∥∥∥2

Ḣs(IR)

where ḟ is the prolongation of f on the whole real axe. And if 0 < s < 1 then we have

‖f‖2Ḣs[−ε,ε] ∼ ε
−2s‖f‖2L2[−ε,ε] +

∫∫
[−ε,ε]×[−ε,ε]

|f (x)− f(y)|2

|x− y|2s+1 dxdy

So for 0 < s < 1 the first part of the right hand will become

∫∫
[−ε,ε]×[−ε,ε]

∣∣∣xαg± (|x|−β)− yαg± (|y|−β)∣∣∣2
|x− y|2s+1 dxdy

∫∫
−ε<x<ε
−ε<h+x<ε

∣∣∣(x+ h)αg±
(
|x+ h|−β

)
− xαg±

(
|x|−β

)∣∣∣2
|h|2s+1 dxdh

For

0 < x ≤ ε

0 < h ≤ δ|x|1+β

We proceed the change of variable X = x−β and Y = hx−β−1. Our integral become

I = C(β)

∫∫
0<Y<δ
X≥ε−β

∣∣∣(1 + Y
X

)α
g+
(
X
(
1 + Y

X

)−β)− g+ (X)
∣∣∣2

|Y |2s+1 X
−2α+(2s−1)(β+1)

β dXdY

We pose again:

X

(
1 +

Y

X

)−β
= X + Z
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Hence we have:

Y = X

[(
1 +

Z

X

)−1
β

− 1

]
So

I = C(β)

∫∫
0<Z<δ̃
X≥ε−β

∣∣∣∣(1 + Z
X

)−α
β g+ (X + Z)− g+ (X)

∣∣∣∣2
|X|2s+1

[(
1 + Z

X

)−1
β − 1

]2s+1

(
1 +

Z

X

)−1− 1
β

X
−2α+(2s−1)(β+1)

β dXdZ

and this integral is the same type than the following :

I = C(β)

∫∫
0<Z<δ̃
X≥ε−β

|g+ (X + Z)− g+ (X)|2

Z2s+1
X

−2α+(2s−1)(β+1)
β dXdZ

∼ C(β)ε2α−(2s−1)(β+1)

∫∫
0<Z<δ̃
X≥ε−β

|g+ (X + Z)− g+ (X)|2

Z2s+1
dXdZ

For the second term we have

ε−2s‖f‖2L2[−ε,ε]

Which is equivalent to

ε−2s+β+1+2α‖g+‖2L2[T,∞)

Another point of view is to specify the analysis of Sobolev spaces Hs (IR) when s− 1
2

is negative and the function to analyze

has a support in [−ε, ε].

Lemma 2.2. If f ∈ Hs (IR) and f has a compact support then f (x) = c0ϕ (x) + c1ϕ
′(x) + · · · + cmϕ

m (x) + r (x), where

ϕ ∈ C∞0 and ϕ = 1 in the neighborhood of 0. r (x) ∈ Ḣs (IR), −m − 1 < s < m. Indeed an appropriate choice of the

coefficients: c0, c1, . . . , cm we can have:

0 =

∫
f (x) dx =

∫
xf (x) dx · · · =

∫
xmf (x) dx.

Lemma 2.3. If f is a distribution of a compact support; and if −m− 1 < s < −m and if 0 =
∫
f (x) dx =

∫
xf (x) dx · · · =∫

xmf (x) dx then

f ∈ Hs (IR)⇔ f ∈ Ḣs (IR)

Remark 2.4. For s ≥ 0 the correction c0ϕ (x) + c1ϕ
′(x) + · · ·+ cmϕ

m (x) is not necessary. We reason by recurrence on.

• We begin by examining the case where 0 < s < 1: Now let us give the definition of homogeneous space Ḣs (IR) ,

we can definite it for s > 0 by Fourier Transform:

‖f‖2Ḣs(IR) =

∫
IR

|ξ|2s
∣∣∣f̂(ξ)

∣∣∣2dξ <∞
and the definition of inhomogeneous space Hs(IR) is given by:

‖f‖2Hs(IR) =

∫
IR

(1 + |ξ|s)2
∣∣∣f̂(ξ)

∣∣∣2dξ <∞
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We will begin by remarking that for all s > 0 real we have Hs(IR) ⊂ Ḣs(IR). In our case we work on the interval

[−ε, ε], as a matter of fact we have:

‖f‖2Ḣs[−ε,ε] = ε−2s‖f‖2L2[−ε,ε] +
∥∥∥ḟ∥∥∥2

Ḣs(IR)

‖f‖2Hs[−ε,ε] = ‖f‖2L2[−ε,ε] + ‖Dsf‖2L2[−ε,ε]

So for > 0, if f is in Ḣs (IR)⇒ f is in Hs(IR). This is independent of the fact that f has a compact support. And

in the other sense if f is in Hs then we have Dsf belongs to L2[−ε, ε] and f belongs to L2[−ε, ε]. So for 0 < s < 1

we have:

