Chromatic Number to the Transformation (G^{---}) of K_{n}, W_{n} and F_{n}

B. Stephen John ${ }^{1}$ and S. Andrin Shahila ${ }^{1, *}$
1 Department of Mathematics, Annai Velankanni College, Tholayavattam, Tamilnadu, India.

Abstract

Let $G=(V, E)$ be an undirected simple graph. The transformation graph G^{---}of G is a simple graph with vertex set $V(G) \cup E(G)$ in which adjacency is defined as follows: (a) two elements in $V(G)$ are adjacent if and only if they are non-adjacent in G, (b) two elements in $E(G)$ are adjacent if and only if they are non-adjacent in G, and (c) an element of $V(G)$ and an element of $E(G)$ are adjacent if and only if they are non-incident in G. In this paper, we determine the chromatic number of Transformation graph G^{---}for Complete, Wheel and Friendship graph.

Keywords: Complete Graph, Wheel Graph, Friendship graph, Chromatic Number, Transformation Graph.
(C) JS Publication.

Accepted on: 27.04.2018

1. Introduction

In this paper, we are concerned with finite, simple graph. Let $G=(V(G), E(G))$ be a graph, if there is an edge e joining any two vertices u and v of G, we say u and v are adjacent. An n-vertex colouring or an n-colouring of a graph $G=(V, E)$ is a mapping $f: V \rightarrow S$, where S is a set of n -colours.

Definition 1.1. A graph G is an ordered pair $(V(G), E(G))$ consisting of a non-empty set $V(G)$ of vertices and a set $E(G)$, disjoint from $V(G)$ of edges together with an incidence function ψ_{G} that associates with each edge of G is an unordered pair of vertices of G.

Definition 1.2. A colouring of a simple connected graph G is colouring the vertices of G such that no two adjacent vertices of G get the same colour. A graph is properly coloured if it is coloured with the minimum possible number of colours.

Definition 1.3. The chromatic number of a graph G is the minimum number of colours required to colour G properly and is denoted by $\chi(G)$.

Definition 1.4. The total graph $T(G)$ of a graph G is the graph whose vertex set is $V(G) \cup E(G)$ and two vertices are adjacent in T if and only if they are either adjacent or incident in G.

Definition 1.5. The complement \bar{G} of a graph G, which has $V(G)$ as it set of points and two points are adjacent in \bar{G} if and only if they are not adjacent in G.

Definition 1.6. A wheel graph is a graph formed by connecting a single vertex to all vertices of cycle. A wheel graph with n-vertices is denoted by W_{n}, that is, $W_{n}=K_{1}+C_{n-1}$, for every $n \geq 3$.

[^0]Definition 1.7. A complete graph is a simple graph in which every pair of distinct vertices are connected by a unique edge.

Definition 1.8. A friendship graph is a simple graph which consists of n-triangles with a common vertex. It is denoted by F_{n}.

In [2] generalized the concept of total graphs to a transformation graph $G^{x y z}$ with $x, y, z ;\{-,+\}$, where G^{+++}is the total graph of G , and G^{---}is its complement. Also, G^{--+}, G^{-+-}and G^{-++}are the complement of G^{++-}, G^{+-+}and G^{+--} respectively. Here, we investigate the transformation graph G^{---}of some graphs.

Lemma 1.9. Let G be any simple graph and G^{---}is the transformation of G, then a colour can be given to three vertices of G^{---}if and only if either they formed a K_{2} in G or a pair of edges are incident with a vertex in G.

Lemma 1.10. Let G be any path or cycle graph. If its transformation G^{---}has $3 k-v e r t i c e s$, then $\chi\left(G^{---}\right)=k$.

2. Main Results

Theorem 2.1. Let G be any simple graph and G^{---}is the transformation of G, then a colour can be assign to more than three vertices of G^{---}if and only if $d\left(v_{i}\right) \geq 3$, for all $v_{i} \in G$.

