International Journal of Mathematics And its Applications

On \mathbb{R}-Complex Finsler Space with Matsumoto Metric

S. M. Vanithalakshmi ${ }^{1}$, S. K. Narasimhamurthy ${ }^{1, *}$ and M. K. Roopa ${ }^{1}$
1 Department of Mathematics, Kuvempu University, Shankaraghatta, Shimoga, Karnataka, India.

Abstract

In this paper, we determined the fundemental tensor fields ($\tilde{g}_{i j}, \tilde{g}_{i \bar{j}}$) and inverse of these tensor fields, their determinant. Further, we studied some properties of non-Hermitian \mathbb{R}-complex Finsler space with Matsumoto metric.

MSC: 53C25, 53C40, 53D15.

Keywords: \mathbb{R}-Complex Finsler space, \mathbb{R}-complex Finsler space with (α, β) metics, \mathbb{R}-complex Finsler space with Matsumoto metric. (C) JS Publication.

1. Introduction

The studies of \mathbb{R}-Complex Finsler spaces are new concept in Finsler geometry. In [11], Munteanu and Purcuru have extended the notion of a Complex Finsler spaces to new class of Finsler space called \mathbb{R}-Complex Finsler spaces by reducing the scalars to $\lambda \in \mathbb{R}$. The outcome was a new class of Finsler space called \mathbb{R}-Complex Finsler spaces. In [14], the authors Nicolta Alda and Gheorghe Munteanu were studied the (α, β)-Complex Finsler metrics and also determined the fundamental metric tensor and some properties of Hermitian of the Complex Randers metrics. Then, some important results on \mathbb{R}-Complex Finsler spaces have been obtained in $([10,16])$. In the present paper, following the ideas from real Finsler spaces with class of Matsumoto metrics, we introduce the notions on \mathbb{R}-Complex Finsler space with Matsumoto metric.

2. Preliminaries

Let M be a complex Finsler manifold, $\operatorname{dim}_{c} M=n$. The complexified of the real tangent bundle $T_{c} M$ splits into the sum of holomorphic tangent bundle $T^{\prime} M$ and its conjugates $T^{\prime \prime} M$. The bundle $T^{\prime} M$ is in its turn a complex manifold, the local coordinate in a chart will be denoted by $\left(z^{k}, \eta^{k}\right)$ and these are changed by the rules,

$$
\begin{equation*}
z^{\prime k}=z^{\prime k}(z), \quad \eta^{\prime k}=\frac{\partial z^{\prime k}}{\partial z^{j}} \eta^{j} \tag{1}
\end{equation*}
$$

The complexified tangent bundle of $T^{\prime} M$ is decompsed as $T_{c}\left(T^{\prime} M\right)=T^{\prime}\left(T^{\prime} M\right) \oplus T^{\prime \prime} M$. A natural local frame for $T^{\prime}\left(T^{\prime} M\right)$ is $\left\{\frac{\partial}{\partial z^{k}}, \frac{\partial}{\partial \eta^{k}}\right\}$ which is changes by the rules obtained with Jacobi matrix of the above transformations. Note that the change rule of $\frac{\partial}{\partial z^{k}}$ contains the second order partial derivatives. A complex nonlinear connection breifly (c.n.c) is a supplementory distribution $H\left(T^{\prime} M\right)$ to a verticle distribution $V\left(T^{\prime} M\right)$ in $T^{\prime}\left(T^{\prime} M\right)$. The vertical distribution is spanned by $\frac{\partial}{\partial \eta^{k}}$ and an

[^0]adapted frame in $H\left(T^{\prime} M\right)$ is $\frac{\delta}{\delta z^{k}}=\frac{\partial}{\partial z^{k}}-N_{k}^{j} \frac{\partial}{\partial \eta^{j}}$, where N_{k}^{j} are the coefficient of the c.n.c and they have a certain rule of changes at (1), so that $\frac{\delta}{\delta z^{k}}$ transform like vectors on the base manifold M. Next, we use the abbreviations $\partial_{k}=\frac{\partial}{\partial z^{k}}$, $\delta_{k}=\frac{\delta}{\delta z^{k}}, \dot{\partial_{k}}=\frac{\partial}{\partial \eta^{k}}$ and $\partial_{\bar{k}}, \dot{\partial}_{k}, \delta_{\bar{k}}$ for their conjugates. The dual adapted basis of $\delta_{k}, \dot{\partial}_{k}$ are $\left\{d z^{k}, \delta \eta^{k}=d \eta^{k}+N_{j}^{k} d z^{j}\right\}$ and $\left\{d \bar{z}^{k}, \delta \bar{\eta}^{k}\right\}$ their conjugates. We recall, that the homogenity of the metric function of a complex Finsler space (see more [2, $7,8,12,15])$ is with respect to complex scalars and the metric tensor of the space is a Hermitian one. In [11] slightly changed the definition of complex Finsler spaces as:

Definition 2.1. An \mathbb{R}-complex Finlser metric on M is continuous function $F: T^{\prime} M \longrightarrow \mathbb{R}$ satisfying:
(1). $L=F^{2}$ is a smooth on $\widetilde{T^{\prime} M} / 0$;
(2). $F(z, \eta) \geq 0$, the equality holds if and only if $\eta=0$;
(3). $F(z, \lambda \eta, \bar{z}, \lambda \bar{\eta})=|\lambda| F(z, \eta, \bar{z}, \bar{\eta})$, for all $\lambda \in \mathbb{R}$.