‖f‖2L2[−ε,ε] =

∫
[−ε,ε]×[−ε,ε]

|f (x)− f(y)|2

|x− y| dxdy

≤ ε2s
∫

[−ε,ε]×[−ε,ε]

|f (x)− f(y)|2

|x− y|2s+1 dxdy

= ε2s‖Dsf‖2L2[−ε,ε]

• We will consider now the case −1 < s < 0: So here it’s about an integration and consequently we have not

necessarily the fact that Dsf is compactly supported. It’s why we need that some moments of f are null. So if we

have
∫
f (x) dx = 0 and if the support of f is included in [−ε, ε] then f (x) = d

dx
g(x) where the support of g is included

in [−ε, ε]. So if f belongs to Hs then f = u + v′ where u belongs to Hs+1 and v belongs to Hs+1. Consequently

f = d
dx

(g) = u + v′ and g = v + r where r is in Hs+2 and v belongs to Hs+1. But we know that g is compactly

supported and by using the previous case (By remarking that 0 < s+1 < 1) we deduce that g belongs to the homogeneous

Sobolev space Hs+1. And then f is in Hs.

Conversely if f is in Ḣs then f = g′ where g is in Ḣs+1 and by the fact that f is compactly supported and that∫
f (x) dx = 0 then the support of g is compact (because Ḣs+1 is defined modulo constants). Finally g is inHs+1.

Lemma 2.5. We have ∣∣∣∣∫ f(x)ϕ
(x
ε

)
dx

∣∣∣∣ = O
(
εα+Nβ+

1
2

)
for all N integer.

Proof. Indeed

xαg
(
x−β

)
ϕ
(x
ε

)
=

d

dx

(
xα+β+1g1

(
x−β

)
ϕ
(x
ε

))
(4)

−xα+β+1g1
(
x−β

) 1

ε
ϕ′
(x
ε

)
− (α+ β + 1)xα+βg1

(
x−β

)
ϕ
(x
ε

)
(5)

where g1 is given by the formula d
dx
g1 = − 1

β
g.

Now we can write the second term of the equation (4) like:

Remark 2.6.

−xα+β+1g1
(
x−β

) 1

ε
ϕ′
(x
ε

)
− (α+ β + 1)xα+βg1

(
x−β

)
ϕ
(x
ε

)
= −xα+βg1

(
x−β

)
ϕ1

(x
ε

)
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We have so ∫
xαg

(
x−β

)
ϕ
(x
ε

)
dx = −

∫
xα+βg1

(
x−β

)
ϕ1

(x
ε

)
dx+ xα+β+1g1

(
x−β

)
ϕ
(x
ε

)
And after N iterations and by using Cauchy’s formula we obtain

∫
xα+NβgN

(
x−β

)
ϕN
(x
ε

)
dx = O

(
εα+Nβ+

1
2

)

because gN is in L2.

Remark 2.7. Of course for a good choice of N we assume that gN is in L2. Now the condition (??) in Theorem 2.1 becomes

more precise and one can thus replace it by (6) and (7):

∫
xmf (x)ϕ

(x
ε

)
dx = O

(
εN
)

(6)

for all m and all N , when ε tends to zero. Once corrected for having the right null moments (this correction is given by

the formula C0ϕ
(
x
ε

)
+ · · · + Cqϕ

q
(
x
ε

)
where C0 = O

(
εN
)
, . . . , Cq = O

(
εN
)
. The function xmf (x)ϕ

(
x
ε

)
belongs to the

homogeneous space Ḣs and her norm verifies

∥∥∥xmf (x)ϕ
(x
ε

)∥∥∥
Hs(IR)

≤ C(m, s)εm+α+(β+1)(−s+ 1
2 ) (7)

If we pose that rε (x) = C0ϕ
(
x
ε

)
+ · · · + Cqϕ

q
(
x
ε

)
, q + s > 0 (this correction is not necessary for s ≥ 0) and by using the

fact that Ḣs are homogeneous we obtain:

∥∥∥xαg (x−β)ϕ(x
ε

)
+ rε (x)

∥∥∥
Hs(IR)

= εα−s+
1
2

∥∥∥xαg (ε−βx−β)ϕ (x) + rε (εx)
∥∥∥
Hs(IR)

Taking into account the asymptotic behavior of the correction when ε tends to zero we have just to prove that

∥∥∥xαg (ε−βx−β)ϕ (x)
∥∥∥
Hs(IR)

≤ Cε(
1
2
−s)β

if

α+

(
1

2
− s
)

(β + 1) ≥ 0.
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38



T. Elbouayachi

[8] Yves Meyer Hong Xu, Wevelet analysis and chirp, Applied and Computational Harmonic Analysis, 4(1997), 366-379.
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