Proof. Let G be any simple graph with n-vertices. Let $V\left(G^{---}\right)=\left\{v_{i}, e_{j} / i=1,2, \ldots, n ; j=1,2, \ldots\right\}$ be the vertex set of G^{---}. Assume that, $d\left(v_{i}\right) \geq 3$, for all $v_{i} \in G$. Suppose v is a vertex in G and $\left\{e_{j} ;(j=1,2, \ldots, k)\right\}$ are the edges incident with v in G. Clearly, $\left\{v, e_{j} ;(j=1,2, \ldots, k)\right\}$ are independent vertices in G^{---}. Hence, in G^{---}we can give a single colour to the vertex v and the edges incident with v in G . Therefore, a single colour can be given to more than three vertices of G^{---}.

Conversely, assume that, a single colour can be given to more than three vertices of G^{---}.
To prove that, $d\left(v_{i}\right) \geq 3$, for all $v_{i} \in G$. Suppose, $d\left(v_{i}\right)=2$, for all $v_{i} \in G$. Then the vertices in G^{---}form a pair of edges incident with a vertex in G. Then by Lemma 1.9, we can assign a single colour to exactly three vertices which is a contradiction to our assumption. Therefore, $d\left(v_{i}\right) \geq 3$, for all $v_{i} \in G$. Hence proved.

Theorem 2.2. Let $G=W_{n}$ be any wheel graph with n-vertices, then $\chi\left(G^{---}\right)=\left\lceil\frac{2(n-1)}{3}\right\rceil+1$.
Proof. Let $G=W_{n}$ be any path graph with n-vertices, whose vertices $\left\{v_{i} / i=1,2, \ldots,(n-1)\right\}$ are linear. Its transformation G^{---}has $(3 n-2)$-vertices. Let $V\left(G^{---}\right)=\left\{v, v_{i}, e_{j} / i=1,2, \ldots,(n-1) ; j=1,2, \ldots, 2(n-1)\right\}$ be the vertex set of G^{---}. Now, we divide the vertex set of G^{---}into three sets V_{1}, V_{2} and V_{3} such that
(1). $V_{1}=\left\{v_{n} / n \equiv 1(\bmod 3)\right\}$
(2). $V_{2}=\left\{v_{n} / n \equiv 0(\bmod 3)\right\}$
(3). $V_{3}=\left\{v_{n} / n \equiv 2(\bmod 3)\right\}$

Case (1): If $n \equiv 1(\bmod 3)$, that is $n=3 k+1$, we have $(9 k+1)$-vertices in G^{---}, that is $\left|V\left(G^{---}\right)\right|=9 k+1=6 k+(3 k+1)$. The $(6 k)$-vertices of G^{---}form a cycle C_{n-1} with $(3 k)$-vertices in G. By Lemma 1.10 , we need $(2 k)$-colours to these $(6 k)$ vertices of $G^{---} \Rightarrow\left\lceil\frac{6 k}{3}\right\rceil=\left\lceil\frac{2(3 k)}{3}\right\rceil=\left\lceil\frac{2(n-1)}{3}\right\rceil$-colours. The independent set of $(3 k+1)$-vertices in G^{---}are the vertex v and the edges incident with v in G. Since, these $(3 k+1)$-vertices are independent and adjacent with the vertices which are coloured by the $\left\lceil\frac{2(n-1)}{3}\right\rceil$-colours. Hence, we need a new colour to colour these $(3 k+1)$-vertices of G^{---}. Therefore, we need $\left(\left\lceil\frac{2(n-1)}{3}\right\rceil+1\right)$-colours to colour the $(9 k+1)$-vertices in G^{---}.