It follows that L is $(2,0)$ homogeneous with respect to the real scalar λ and is proved that the following identities are fulfilled [10];

$$
\begin{gather*}
\frac{\partial L}{\partial \eta^{i}} \eta^{i}+\frac{\partial L}{\partial \bar{\eta}^{\eta}} \bar{\eta}^{i}=2 L ; \quad g_{i j} \eta^{i}+g_{\bar{j} i} \bar{\eta}^{i}=\frac{\partial L}{\partial \eta^{j}}, \tag{2}\\
\frac{\partial g_{i k}}{\partial \eta^{j}} \eta^{j}+\frac{\partial g_{i j}}{\partial \bar{\eta}^{j}} \bar{\eta}^{j}=0 ; \quad \frac{\partial g_{i \bar{k}}}{\partial \eta^{j}} \eta^{j}+\frac{g_{i \bar{k}}}{\partial \bar{\eta}^{j}} \bar{\eta}^{j}=0, \tag{3}\\
2 L=g_{i j} \eta^{i} \eta^{j}+g_{\bar{i} \bar{j}} \bar{\eta}^{i} \bar{\eta}^{j}+2 g_{i \bar{j}} \eta^{i} \bar{\eta}^{j}, \tag{4}
\end{gather*}
$$

where,

$$
g_{i j}=\frac{\partial^{2} L}{\eta^{i} \eta^{j}} ; \quad g_{\bar{i} \bar{j}}=\frac{\partial^{2} L}{\eta^{i} \bar{\eta}^{j}} ; \quad g_{\bar{i} \bar{j}}=\frac{\partial^{2} L}{\partial \bar{\eta}^{i} \partial \bar{\eta}^{j}} .
$$

Definition 2.2. An \mathbb{R}-complex Finsler space (M, F) is called (α, β)-metric if the fundamental function $F(z, \eta, \bar{z}, \bar{\eta})$ is \mathbb{R} homogeneous by means of functions $\alpha(z, \eta, \bar{z}, \bar{\eta})$ and $\beta(z, \eta, \bar{z}, \bar{\eta})$-depends on $z^{i}, \eta^{i}, \bar{z}^{i}$ and $\bar{\eta}^{i}$, ($i=1,2, \ldots, n$) by means of $\alpha(z, \eta, \bar{z}, \bar{\eta})$ and $\beta(z, \eta, \bar{z}, \bar{\eta})$. That is

$$
\begin{equation*}
F(z, \eta, \bar{z}, \bar{\eta})=F(\alpha(z, \eta, \bar{z}, \bar{\eta}), \beta(z, \eta, \bar{z}, \bar{\eta})), \tag{5}
\end{equation*}
$$

where,

$$
\begin{align*}
\alpha^{2}(z, \eta, \bar{z}, \bar{\eta}) & =\frac{1}{2}\left(a_{i j} \eta^{i} \eta^{j}+a_{\bar{i}} \bar{\eta}^{i} \bar{\eta}^{j}+2 a_{i \bar{j}} \eta^{i} \bar{\eta}^{j}\right)=\operatorname{Re}\left\{a_{i j} \eta^{i} \eta^{j}+a_{i \bar{j}} \eta^{i} \bar{\eta}^{j}\right\}, \\
\beta(z, \eta, \bar{z}, \bar{\eta}) & =\frac{1}{2}\left(b_{i} \eta^{i}+b_{i} \bar{\eta}^{i}\right)=\operatorname{Re}\left(b_{i} \eta^{i}\right), \tag{6}
\end{align*}
$$

with $a_{i j}=a_{i j}(z), a_{i \bar{j}}=a_{i \bar{j}}(z), b_{i}=b_{i}(z)$. We denote

$$
\begin{equation*}
L\left(\alpha(z, \eta, \bar{z}, \bar{\eta}), \beta(z, \eta, \bar{z}, \bar{\eta})=F^{2}(\alpha(z, \eta, \bar{z}, \bar{\eta}), \beta(z, \eta, \bar{z}, \bar{\eta})) .\right. \tag{7}
\end{equation*}
$$

Definition 2.3. An \mathbb{R}-Complex Finsler space (M, F) is called Hermitian space, if the tensor $g_{i j}=0$ and the Hermitian matric $g_{i \bar{j}}$ is invertible. An \mathbb{R}-Complex Finsler space (M, F) is called non-Hermitian space if the metric tensor $g_{i \bar{j}}=0$ and the Hermitian matric $g_{i j}$ is invertible. Where, $g_{i j}$ and $g_{i \bar{j}}$ are the metric tensors of the space and are given by, $g_{i j}=\frac{\partial}{\partial \eta^{i}} \frac{\partial}{\partial \eta^{j}} L$ and $g_{i \bar{j}}=\frac{\partial}{\partial \eta^{i}} \frac{\partial}{\partial \bar{\eta}^{j}} L$.

