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Abstract: Let G = (V,E) be an undirected simple graph. The transformation graph G−−− of G is a simple graph with vertex
set V (G) ∪ E(G) in which adjacency is defined as follows: (a) two elements in V (G) are adjacent if and only if they are

non-adjacent in G, (b) two elements in E(G) are adjacent if and only if they are non-adjacent in G, and (c) an element

of V (G) and an element of E(G) are adjacent if and only if they are non-incident in G. In this paper, we determine the
chromatic number of Transformation graph G−−− for Complete, Wheel and Friendship graph.
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1. Introduction

In this paper, we are concerned with finite, simple graph. Let G = (V (G) , E (G)) be a graph, if there is an edge e joining

any two vertices u and v of G, we say u and v are adjacent. An n-vertex colouring or an n-colouring of a graph G = (V,E)

is a mapping f : V → S, where S is a set of n-colours.

Definition 1.1. A graph G is an ordered pair (V (G), E(G)) consisting of a non-empty set V (G) of vertices and a set E(G),

disjoint from V (G) of edges together with an incidence function ψG that associates with each edge of G is an unordered pair

of vertices of G.

Definition 1.2. A colouring of a simple connected graph G is colouring the vertices of G such that no two adjacent vertices

of G get the same colour. A graph is properly coloured if it is coloured with the minimum possible number of colours.

Definition 1.3. The chromatic number of a graph G is the minimum number of colours required to colour G properly and

is denoted by χ(G).

Definition 1.4. The total graph T (G) of a graph G is the graph whose vertex set is V (G) ∪ E(G) and two vertices are

adjacent in T if and only if they are either adjacent or incident in G.

Definition 1.5. The complement G of a graph G, which has V (G) as it set of points and two points are adjacent in G if

and only if they are not adjacent in G.

Definition 1.6. A wheel graph is a graph formed by connecting a single vertex to all vertices of cycle. A wheel graph with

n-vertices is denoted by Wn, that is, Wn = K1 + Cn−1, for every n ≥ 3.
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Definition 1.7. A complete graph is a simple graph in which every pair of distinct vertices are connected by a unique edge.

Definition 1.8. A friendship graph is a simple graph which consists of n-triangles with a common vertex. It is denoted by

Fn.

In [2] generalized the concept of total graphs to a transformation graph Gxyz with x, y, z; {−,+}, where G+++ is the total

graph of G, and G−−− is its complement. Also, G−−+, G−+− and G−++ are the complement of G++−, G+−+ and G+−−

respectively. Here, we investigate the transformation graph G−−− of some graphs.

Lemma 1.9. Let G be any simple graph and G−−− is the transformation of G, then a colour can be given to three vertices

of G−−− if and only if either they formed a K2 in G or a pair of edges are incident with a vertex in G.

Lemma 1.10. Let G be any path or cycle graph. If its transformation G−−− has 3k−vertices, then χ
(
G−−−

)
= k.

2. Main Results

Theorem 2.1. Let G be any simple graph and G−−− is the transformation of G, then a colour can be assign to more than

three vertices of G−−− if and only if d(vi) ≥ 3, for all vi ∈ G.

Proof. Let G be any simple graph with n-vertices. Let V
(
G−−−

)
= {vi, ej/i = 1, 2, . . . , n; j = 1, 2, . . . } be the vertex

set of G−−−. Assume that, d(vi) ≥ 3, for all vi ∈ G. Suppose v is a vertex in G and {ej ; (j = 1, 2, . . . , k)} are the edges

incident with v in G. Clearly, {v, ej ; (j = 1, 2, . . . , k)} are independent vertices in G−−−. Hence, in G−−− we can give a

single colour to the vertex v and the edges incident with v in G. Therefore, a single colour can be given to more than three

vertices of G−−−.

Conversely, assume that, a single colour can be given to more than three vertices of G−−−.

To prove that, d(vi) ≥ 3, for all vi ∈ G. Suppose, d (vi) = 2, for all vi ∈ G. Then the vertices in G−−− form a pair of

edges incident with a vertex in G. Then by Lemma 1.9, we can assign a single colour to exactly three vertices which is a

contradiction to our assumption. Therefore, d(vi) ≥ 3, for all vi ∈ G. Hence proved.

Theorem 2.2. Let G = Wn be any wheel graph with n-vertices, then χ
(
G−−−

)
=
⌈

2(n−1)
3

⌉
+ 1.