Case (2): If $n \equiv 0(\bmod 3)$, that is $n=3 k$, we have $(9 k-2)$-vertices in G^{---}, that is $\left|V\left(G^{---}\right)\right|=9 k-2=(6 k-2)+(3 k)$. The $(6 k-2)$-vertices of G^{---}form a cycle C_{n-1} with $(3 k-1)$-vertices in G. By Lemma 1.10, to colour $(6 k-3)$-vertices, we need $(2 k-1)$-colours. The $(6 k-2)^{t h}$-vertex of G^{---}is adjacent with the vertices which are coloured by the existing $(2 k-1)$-colours. Hence, we need a new colour to colour the $(6 k-2)^{t h}$-vertex. Therefore, we need $(2 k)$-colours to colour these $(6 k-2)$-vertices of $C_{n-1} \Rightarrow\left\lceil\frac{6 k-2}{3}\right\rceil=\left\lceil\frac{2(3 k-1)}{3}\right\rceil=\left\lceil\frac{2(n-1)}{3}\right\rceil$-colours.
The independent set of $(3 k)$-vertices in G^{---}are the vertex v and the edges incident with v in G. Since, these ($3 k$)-vertices are independent and adjacent with the vertices which are coloured by the $\left\lceil\frac{2(n-1)}{3}\right\rceil$-colours. Hence, we need a new colour to colour these $(3 k)$-vertices of G^{---}. Therefore, we need $\left(\left\lceil\frac{2(n-1)}{3}\right\rceil+1\right)$-colours to colour the $(9 k-2)$-vertices in G^{----}. Case (3): If $n \equiv 2(\bmod 3)$, that is $n=3 k+2$ and

$$
\begin{aligned}
\left|V\left(G^{---}\right)\right| & =9 k+4 \\
& =(6 k+2)+(3 k+2) .
\end{aligned}
$$

The $(6 k+2)$-vertices of G^{---}form a cycle C_{n-1} with $(3 k+1)$-vertices in G. By Lemma 1.10 , we need ($2 k$)-colours to the $(6 k)$-vertices of G^{---}. The $(6 k+1)^{t h}$ and $(6 k+2)^{t h}$ vertices of G^{---}are independent and adjacent with the vertices which are coloured by the existing ($2 k$)-colours. Hence, we need a new colour to colour these two vertices. Therefore, we need $(2 k+1)$-colours to colour these $(6 k+2)$-vertices of $C_{n-1} \Rightarrow\left\lceil\frac{6 k+2}{3}\right\rceil=\left\lceil\frac{2(3 k+1)}{3}\right\rceil=\left\lceil\frac{2(n-1)}{3}\right\rceil$-colours. The independent set of $(3 k+2)$-vertices in G^{---}are the vertex v and the edges incident with v in G. Since, these $(3 k+2)$-vertices are independent and adjacent with the vertices which are coloured by the $\left\lceil\frac{2(n-1)}{3}\right\rceil$-colours. Hence, we need a new colour to colour these $(3 k+2)$-vertices of G^{---}. Therefore, we need $\left(\left\lceil\frac{2(n-1)}{3}\right\rceil+1\right)$-colours to colour the $(9 k+4)$-vertices in G^{---}. Hence, in all the above cases we need $\left(\left\lceil\frac{2(n-1)}{3}\right\rceil+1\right)$-colours to colour the $(3 n-2)$-vertices of G^{---}. Therefore, $\chi\left(G^{---}\right)=\left\lceil\frac{2(n-1)}{3}\right\rceil+1$. Hence, the theorem is proved.

Theorem 2.3. Let $G=F_{n}$ be the friendship graph with $(2 n+1)$-vertices, then $\chi\left(G^{---}\right)=n+1$.
Proof. Let $G=F_{n}$ be the friendship graph with $(2 n+1)$-vertices. Let ve the vertex adjacent to all the ($2 n$)-vertices in G. Hence, $V(G)=\left\{v, v_{i ;}(i=1,2, \ldots, 2 n)\right\}$ be the vertex set of G and $E(G)=\left\{e_{j ;(j=1,2, \ldots, 3 n)}\right\}$ be the edge set of G. Therefore, $V\left(G^{---}\right)=\left\{v, v_{i}, e_{j} / i=1,2, \ldots, 2 n ; j=1,2, \ldots, 3 n\right\}$ be the vertex set of G^{---}and $\left|V\left(G^{---}\right)\right|=5 n+1$. Fix the vertex vand assign the colour c_{0} to it. By the definition of G^{---}and F_{n}, The $(2 n)$-edges incident with v in G are independent in G^{---}, so we can assign the same colour c_{0} to these $(2 n)$-vertices in G^{---}. The remaining ($3 n$)-vertices of G^{---}form n-independent $K_{2}^{\prime} s$ in G. Therefore, the induced subgraph K_{2} formed by the vertices $v_{2 i-1}$ and $v_{2 i}$ are adjacent with all the vertices and an edge of the remaining $(n-1)-K_{2}^{\prime} s$. Also, the induced subgraph in G^{---}form by the elements of each K_{2} in G are adjacent with at least one vertex of G^{---}which was coloured by the colour c_{0}. Hence, we need new colours to colour these (3n)-vertices of G^{---}. By Lemma 1.9, we need n-colours to colour all the n-independent $K_{2}^{\prime} s$ of G in G^{---}. Therefore, we need $(n+1)$-colours to colour all the $(5 n+1)$-vertices of G^{---}. Hence the proof.