3. \mathbb{R}-Complex Matsumoto metrics.

The \mathbb{R}-complex Finsler space produce the tensor fields $g_{i j}$ and $g_{i \bar{j}}$. The tensor field must $g_{i \bar{j}}$ be invertible in Hermitian geometry. These problems are about to Hermitian \mathbb{R}-complex Finsler spaces, if $\operatorname{det}\left(g_{i \bar{j}} \neq 0\right)$ and non-Hermitian \mathbb{R}-complex Finsler spaces, if $\operatorname{det}\left(g_{i j} \neq 0\right)$. In this section, we determine the fundamental tensor of complex Matsumoto metric and obtained condition for property of non-Hermitian \mathbb{R}-complex Finsler spaces. Consider \mathbb{R}-Complex Finsler space with Matsumoto metric,

$$
\begin{equation*}
L(\alpha, \beta)=\left(\frac{\alpha^{2}}{\alpha-\beta}\right)^{2} \tag{8}
\end{equation*}
$$

Then, it follows that $F=\frac{\alpha^{2}}{\alpha-\beta}$. Now, we find the following quantities on \mathbb{R}-complex Finsler spaces with Matsumoto metric $F=\frac{\alpha^{2}}{\alpha-\beta}$. From the equalities (2) and (3) with metric (8), we have

$$
\begin{align*}
\alpha L_{\alpha}+\beta L_{\beta} & =2 L, & \alpha L_{\alpha \alpha}+\beta L_{\alpha \beta} & =L_{\alpha}, \tag{9}\\
\alpha L_{\alpha \beta}+\beta L_{\beta \beta} & =L_{\beta}, & \alpha^{2} L_{\alpha \alpha}+2 \alpha \beta L_{\alpha \beta}+\beta^{2} L_{\beta \beta} & =2 L, \tag{10}
\end{align*}
$$

where

$$
\begin{align*}
L_{\alpha} & =\frac{\partial L}{\partial \alpha}, L_{\beta}=\frac{\partial L}{\partial \beta}, \quad L_{\alpha \beta}=\frac{\partial^{2} L}{\partial \alpha \partial \beta}, \quad L_{\alpha \alpha}=\frac{\partial^{2} L}{\partial \alpha^{2}}, \quad L_{\beta \beta}=\frac{\partial^{2} L}{\partial \beta^{2}} . \tag{11}\\
L_{\alpha} & =\frac{2 \alpha^{3}(\alpha-2 \beta)}{(\alpha-\beta)^{3}}, \tag{12}\\
L_{\beta} & =\frac{2 \alpha^{4}}{(\alpha-\beta)^{3}}, \tag{13}\\
L_{\alpha \alpha} & =2 \alpha^{2}\left\{\frac{\alpha^{2}-4 \alpha \beta+6 \beta^{2}}{(\alpha-\beta)^{4}}\right\}, \tag{14}\\
L_{\beta \beta} & =\frac{6 \alpha^{4}}{(\alpha-\beta)^{4}}, \tag{15}\\
L_{\alpha \beta} & =\frac{2 \alpha^{3}(\alpha-4 \beta)}{(\alpha-\beta)^{4}}, \tag{16}\\
\alpha L_{\alpha}+\beta L_{\beta} & =\alpha\left[\frac{2 \alpha^{3}(\alpha-2 \beta)}{(\alpha-\beta)^{3}}+\beta \frac{2 \alpha^{4}}{(\alpha-\beta)^{3}}\right], \\
& =\frac{2 \alpha^{5}-2 \alpha^{4} \beta}{(\alpha-\beta)^{3}}=\frac{2 \alpha^{4}}{(\alpha-\beta)^{2}}=2 L, \tag{17}\\
\alpha L_{\alpha \alpha}+\beta L_{\alpha \beta} & =\alpha\left[\frac{2 \alpha^{2}\left(\alpha^{2}-4 \alpha \beta+6 \beta^{2}\right)}{(\alpha-\beta)^{4}}\right]+\beta\left[\frac{2 \alpha^{3}(\alpha-4 \beta)}{(\alpha-\beta)^{4}}\right] \\
& =\frac{2 \alpha^{5}-3 \alpha^{4} \beta+4 \alpha^{3} \beta^{2}}{(\alpha-\beta)^{4}}=\frac{2 \alpha^{3}(\alpha-2 \beta)}{(\alpha-\beta)^{3}}=2 L . \tag{18}
\end{align*}
$$