Proof. Let G = Wn be any path graph with n-vertices, whose vertices {vi/i = 1, 2, . . . , (n − 1)} are linear. Its transfor-

mation G−−− has (3n−2)-vertices. Let V
(
G−−−

)
= {v, vi, ej/ i = 1, 2, . . . , (n− 1) ; j = 1, 2, . . . , 2(n− 1)} be the vertex

set of G−−−. Now, we divide the vertex set of G−−− into three sets V1, V2 and V3 such that

(1). V1 = {vn/n ≡ 1(mod 3)}

(2). V2 = {vn/n ≡ 0(mod 3)}

(3). V3 = {vn/n ≡ 2(mod 3)}

Case (1): If n ≡ 1(mod 3), that is n = 3k+1, we have (9k+1)-vertices in G−−−, that is
∣∣V (G−−−)

∣∣ = 9k+1 = 6k+(3k + 1).

The (6k)-vertices of G−−− form a cycle Cn−1 with (3k)-vertices in G. By Lemma 1.10, we need (2k)-colours to these (6k)-

vertices of G−−− ⇒
⌈
6k
3

⌉
=
⌈

2(3k)
3

⌉
=
⌈

2(n−1)
3

⌉
-colours. The independent set of (3k + 1)-vertices in G−−− are the vertex

v and the edges incident with v in G. Since, these (3k + 1)-vertices are independent and adjacent with the vertices which

are coloured by the
⌈

2(n−1)
3

⌉
-colours. Hence, we need a new colour to colour these (3k + 1)-vertices of G−−−. Therefore,

we need
(⌈

2(n−1)
3

⌉
+ 1
)

-colours to colour the (9k + 1)-vertices in G−−−.
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Case (2): If n ≡ 0(mod 3), that is n = 3k, we have (9k−2)-vertices in G−−−, that is
∣∣V (G−−−)

∣∣ = 9k−2 = (6k−2)+(3k).

The (6k − 2)-vertices of G−−− form a cycle Cn−1 with (3k − 1)-vertices in G. By Lemma 1.10, to colour (6k − 3)-vertices,

we need (2k − 1)-colours. The (6k − 2)th-vertex of G−−− is adjacent with the vertices which are coloured by the existing

(2k − 1)-colours. Hence, we need a new colour to colour the (6k − 2)th-vertex. Therefore, we need (2k)-colours to colour

these (6k − 2)-vertices of Cn−1 ⇒
⌈
6k−2

3

⌉
=
⌈

2(3k−1)
3

⌉
=
⌈

2(n−1)
3

⌉
-colours.

The independent set of (3k)-vertices in G−−− are the vertex v and the edges incident with v in G. Since, these (3k)-vertices

are independent and adjacent with the vertices which are coloured by the
⌈

2(n−1)
3

⌉
-colours. Hence, we need a new colour

to colour these (3k)-vertices of G−−−. Therefore, we need
(⌈

2(n−1)
3

⌉
+ 1
)

-colours to colour the (9k − 2)-vertices in G−−−.

Case (3): If n ≡ 2 (mod 3), that is n = 3k + 2 and

∣∣V (G−−−)∣∣ = 9k + 4

= (6k + 2) + (3k + 2) .

The (6k + 2)-vertices of G−−− form a cycle Cn−1 with (3k + 1)-vertices in G. By Lemma 1.10, we need (2k)-colours to

the (6k)-vertices of G−−−. The (6k + 1)th and (6k + 2)th vertices of G−−− are independent and adjacent with the vertices

which are coloured by the existing (2k)-colours. Hence, we need a new colour to colour these two vertices. Therefore, we

need (2k + 1)-colours to colour these (6k+ 2)-vertices of Cn−1 ⇒
⌈
6k+2

3

⌉
=
⌈

2(3k+1)
3

⌉
=
⌈

2(n−1)
3

⌉
-colours. The independent

set of (3k + 2)-vertices in G−−− are the vertex v and the edges incident with v in G. Since, these (3k + 2)-vertices

are independent and adjacent with the vertices which are coloured by the
⌈

2(n−1)
3

⌉
-colours. Hence, we need a new colour

to colour these (3k + 2)-vertices of G−−−. Therefore, we need
(⌈

2(n−1)
3

⌉
+ 1
)

-colours to colour the (9k + 4)-vertices in

G−−−. Hence, in all the above cases we need
(⌈

2(n−1)
3

⌉
+ 1
)

-colours to colour the (3n − 2)-vertices of G−−−. Therefore,

χ
(
G−−−

)
=
⌈

2(n−1)
3

⌉
+ 1. Hence, the theorem is proved.