Theorem 2.4. Let $G=K_{n}$ be any complete graph with n-vertices, then $\chi\left(G^{---}\right)=n-1$.
Proof. Let $G=K_{n}$ be any complete graph with n-vertices, whose vertices $\left\{v_{i} / i=1,2, \ldots, n\right\}$ are linear. Its transformation G^{---}has $\left(\frac{n(n+1)}{2}\right)$-vertices. Let $V\left(G^{---}\right)=\left\{v_{i}, e_{j} / i=1,2, \ldots, n ; j=1,2, \ldots,\left(\frac{n(n-1)}{2}\right)\right\}$ be the vertex set of G^{---}. Fix the vertex v_{1} in G^{---}and assign the colour c_{1} to it. The $(n-1)$-edges incident with v_{1} at G are independent in G^{---}, so we can assign the same colour c_{1} to all these vertices in G^{---}. Now, choose the vertex v_{2}. In G^{---}, v_{2} is adjacent to at least one of the $(n-1)$-edges incident with v_{1} of G , so we can't give the colour c_{1} to the vertex v_{2}. Hence, we need a
new colour c_{2} to colour the vertex v_{2} in G^{---}. All the remaining $(n-2)$-edges incident with v_{2} in G are (except the edge incident with v_{1} which is already coloured) independent in G^{---}. Therefore, we can assign the same colour c_{2} to these $(n-2)$-edges incident with v_{2} of G in G^{---}.

Again, choose the vertex v_{3}. In G^{---}, v_{3} is adjacent to at least one of the $(n-1)$-edges incident with v_{1} and v_{2} of G , so we can't give the colour c_{1} and c_{2} to the vertex v_{3}. Hence, we need a new colour c_{3} to colour the vertex v_{3} in G^{---}. All the remaining $(n-3)$-edges incident with v_{3} in G (except the edges incident with v_{1} and v_{2} which is already coloured) are independent in G^{---}. Therefore, we can assign the same colour c_{3} to these $(n-3)$-edges incident with v_{3} of G in G^{---}. Repeat the above process to the vertices $\left\{v_{4}, v_{5}, \ldots, v_{n-2}\right\}$ and the corresponding edges incident with these vertices in G. From the above procedure we can conclude that, to colour the $(n-2)$-vertices of G^{---}we need ($n-2$)-colours. The remaining two vertices $\left\{v_{n-1}, v_{n}\right\}$ and an edge form a K_{2} in G and they are adjacent with all the ($n-2$)-colours (which are already used) in G^{---}. By Lemma 1.9, we need a new colour c_{n-1} to colour this K_{2}. Hence, we need ($n-1$)-colours to colour all the $\left(\frac{n(n+1)}{2}\right)$-vertices. Therefore, $\chi\left(G^{---}\right)=n-1$. Hence the theorem is proved.

References

[1] H. Abdollahzadeh Ahangar and L. Pushpalatha, On the chromatic number of some Harary graphs, International Mathematical Forum, 431(2009), 1511-1514.
[2] B. Wu and J. Meng, Basic properties of total transformation graphs, J. Math. Study, 34(2)(2001), 109-116.
[3] B. Basavanagoud and Keerthi Mirajkarandshripurnamalghan, Transversability and Planarity of the Transformation graph Gxyz, Proceedings of International conference on graph theory and Applications, Amritha school, (2009), 153-165.
[4] Douglas B. West, Introduction to graph theory, Second edition, Prentice-Hall of India Private Limited, New Delhi, (2006).

[^0]: * E-mail: andrinshahila@gmail.com (Research Scholar)

