

International Journal of Mathematics And its Applications

Chromatic Number to the Transformation (G^{---}) of K_n , W_n and F_n

B. Stephen John¹ and S. Andrin Shahila^{1,*}

1 Department of Mathematics, Annai Velankanni College, Tholayavattam, Tamilnadu, India.

1. Introduction

In this paper, we are concerned with finite, simple graph. Let G = (V(G), E(G)) be a graph, if there is an edge e joining any two vertices u and v of G, we say u and v are adjacent. An n-vertex colouring or an n-colouring of a graph G = (V, E)is a mapping $f : V \to S$, where S is a set of n-colours.

Definition 1.1. A graph G is an ordered pair (V(G), E(G)) consisting of a non-empty set V(G) of vertices and a set E(G), disjoint from V(G) of edges together with an incidence function ψ_G that associates with each edge of G is an unordered pair of vertices of G.

Definition 1.2. A colouring of a simple connected graph G is colouring the vertices of G such that no two adjacent vertices of G get the same colour. A graph is properly coloured if it is coloured with the minimum possible number of colours.

Definition 1.3. The chromatic number of a graph G is the minimum number of colours required to colour G properly and is denoted by $\chi(G)$.

Definition 1.4. The total graph T(G) of a graph G is the graph whose vertex set is $V(G) \cup E(G)$ and two vertices are adjacent in T if and only if they are either adjacent or incident in G.

Definition 1.5. The complement \overline{G} of a graph G, which has V(G) as it set of points and two points are adjacent in \overline{G} if and only if they are not adjacent in G.

Definition 1.6. A wheel graph is a graph formed by connecting a single vertex to all vertices of cycle. A wheel graph with *n*-vertices is denoted by W_n , that is, $W_n = K_1 + C_{n-1}$, for every $n \ge 3$.

Abstract: Let G = (V, E) be an undirected simple graph. The transformation graph G^{---} of G is a simple graph with vertex set $V(G) \cup E(G)$ in which adjacency is defined as follows: (a) two elements in V(G) are adjacent if and only if they are non-adjacent in G, (b) two elements in E(G) are adjacent if and only if they are non-adjacent in G, and (c) an element of V(G) and an element of E(G) are adjacent if and only if they are non-incident in G. In this paper, we determine the chromatic number of Transformation graph G^{---} for Complete, Wheel and Friendship graph.

Keywords: Complete Graph, Wheel Graph, Friendship graph, Chromatic Number, Transformation Graph.

 © JS Publication.
 Accepted on: 27.04.2018

^{*} E-mail: andrinshahila@gmail.com (Research Scholar)

Definition 1.7. A complete graph is a simple graph in which every pair of distinct vertices are connected by a unique edge.

Definition 1.8. A friendship graph is a simple graph which consists of n-triangles with a common vertex. It is denoted by F_n .

In [2] generalized the concept of total graphs to a transformation graph G^{xyz} with x, y, z; $\{-, +\}$, where G^{+++} is the total graph of G, and G^{---} is its complement. Also, G^{--+} , G^{-+-} and G^{-++} are the complement of G^{++-} , G^{+-+} and G^{+--} respectively. Here, we investigate the transformation graph G^{---} of some graphs.

Lemma 1.9. Let G be any simple graph and G^{---} is the transformation of G, then a colour can be given to three vertices of G^{---} if and only if either they formed a K_2 in G or a pair of edges are incident with a vertex in G.

Lemma 1.10. Let G be any path or cycle graph. If its transformation G^{---} has 3k-vertices, then $\chi(G^{---}) = k$.

2. Main Results

Theorem 2.1. Let G be any simple graph and G^{---} is the transformation of G, then a colour can be assign to more than three vertices of G^{---} if and only if $d(v_i) \ge 3$, for all $v_i \in G$.

Proof. Let G be any simple graph with n-vertices. Let $V(G^{---}) = \{v_i, e_j/i = 1, 2, ..., n; j = 1, 2, ...\}$ be the vertex set of G^{---} . Assume that, $d(v_i) \ge 3$, for all $v_i \in G$. Suppose v is a vertex in G and $\{e_j; (j = 1, 2, ..., k)\}$ are the edges incident with v in G. Clearly, $\{v, e_j; (j = 1, 2, ..., k)\}$ are independent vertices in G^{---} . Hence, in G^{---} we can give a single colour to the vertex v and the edges incident with v in G. Therefore, a single colour can be given to more than three vertices of G^{---} .

Conversely, assume that, a single colour can be given to more than three vertices of G^{---} .

To prove that, $d(v_i) \ge 3$, for all $v_i \in G$. Suppose, $d(v_i) = 2$, for all $v_i \in G$. Then the vertices in G^{---} form a pair of edges incident with a vertex in G. Then by Lemma 1.9, we can assign a single colour to exactly three vertices which is a contradiction to our assumption. Therefore, $d(v_i) \ge 3$, for all $v_i \in G$. Hence proved.

Theorem 2.2. Let $G = W_n$ be any wheel graph with n-vertices, then $\chi(G^{---}) = \left\lceil \frac{2(n-1)}{3} \right\rceil + 1$.