We propose to determine the metric tensors of an \mathbb{R}-complex Finsler space with using the following equalities as:

$$
g_{i j}=\frac{\partial^{2} L(z, \eta, \bar{z}, \lambda \bar{\eta})}{\partial \eta^{i} \partial \eta^{j}}, \quad g_{i \bar{j}}=\frac{\partial^{2} L(z, \eta, \bar{z}, \lambda \bar{\eta})}{\partial \eta^{i} \partial \bar{\eta}^{j}} .
$$

Each of these being of interest in the following :
We consider,

$$
\begin{aligned}
& \frac{\partial \alpha}{\partial \eta^{i}}=\frac{1}{2 \alpha}\left(a_{i j} \eta^{j}+a_{i \bar{j}} \bar{\eta}^{j}\right)=\frac{1}{2 \alpha l_{i}}, \quad \frac{\partial \beta}{\partial \eta^{i}}=\frac{1}{2} b_{i} . \\
& \frac{\partial \alpha}{\partial \bar{\eta}^{i}}=\frac{1}{2 \alpha}\left(a_{\bar{i} \bar{j}} \bar{\eta}^{j}+a_{i \bar{j}} \eta^{j}\right)=\frac{\partial \beta}{\partial \bar{\eta}^{i}}=\frac{1}{2} b_{\bar{i}},
\end{aligned}
$$

where, $l_{i}=\left(a_{i j} \eta^{j}+a_{i \bar{j}} \eta^{\bar{j}}\right), l_{\bar{j}}=a_{\bar{i} \bar{\eta}} \bar{\eta}^{i}+a_{i \bar{j}} \eta^{i}$. We find immediately, $l_{i} \eta^{i}+l_{\bar{j}} \bar{\eta}^{j}=2 \alpha^{2}$. We denote:

$$
\begin{aligned}
& \eta^{i}=\frac{\partial L}{\partial \eta^{i}}=\frac{\partial}{\partial \eta^{i}} F^{2}=2 F \frac{\partial}{\partial \eta^{i}}\left(\frac{\alpha^{2}}{\alpha-\beta}\right), \\
& \eta_{i}=\rho_{0} l_{i}+\rho_{1} b_{i},
\end{aligned}
$$

where

$$
\begin{equation*}
\rho_{0}=\frac{1}{2} \alpha^{-1} L_{\alpha}, \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho_{1}=\frac{1}{2} L_{\beta} . \tag{20}
\end{equation*}
$$

Differentiating ρ_{0} and ρ_{1} with respect to η^{j} and $\bar{\eta}^{j}$ respectively, which yields:

$$
\frac{\partial \rho_{0}}{\partial \eta^{j}}=\rho_{-2} l_{j}+\rho_{-1} b_{j}
$$

and

$$
\frac{\partial \rho_{0}}{\partial \bar{\eta}^{j}}=\rho_{-2} l_{\bar{j}}+\rho_{-1} b_{\bar{j}} .
$$

Similarly $\frac{\partial \rho_{1}}{\partial \eta^{2}}=\eta_{-1} l_{i}+\mu_{0} b_{i}, \frac{\partial \rho_{1}}{\partial \bar{\eta}^{i}}=\rho_{-1} l_{\bar{i}}+\mu_{0} b_{\bar{i}}$, where,

$$
\begin{equation*}
\rho_{-2}=\frac{\alpha L_{\alpha \alpha-L_{\alpha}}}{4 \alpha^{3}}, \quad \rho_{-1}=\frac{L_{\alpha \beta}}{4 \alpha}, \quad \mu_{0}=\frac{L_{\beta \beta}}{4} . \tag{21}
\end{equation*}
$$

By direct computation, using (19), (20), (20) and (21), we obtain the following result.

Theorem 3.1. The invariants of \mathbb{R}-complex Finsler space with Matsumoto metric: $\tilde{\rho}_{0}, \tilde{\rho}_{1}, \tilde{\rho}_{-2}, \tilde{\rho}_{-1}$ and μ_{0} are given by:

$$
\begin{aligned}
\tilde{\rho}_{0} & =\frac{1}{2} \alpha^{-1} L_{\alpha}=\frac{\alpha^{2}(\alpha-2 \beta)}{(\alpha-\beta)^{3}}, \\
\tilde{\rho}_{1} & =\frac{1}{2} L_{\beta}=\frac{\alpha^{4}}{(\alpha-\beta)^{3}}, \\
\tilde{\rho}_{-2} & =\frac{\beta(\alpha-4 \beta)}{(\alpha-\beta)^{4}}, \\
\tilde{\rho}_{-1} & =\frac{\alpha^{2}(\alpha-4 \beta)}{2(\alpha-\beta)^{4}} \\
\tilde{\mu}_{0} & =\frac{L_{\beta \beta}}{4}=\frac{3 \alpha^{4}}{2(\alpha-\beta)^{4}},
\end{aligned}
$$

subscripts -2, -1, 0, 1 gives us the degree of homogeneity of these invariants.