Theorem 2.3. Let G = Fn be the friendship graph with (2n+ 1)-vertices, then χ
(
G−−−

)
= n+ 1.

Proof. Let G = Fn be the friendship graph with (2n + 1)-vertices. Let v be the vertex adjacent to all the (2n)-vertices

in G. Hence, V (G) = {v, vi; (i=1,2,...,2n)} be the vertex set of G and E (G) = {ej; (j=1,2,...,3n)} be the edge set of G.

Therefore, V
(
G−−−

)
= {v, vi, ej/ i = 1, 2, . . . , 2n; j = 1, 2, . . . , 3n} be the vertex set of G−−− and

∣∣V (G−−−)∣∣ = 5n+ 1.

Fix the vertex v and assign the colour c0 to it. By the definition of G−−− and Fn, The (2n)-edges incident with v in G are

independent in G−−−, so we can assign the same colour c0 to these (2n)-vertices in G−−−. The remaining (3n)-vertices of

G−−− form n-independent K′2s in G. Therefore, the induced subgraph K2 formed by the vertices v2i−1 and v2i are adjacent

with all the vertices and an edge of the remaining (n− 1)−K′2s. Also, the induced subgraph in G−−− form by the elements

of each K2 in G are adjacent with at least one vertex of G−−− which was coloured by the colour c0. Hence, we need new

colours to colour these (3n)-vertices of G−−−. By Lemma 1.9, we need n-colours to colour all the n-independent K′2s of G

in G−−−. Therefore, we need (n+ 1)-colours to colour all the (5n+ 1)-vertices of G−−−. Hence the proof.

Theorem 2.4. Let G = Kn be any complete graph with n-vertices, then χ
(
G−−−

)
= n− 1.

Proof. LetG = Kn be any complete graph with n-vertices, whose vertices {vi/i = 1, 2, . . . , n} are linear. Its transformation

G−−− has
(

n(n+1)
2

)
-vertices. Let V

(
G−−−

)
=
{
vi, ej/ i = 1, 2, . . . , n; j = 1, 2, . . . ,

(
n(n−1)

2

)}
be the vertex set of G−−−.

Fix the vertex v1 in G−−− and assign the colour c1 to it. The (n− 1)-edges incident with v1 at G are independent in G−−−,

so we can assign the same colour c1 to all these vertices in G−−−. Now, choose the vertex v2. In G−−−, v2 is adjacent to

at least one of the (n− 1)-edges incident with v1 of G, so we can’t give the colour c1 to the vertex v2. Hence, we need a
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new colour c2 to colour the vertex v2 in G−−−. All the remaining (n− 2)-edges incident with v2 in G are (except the edge

incident with v1 which is already coloured) independent in G−−−. Therefore, we can assign the same colour c2 to these

(n− 2)-edges incident with v2 of G in G−−−.

Again, choose the vertex v3. In G−−−, v3 is adjacent to at least one of the (n− 1)-edges incident with v1 and v2 of G,

so we can’t give the colour c1 and c2 to the vertex v3. Hence, we need a new colour c3 to colour the vertex v3 in G−−−.

All the remaining (n− 3)-edges incident with v3 in G (except the edges incident with v1 and v2 which is already coloured)

are independent in G−−−. Therefore, we can assign the same colour c3 to these (n− 3)-edges incident with v3 of G in

G−−−. Repeat the above process to the vertices {v4, v5, . . . , vn−2} and the corresponding edges incident with these vertices

in G. From the above procedure we can conclude that, to colour the (n− 2)-vertices of G−−− we need (n− 2)-colours. The

remaining two vertices {vn−1, vn} and an edge form a K2 in G and they are adjacent with all the (n− 2)-colours (which

are already used) in G−−−. By Lemma 1.9, we need a new colour cn−1 to colour this K2. Hence, we need (n− 1)-colours

to colour all the
(

n(n+1)
2

)
-vertices. Therefore, χ

(
G−−−

)
= n− 1. Hence the theorem is proved.
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