Proof. Let $G = W_n$ be any path graph with *n*-vertices, whose vertices $\{v_i/i = 1, 2, ..., (n-1)\}$ are linear. Its transformation G^{---} has (3n-2)-vertices. Let $V(G^{---}) = \{v, v_i, e_j/i = 1, 2, ..., (n-1); j = 1, 2, ..., 2(n-1)\}$ be the vertex set of G^{---} . Now, we divide the vertex set of G^{---} into three sets V_1, V_2 and V_3 such that

- (1). $V_1 = \{v_n / n \equiv 1 \pmod{3}\}$
- (2). $V_2 = \{v_n / n \equiv 0 \pmod{3}\}$
- (3). $V_3 = \{v_n / n \equiv 2 \pmod{3}\}$

Case (1): If $n \equiv 1 \pmod{3}$, that is n = 3k+1, we have (9k+1)-vertices in G^{---} , that is $|V(G^{---})| = 9k+1 = 6k+(3k+1)$. The (6k)-vertices of G^{---} form a cycle C_{n-1} with (3k)-vertices in G. By Lemma 1.10, we need (2k)-colours to these (6k)-vertices of $G^{---} \Rightarrow \left\lceil \frac{6k}{3} \right\rceil = \left\lceil \frac{2(3k)}{3} \right\rceil = \left\lceil \frac{2(n-1)}{3} \right\rceil$ -colours. The independent set of (3k+1)-vertices in G^{---} are the vertex v and the edges incident with v in G. Since, these (3k+1)-vertices are independent and adjacent with the vertices which are coloured by the $\left\lceil \frac{2(n-1)}{3} \right\rceil$ -colours. Hence, we need a new colour to colour these (3k+1)-vertices of G^{---} . Therefore, we need $\left(\left\lceil \frac{2(n-1)}{3} \right\rceil + 1\right)$ -colours to colour the (9k+1)-vertices in G^{---} . **Case (2):** If $n \equiv 0 \pmod{3}$, that is n = 3k, we have (9k-2)-vertices in G^{---} , that is $|V(G^{---})| = 9k-2 = (6k-2) + (3k)$. The (6k-2)-vertices of G^{---} form a cycle C_{n-1} with (3k-1)-vertices in G. By Lemma 1.10, to colour (6k-3)-vertices, we need (2k-1)-colours. The $(6k-2)^{th}$ -vertex of G^{---} is adjacent with the vertices which are coloured by the existing (2k-1)-colours. Hence, we need a new colour to colour the $(6k-2)^{th}$ -vertex. Therefore, we need (2k)-colours to colour these (6k-2)-vertices of $C_{n-1} \Rightarrow \left\lceil \frac{6k-2}{3} \right\rceil = \left\lceil \frac{2(3k-1)}{3} \right\rceil = \left\lceil \frac{2(n-1)}{3} \right\rceil$ -colours.

The independent set of (3k)-vertices in G^{---} are the vertex v and the edges incident with v in G. Since, these (3k)-vertices are independent and adjacent with the vertices which are coloured by the $\left\lceil \frac{2(n-1)}{3} \right\rceil$ -colours. Hence, we need a new colour to colour these (3k)-vertices of G^{---} . Therefore, we need $\left(\left\lceil \frac{2(n-1)}{3} \right\rceil + 1 \right)$ -colours to colour the (9k-2)-vertices in G^{---} . **Case (3):** If $n \equiv 2 \pmod{3}$, that is n = 3k + 2 and

$$V(G^{---}) = 9k + 4$$

= $(6k + 2) + (3k + 2).$

The (6k + 2)-vertices of G^{---} form a cycle C_{n-1} with (3k + 1)-vertices in G. By Lemma 1.10, we need (2k)-colours to the (6k)-vertices of G^{---} . The $(6k + 1)^{th}$ and $(6k + 2)^{th}$ vertices of G^{---} are independent and adjacent with the vertices which are coloured by the existing (2k)-colours. Hence, we need a new colour to colour these two vertices. Therefore, we need (2k + 1)-colours to colour these (6k + 2)-vertices of $C_{n-1} \Rightarrow \left\lceil \frac{6k+2}{3} \right\rceil = \left\lceil \frac{2(3k+1)}{3} \right\rceil = \left\lceil \frac{2(n-1)}{3} \right\rceil$ -colours. The independent set of (3k + 2)-vertices in G^{---} are the vertex v and the edges incident with v in G. Since, these (3k + 2)-vertices are independent and adjacent with the vertices which are coloured by the $\left\lceil \frac{2(n-1)}{3} \right\rceil$ -colours. Hence, we need a new colour to colour these (3k + 2)-vertices of G^{---} . Therefore, we need $\left(\left\lceil \frac{2(n-1)}{3} \right\rceil + 1\right)$ -colours to colour the (9k + 4)-vertices in G^{---} . Hence, in all the above cases we need $\left(\left\lceil \frac{2(n-1)}{3} \right\rceil + 1\right)$ -colours to colour the (3n - 2)-vertices of G^{---} . Therefore, $\chi \left(G^{---}\right) = \left\lceil \frac{2(n-1)}{3} \right\rceil + 1$. Hence, the theorem is proved.