3.1. Fundamental tensor of \mathbb{R}-Complex Finsler space with Matsumoto metric

The fundamental metric tensors of \mathbb{R}-complex Finsler space with (α, β) metric are given by[14]:

$$
\begin{equation*}
g_{i j}=\rho_{0} a_{i j}+\rho_{-2} l_{i} l_{j}+\mu_{0} b_{i} b_{j}+\rho_{-1}\left(b_{j} l_{i}+b_{i} l_{j}\right) \tag{22}
\end{equation*}
$$

From Theorem 3.1, we have

$$
\begin{equation*}
\tilde{g}_{i j}=\frac{\alpha^{2}(\alpha-2 \beta)}{(\alpha-\beta)^{3}} a_{i j}+\frac{\beta(\alpha-4 \beta)}{(\alpha-\beta)^{4}} l_{i} l_{j}+\frac{3 \alpha^{4}}{2(\alpha-\beta)^{4}} b_{i} b_{j}+\frac{\alpha^{2}(\alpha-4 \beta)}{2(\alpha-\beta)^{4}}\left(b_{j} l_{i}+b_{i} l_{j}\right) . \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
\tilde{g}_{i \bar{j}}=\frac{\alpha^{2}(\alpha-2 \beta)}{(\alpha-\beta)^{3}} a_{i \bar{j}}+\frac{\beta(\alpha-4 \beta)}{(\alpha-\beta)^{4}} l_{i} l \bar{j}+\frac{3 \alpha^{4}}{2(\alpha-\beta)^{4}} b_{i} b \bar{j}+\frac{\alpha^{2}(\alpha-4 \beta)}{2(\alpha-\beta)^{4}}\left(b_{\bar{j}} l_{i}+b_{i} l_{\bar{j}}\right) . \tag{24}
\end{equation*}
$$

Or, equivalently,

$$
\begin{align*}
& \tilde{g}_{i j}=\rho_{0}\left[a_{i j}+p l_{i} l_{j}+q b_{i} b_{j}+r \eta_{i} \eta_{j}\right], \tag{25}\\
& \tilde{g}_{i \bar{j}}=\rho_{0}\left[a_{i \bar{j}}+p l_{i} l_{\bar{j}}+q b_{i} b_{\bar{j}}+r \eta_{i} \eta_{\bar{j}}\right], \tag{26}
\end{align*}
$$

where, $\rho_{0}=\frac{1}{2} \alpha^{-1} L_{\alpha}$.

$$
\begin{align*}
p & =\frac{\beta(\alpha-4 \beta)}{2 \alpha^{2}(\alpha-\beta)(\alpha-2 \beta)}, \tag{27}\\
q & =\frac{3 \alpha^{2}}{2(\alpha-\beta)(\alpha-2 \beta)}, \tag{28}\\
r & =\frac{(\alpha-4 \beta)}{2(\alpha-\beta)(\alpha-2 \beta)} . \tag{29}
\end{align*}
$$

The next objectives is to obtain the determinant and the inverse of the tensor field $\tilde{g}_{i j}$. The solution of the non-singular non-Hermitian metric $\tilde{Q}_{i j}$ as follows. The following proposition is proved by [6].

Proposition 3.2. Suppose:

- $\left(Q_{i j}\right)$ is a non-singular $n \times n$ complex matrix with inverse $Q^{j i}$;
- C_{i} and $C_{\bar{i}}=\bar{C}_{i}, i=1, \ldots \ldots . . n$ are complex numbers;
- $C^{i}:=Q^{j i} C_{j}$ and its conjugates; $C^{2}:=C^{i} C_{i}=\bar{C}^{i} C_{\bar{i}} ; H_{i j}:=Q_{i j} \pm C_{i} C_{j}$.

Then,
(i). $\operatorname{det}\left(H_{i j}\right)=\left(1 \pm C^{2}\right) \operatorname{det}\left(Q_{i j}\right)$,
(ii). Whenever $\left(1 \pm C^{2}\right) \neq 0$, the matrix $\left(H_{i j}\right)$ is invertible and in this case its inverse is $H^{i j}=Q^{j i} \pm \frac{1}{1 \pm C^{2}} C^{i} C^{j}$.

Using the above proposition we prove the following theorem:

Theorem 3.3. For a non-Hermitian \mathbb{R}-Complex Finsler space with Matsumoto metric $F=\frac{\alpha^{2}}{\alpha-\beta}$, then they have the following:
(i). The contravarient tensor $\tilde{g}^{i j}$ of the fundamental tensor $\tilde{g}_{i j}$ is:

$$
\tilde{g}^{j i}=\frac{(\alpha-\beta)^{3}}{\alpha^{2}(\alpha-2 \beta)} a^{j i}+\left[\frac{p}{1+p \gamma}+\frac{p^{2} q \epsilon^{2}}{\tau(1+p \gamma)^{2}}\right] \eta^{i} \eta^{j}+\frac{q b^{i} b^{j}}{\tau}+\frac{p q \epsilon}{\tau(1+p \gamma)}\left(b^{i} \eta^{j}+b^{j} \eta^{i}\right)+\frac{M^{2} \eta^{i} \eta^{j}+M N\left(\eta^{i} b^{j}+\eta^{j} b^{i}+N^{2} b^{i} b^{j}\right)}{1+(M \gamma+N \epsilon) \sqrt{r}},
$$

where,

$$
M=\left[1+\left(\frac{p}{1+p \gamma}+\frac{p^{2} q \epsilon^{2}}{\tau(1+p \gamma)^{2}}\right)\right] \gamma+\frac{p q \epsilon}{\tau(1+p \gamma)^{3}} \quad \text { and } \quad N=\frac{q}{\tau}+\frac{p q \epsilon \gamma}{\tau(1+p \gamma)},
$$

(ii). $\operatorname{det}\left(a_{i j}+p l_{i} l_{j}+q b_{i} b_{j}+r \eta_{i} \eta_{j}\right)=[1+(M \gamma+N \epsilon) \sqrt{r}]\left[1+\omega+\frac{p \epsilon^{2}}{1+p \gamma}\right](1+p \gamma) \operatorname{det}\left(a_{i j}\right)$, where, $r=\frac{(\alpha-4 \beta)}{2(\alpha-\beta)(\alpha-2 \beta)}$.

Proof. Step 1: We claim of this theorem proved by following three steps:
We write $\tilde{g}_{i j}$ from (25) in the form.

$$
\begin{equation*}
\tilde{g}_{i j}=\rho_{0}\left[a_{i j}+p l_{i} l_{j}+q l_{i} l_{j}+r \eta_{i} \eta_{j}\right] . \tag{30}
\end{equation*}
$$

We take $\tilde{Q}_{i j}=a_{i j}$ and $\tilde{C}_{i}=\sqrt{p} l_{i}$. By applying the Proposition 3.2 we obtain $\tilde{Q}^{i j}=a^{j i}, \tilde{C}^{2}=\tilde{C}_{i} \tilde{C}^{i}=\sqrt{p} l_{i} \times \tilde{Q}^{j i} \times \tilde{C}_{j}=$ $\sqrt{p} l_{i} \times a^{j i} \times \sqrt{p} l_{j}=p \times l_{i} a^{i j} l_{j}=p \gamma$, and $1+\tilde{C}^{2}=(1+p \gamma)$. So, the matrix $\tilde{H}_{i j}=a_{i j}-p l_{i} l_{j}$, is invertible with

$$
\begin{aligned}
\tilde{H}^{i j} & =a^{j i}+\frac{1}{1+p \gamma} \eta^{i} \eta^{j} \\
\operatorname{det}\left(a_{i j}+p l_{i} l_{j}\right) & =(1+p \gamma)=\operatorname{det}\left(a_{i j}\right) .
\end{aligned}
$$

Step 2: Now, we consider $\tilde{Q}_{i j}=a_{i j}+p l_{i} l_{j}$, and $\tilde{C}_{i}=\sqrt{q} b_{i}$, By applying the Proposition 3.2 we have

$$
\begin{aligned}
\tilde{Q}^{j i} & =a^{j i}+\frac{p \eta^{i} \eta^{j}}{1+p \gamma} \\
\tilde{C}^{2} & =\tilde{C}_{i} \tilde{C}^{i}=\tilde{Q}^{j i} \times \tilde{C}_{j}=\sqrt{q} b_{i}\left[a^{i j}+\frac{p \eta^{i} \eta^{j}}{1+p \gamma} \sqrt{q} b^{j}\right], \\
\tilde{c}^{2} & =q\left[\omega+\frac{p \epsilon^{2}}{1+p}\right] .
\end{aligned}
$$

Therefore,

$$
1+\tilde{C}^{2}=1+q\left[\omega+\frac{p \epsilon^{2}}{1+p \gamma}\right] \neq 0
$$

where, $\epsilon=b_{j} \eta^{j}, \omega=b_{j} b^{j}$. It results that the inverse of $\tilde{H}_{i j}=a_{i j}+p l_{i} p_{j}+q b_{i} b_{j}$ exists and it is

$$
\begin{align*}
\tilde{H}^{j i} & =Q^{j i}+\frac{1}{1+C^{2}} C^{i} C^{j}, \\
\text { tilde } H^{j i} & =a^{j i}+\frac{p \eta^{i} \eta^{j}}{1+p \gamma}+\frac{q\left[b^{i}+\frac{p \epsilon \eta^{i}}{1+p \gamma}\right]\left[b^{j}+\frac{p \epsilon \eta^{j}}{1+p \gamma}\right]}{\tau} \tag{31}\\
\tilde{H}^{j i} & =a^{j i}+\left(\frac{p}{1+p \gamma}+\frac{q p^{2} \epsilon^{2}}{\tau(1+p \gamma)^{2}}\right) \eta^{i} \eta^{j}+\frac{p q \epsilon}{1+p \gamma}\left(b^{i} \eta^{j}+b^{j} \eta^{i}\right)+\frac{q}{\tau} b^{i} b^{j}, \tag{32}
\end{align*}
$$

where,

$$
\tau=1+q\left[\omega+\frac{p \epsilon^{2}}{1+p \gamma}\right] .
$$

and,

$$
\begin{equation*}
\operatorname{det}\left[a_{i j}+p l_{i} l_{j}+q b_{i} b_{j}\right]=\left[1+q\left(\omega+\frac{p \epsilon^{2}}{1+p \gamma}\right)\right](1+p \gamma) \operatorname{det}\left(a_{i j}\right) . \tag{33}
\end{equation*}
$$