Theorem 2.3. Let $G = F_n$ be the friendship graph with (2n + 1)-vertices, then $\chi(G^{---}) = n + 1$.

Proof. Let $G = F_n$ be the friendship graph with (2n + 1)-vertices. Let v be the vertex adjacent to all the (2n)-vertices in G. Hence, $V(G) = \{v, v_i, (i=1,2,...,2n)\}$ be the vertex set of G and $E(G) = \{e_j, (j=1,2,...,3n)\}$ be the edge set of G. Therefore, $V(G^{---}) = \{v, v_i, e_j / i = 1, 2, ..., 2n; j = 1, 2, ..., 3n\}$ be the vertex set of G^{---} and $|V(G^{---})| = 5n + 1$. Fix the vertex v and assign the colour c_0 to it. By the definition of G^{---} and F_n , The (2n)-edges incident with v in G are independent in G^{---} , so we can assign the same colour c_0 to these (2n)-vertices in G^{---} . The remaining (3n)-vertices of G^{---} form *n*-independent K'_2s in G. Therefore, the induced subgraph K_2 formed by the vertices v_{2i-1} and v_{2i} are adjacent with all the vertices and an edge of the remaining $(n-1) - K'_2s$. Also, the induced subgraph in G^{---} form by the elements of each K_2 in G are adjacent with at least one vertex of G^{---} which was coloured by the colour c_0 . Hence, we need new colours to colour these (3n)-vertices of G^{---} . By Lemma 1.9, we need *n*-colours to colour all the *n*-independent K'_2s of G in G^{---} . Therefore, we need (n + 1)-colours to colour all the (5n + 1)-vertices of G^{---} . Hence the proof. □

Theorem 2.4. Let $G = K_n$ be any complete graph with n-vertices, then $\chi(G^{---}) = n - 1$.

Proof. Let $G = K_n$ be any complete graph with *n*-vertices, whose vertices $\{v_i/i = 1, 2, ..., n\}$ are linear. Its transformation G^{---} has $\left(\frac{n(n+1)}{2}\right)$ -vertices. Let $V\left(G^{---}\right) = \left\{v_i, e_j/i = 1, 2, ..., n; j = 1, 2, ..., \left(\frac{n(n-1)}{2}\right)\right\}$ be the vertex set of G^{---} . Fix the vertex v_1 in G^{---} and assign the colour c_1 to it. The (n-1)-edges incident with v_1 at G are independent in G^{---} , so we can assign the same colour c_1 to all these vertices in G^{---} . Now, choose the vertex v_2 . In G^{---} , v_2 is adjacent to at least one of the (n-1)-edges incident with v_1 of G, so we can't give the colour c_1 to the vertex v_2 . Hence, we need a

new colour c_2 to colour the vertex v_2 in G^{---} . All the remaining (n-2)-edges incident with v_2 in G are (except the edge incident with v_1 which is already coloured) independent in G^{---} . Therefore, we can assign the same colour c_2 to these (n-2)-edges incident with v_2 of G in G^{---} .

Again, choose the vertex v_3 . In G^{---} , v_3 is adjacent to at least one of the (n-1)-edges incident with v_1 and v_2 of G, so we can't give the colour c_1 and c_2 to the vertex v_3 . Hence, we need a new colour c_3 to colour the vertex v_3 in G^{---} . All the remaining (n-3)-edges incident with v_3 in G (except the edges incident with v_1 and v_2 which is already coloured) are independent in G^{---} . Therefore, we can assign the same colour c_3 to these (n-3)-edges incident with v_3 of G in G^{---} . Repeat the above process to the vertices $\{v_4, v_5, \ldots, v_{n-2}\}$ and the corresponding edges incident with these vertices in G. From the above procedure we can conclude that, to colour the (n-2)-vertices of G^{---} we need (n-2)-colours. The remaining two vertices $\{v_{n-1}, v_n\}$ and an edge form a K_2 in G and they are adjacent with all the (n-2)-colours (which are already used) in G^{---} . By Lemma 1.9, we need a new colour c_{n-1} to colour this K_2 . Hence, we need (n-1)-colours to colour all the $\left(\frac{n(n+1)}{2}\right)$ -vertices. Therefore, $\chi(G^{---}) = n-1$. Hence the theorem is proved.

References

- H. Abdollahzadeh Ahangar and L. Pushpalatha, On the chromatic number of some Harary graphs, International Mathematical Forum, 431(2009), 1511-1514.
- [2] B. Wu and J. Meng, Basic properties of total transformation graphs, J. Math. Study, 34(2)(2001), 109-116.
- [3] B. Basavanagoud and Keerthi Mirajkarandshripurnamalghan, Transversability and Planarity of the Transformation graph Gxyz, Proceedings of International conference on graph theory and Applications, Amritha school, (2009), 153-165.
- [4] Douglas B. West, Introduction to graph theory, Second edition, Prentice-Hall of India Private Limited, New Delhi, (2006).