Step 3: We put

$$
\begin{equation*}
\tilde{Q}_{j i}=a_{i j}+p l_{i} l_{j}+q b_{i} b_{j}, \tag{34}
\end{equation*}
$$

and $\tilde{C}_{i}=\sqrt{r} \eta_{i}$, clearly observe that and obtain

$$
\begin{equation*}
\tilde{Q}^{j i}=a^{j i}+\left(\frac{p}{1+p \gamma}+\frac{q p^{2} \epsilon^{2}}{\tau(1+p \gamma)}\right) \eta^{i} \eta^{j}+\frac{p q \epsilon}{1+p \gamma}\left(b^{i} \eta^{j}+b^{j} \eta^{i}\right)+\frac{q}{1+p \gamma} b^{i} b^{j}, \tag{35}
\end{equation*}
$$

and $\tilde{C}_{i}=M \eta^{i}+N b^{j}$, where

$$
\begin{equation*}
M=\left[1+\left(\frac{p}{1+p \gamma}+\frac{p^{2} q \epsilon^{2}}{\tau(1+p \gamma)^{2}}\right)\right] \gamma+\frac{p q \epsilon}{\tau(1+p \gamma)^{3}} \tag{36}
\end{equation*}
$$

$$
\begin{equation*}
N=\frac{q}{\tau}+\frac{p q \epsilon \gamma}{\tau(1+p \gamma)} . \tag{37}
\end{equation*}
$$

And

$$
\begin{aligned}
\tilde{C}^{2} & =(M \gamma+N \epsilon) \sqrt{r}, \\
1+\tilde{C}^{2} & =1+(M \gamma+N \epsilon) \sqrt{r} \neq 0,
\end{aligned}
$$

clearly, the matrix $\tilde{H}_{i j}$ is invertible.

$$
\tilde{C}^{i}=a^{j i}+\left\{\frac{p \eta^{i} \eta^{j}}{1+p \gamma}+\frac{q\left[b^{i}+\frac{p \in \eta^{i}}{1+p \gamma}\right]\left[b^{j}+\frac{p \in \eta^{j}}{1+p \gamma}\right]}{\tau}\right\} \eta_{j},
$$

and

$$
\tilde{C}^{j}=a^{j i}+\left\{\frac{p \eta^{i} \eta^{j}}{1+p \gamma}+\frac{q\left[b^{i}+\frac{p \in \eta^{i}}{1+p \gamma}\right]\left[b^{j}+\frac{p \in \eta^{j}}{1+p \gamma}\right]}{\tau}\right\} \eta_{i},
$$

where $\tilde{C}^{i} \tilde{C}^{j}=M^{2} \eta^{i} \eta^{j}+M N\left(\eta^{i} b^{j}+\eta^{j} b^{i}\right)+N^{2} b^{i} b^{j}$. Again by applying Proposition 3.2 we obtain the inverse of $\tilde{H}_{i j}$ as:

$$
\begin{align*}
\tilde{H}^{j i}= & a^{j i}+\left[\frac{p}{1+p \gamma}+\frac{p^{2} q \epsilon^{2}}{\tau(1+p \gamma)^{2}}\right] \eta^{i} \eta^{j}+\frac{q b^{i} b^{j}}{\tau}+\frac{p q \epsilon}{\tau(1+p \gamma)}\left(b^{i} \eta^{j}+b^{j} \eta^{i}\right) \\
& +\frac{M^{2} \eta^{i} \eta^{j}+M N\left(\eta^{i} b^{j}+\eta^{j} b^{i}\right)+N^{2} b^{i} b^{j}}{1+(M \gamma+N \epsilon) \sqrt{r}} . \tag{38}\\
\operatorname{det}\left(a_{i j}+p l_{i} l_{j}+q b_{i} b_{j}+r \eta_{i} \eta_{j}\right)= & {[1+(M \gamma+N \epsilon) \sqrt{r}]\left[1+\omega+\frac{p \epsilon^{2}}{1+p \gamma}\right](1+p \gamma) \operatorname{det}\left(a_{i j}\right) . } \tag{39}
\end{align*}
$$

But $\tilde{g}_{i j}=\rho_{0} \tilde{H}_{i j}$, with $\tilde{H}_{i j}$ from last step. Thus

$$
\begin{equation*}
\tilde{g}^{j i}=\frac{1}{\rho_{0}} \tilde{H}^{i j} . \tag{40}
\end{equation*}
$$

Therefore, from equation (38) in (40) and the equation 39, then we obtained claims (i) and (ii). Where, $\tilde{g_{i j}}$ and $\tilde{g}_{i \bar{j}}$ represents the \mathbb{R}-complex Finsler space with Matsumoto metric.

We observed the terms of γ, ϵ, and δ from above Theorem 3.1, immediately we state:

Proposition 3.4. In a non-Hermitian \mathbb{R}-complex Finsler space with Matsumoto metric then have the following properties.

$$
\begin{align*}
& \gamma+\bar{\gamma}=l_{i} \eta^{i}+l_{\bar{j}} \eta^{\bar{j}}=a_{i j} \eta^{j} \eta^{i}+a_{\bar{j} \bar{k}} \eta^{\overline{ }} \eta^{\bar{j}}=2 \alpha^{2} \tag{41}\\
& \epsilon+\bar{\epsilon}=b_{j} \eta^{j}+b_{\bar{j}} \eta^{\bar{j}}=2 \beta, \quad \delta=\epsilon \tag{42}
\end{align*}
$$

where

$$
\begin{aligned}
& l_{i}=a_{i j} \eta^{j}, \quad \eta_{i}=\frac{\alpha^{2}(\alpha-2 \beta)}{(\alpha-\beta)^{3}} a_{i j} \eta^{i}+\frac{\alpha^{4}}{(\alpha-\beta)^{3}} b_{i}, \quad \gamma=a_{j k} \eta^{j} \eta^{k}=l_{k} \eta^{k}, \quad \epsilon=b_{j} \eta^{j}, \\
& b^{k}=a^{j k} b_{j}, \quad b_{l}=b^{k} a_{k l}, \quad \delta=a_{j k} \eta^{j} b^{k}=l_{k} b^{k}, \quad l_{j}=a^{j l} l_{i}=\eta^{j} .
\end{aligned}
$$

4. Conclusion

The \mathbb{R}-complex Finsler space is an important quantities in complex Finsler geometry and it has well known interrelation with the other quantities like \mathbb{R}-complex Finsler space with class of (α, β)-metrics. In this paper we determined the fundamental metric tensors $\tilde{g}_{i j}$ and $\tilde{g}_{i \bar{j}}$ of \mathbb{R}-complex Finsler space with Matsumoto metrics and also find their determinants. Finally, we studied the property of non-Hermitian \mathbb{R}-complex Matsumoto metric.

References

[1] T. Aikau, On Finsler geometry on complex vector bundles, Riemann Finsler spaces, Indian J.
[2] T. Aikau, Projective Flatness of Complex Finsler Metricsss, Publ. Math. Debrecen, 63(2003), 343-362.
[3] D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemannian Finsler Geometry, Springer-verlag, (2000).
[4] Gheorghe Munteanu and Monica Purcuru, On R-complex Finsler spaces, Balkan Journal of Geometry and its Applications, 14(1)(2009).
[5] Gauree Shankar and Ruchi Kaushik Sharma, R-complex Finsler space with infinite series (α, β)-metric, Bulletin of the Transilvania University of Brasov, 11(1)(2018).
[6] M. Matsumoto, On Theory of Finsler spaces with (α, β)-metric, Rep. on Math. Phys., 31(1991), 43-83.
[7] M. Abate and G. Patrizio, Finsler metrics-A Global Approach, Lecturer Notes im Math., 1591, Springer-Verlag, (1994).
[8] R. Miron, General Randers spaces, Kluwer AcadPubl, (1996).
[9] R. Miron and B. T. Hassan, Variational problems in Finsler space with (α, β)-metric, Algebra Groups and Geometries, 20(2003), 285-300.
[10] Monica Purcuru, On R-complex Finsler spaces with Kropina metrics, Bulletin of the Transilvania University of Brasov, 4(53)(2011), 79-88.
[11] G. Munteanu and M. Purcuru, On R-complex Finsler spaces, Balkan J. Geom. Appl., 14(2009), 15-59.
[12] G. Munteanu, Complx spaces in Finsler,Lagrange and Hamilton Geometries, Kluwer Acad. Publ., 141(13)(2004).
[13] Nicolta Aldea and Gheorghe Munteanu, (α, β)-Comlex Finer metrics, Procceedings of the 4th-International Colloquim, "Mathematics in Engineering and Numerical Physics", October 6-8,Bucharest, Romania, (2006), 1-6.
[14] Nicolta Aldea and Gheorghe Munteanu, On ComplexFinsler spaces with Randers metrics, J. Korean Math. Soc.,46(5)(2009), 949-966.
[15] V. S. Sabau and H. Shimida, Remarkable classes of (α, β)-metric spaces, Rep. On Math. Phys., 47(1)(2001), 31-48.
[16] G. Shankar and S. A. Baby, R-complex Finsler spaces with special (α, β)-metrics, Int. J. of appl. Math., 29(5)(2016), 609-619.

[^0]: * E-mail: nmurthysk@gmail.com

