
Received: January 22, 2019 71

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.08

Performance Evaluation of Newly Proposed Lightweight Cipher, BRIGHT

Deepti Sehrawat1* Nasib Singh Gill1

 1Department of Computer Science & Applications,

Maharshi Dayanand University, Rohtak, Haryana, India

* Corresponding author’s Email: dips.scorpio@gmail.com

Abstract: Lightweight security algorithms are tailored for resource-constrained environment. To improve the

efficiency of an algorithm, usually, a tradeoff is involved in lightweight cryptography in terms of its memory

requirements and speed. By adopting several performance enhancement techniques, a security framework for IoT

enabled applications is presented in this paper. Proposed BRIGHT family of ciphers is comparably better than existing

lightweight ciphers and support a range of block and key sizes for constraint environment. It enables users to match

their security needs with application requirements by supporting a range of cryptographic solutions. The BRIGHT

family of ciphers is a software-oriented design. The performance of BRIGHT family of lightweight ciphers is

evaluated on different parameters. All versions of BRIGHT family ciphers fulfill Strict Avalanche Criteria, key

sensitivity test, and randomness test. BRIGHT family ciphers show better performance in terms of memory

requirements, cost and speed as compared to existing lightweight ciphers.

Keywords: Performance evaluation, BRIGHT, Cryptographic solutions, Lightweight block cipher, ARX, GFN,

Feistel block ciphers.

1. Introduction

In IoT field, various resource constraints devices

communicate in the network using RFID (Radio

Frequency Identification Devices) which is a fast-

growing technology that allows automated

identification of items having RFID tags. These

RFID tags are integrated circuits having an antenna.

RFID reader, through radio interface, communicate

with these RFID tags [1]. WSN have some form of

design limitations, different communication and

deployment patterns that pose a number of security

problems to it. Moreover, making a good security

solution requires analyzing security requirements of

WSN [2]. A number of low cost and low energy

sensor nodes are involved in Wireless Sensor

Networks (WSNs). These nodes communicate via

wireless links at a short distance. For such a platform,

regular algorithms may incur very high power

consumption. Like sensor networks which connects

numerous sensors to a central hub. Batteries or solar

panels run these sensors. For all of these connected

devices information security is evidently necessary

[3]. To provide high security and privacy,

cryptographic solutions must be used. However, due

to very low available energy, the limited size of ROM

and RAM consumption and high-security demand in

a resource-constrained environment, lightweight

cryptographic security solutions are required [4].

Lightweight ciphers vary from traditional

cryptographic algorithms. These can be implemented

either through software implementation or through

hardware implementations. Software oriented cipher

designs provide more flexibility at lower costs on

manufacturing and maintenance as compared to

hardware implementations. Even providing strong

resistance against mathematical attacks could not

protect hardware-oriented block ciphers from side

channel attacks thereby losing its keys. So a good

software design is required to provide enough

security guard against attacks.

This paper proposes a software-oriented family of

highly optimized lightweight block cipher, BRIGHT.

The structure of BRIGHT family of cipher is so

designed that makes it more efficient than existing

Received: January 22, 2019 72

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.08

ones. It uses ARX operations, pre-key whitening and

round permutation which are so designed that it not

only leads to smaller code size it also provides fast

diffusion. For resource constraint devices in IoT

environment, proposed cipher supports a range of

block and key sizes. There is a total of 6 variants of

BRIGHT cipher with prevalent block sizes 64-bit and

128-bit. This enables users to match their security

needs with application requirements. All 6 versions

of BRIGHT family ciphers fulfill Strict Avalanche

Criteria (SAC) along with key sensitivity test and

randomness test. In this paper performance of

BRIGHT cipher is evaluated on a 64-bit processor

and is compared with benchmarked ARX-based

lightweight block ciphers. All variants of BRIGHT

cipher have a comparably lower cost, low memory

utilization, and high speed.

The rest of the paper is structured as follows:

section 2 summarized related work followed by

section 3 describing performance enhancement

implementation techniques and ideas. Section 4

explains BRIGHT cipher design, and the

performance evaluation of the proposed family of

lightweight cipher BRIGHT is presented in section 5.

2. Related work

Some of the benchmarked lightweight block

ciphers with ARX structure are LEA (2015) [5],

HIGHT [6], SIMON [7], SPECK [7], Chaskey [8],

RoadRunneR [9] and SPARX [10].

LEA has a block size of 128-bits and supports

three different key sizes viz. 128, 192 and 256-bits

long. LEA uses a generalized FN with four branches

of 32-bit each. It is optimized for 32-bit processor

than a 64-bit processor [5]. There exists a 15 round

boomerang attack on this cipher [11].

HIGHT is another ARX based lightweight block

cipher optimized for 8-bit operations [6]. Designers

studied a 26 round impossible differential attack on

HIGHT [12]. Some other attacks implemented on

HIGHT are multidimensional zero-correlation attack

[13], biclique attack [14], and related-key attack [15].

SPECK and SIMON family of lightweight

ciphers have 10 instances of each. Speck applies

simple round functions due to which its code size is

very small. There exist differential attacks targeting

19 rounds out of 26 in SPECK-64/96 and 20 rounds

out of 27 in Speck-64/128 [16]. SIMON cipher with

a block size of 128-bit is comparable with LEA,

LEA’s performance exceeds that of SIMON in both

32-bit and 64-bit processors. Whereas performance

of SPECK exceeds LEA'S performance in 64-bit

processor because of SPECK's 64-bit addition in a

64-bit processor.

CHASKEY is a permutation-based Message

Authentication Code (MAC) lightweight cipher

optimized for 32-bit processor [8]. Because of its

Even-Mansour structure, key generation does not

follow any key schedule, it simply consists of two

shifts and two conditional XORs with the state for

two sub-keys. Differential-linear attack targeting 7

out of 8 rounds is the best-known attack against

Chaskey [17].

RoadRunneR is a 64-bit lightweight block cipher

with key sizes 80-bits or 128-bits. It is optimized for

an 8-bit processor. The Feistel function is an SPN

composed of four 4-bit S-box layers, three linear

layers, and three key additions [9]. The best-known

attack is high-probability truncated trail targeting 5

out of 7 rounds in RoadRunneR-128 [18].

SPARX cipher follows LTS (Long Trail design

Strategy) and supports two block sizes viz. 64-bits

and 128-bits. Three versions are supported by

SPARX, these are Sparx-64/128 having 8 steps with

3 rounds in each step, Sparx-128/128 having 8 steps

with 4 rounds in each step, and Sparx-128/256 having

10 steps with 4 rounds in each step [10]. There exists

an integral attack covering 15 and 22 rounds out of

24 and 32 rounds of SPARX-64/128 and SPARX-

128/128 respectively [10].

3. Performance enhancement ideas

It is really a challenging task to choose the best

algorithm in terms of its memory requirements and

energy efficiency [19]. This section presents some

useful performance enhancement implementation

ideas to improve the software based primitives.

3.1 Key schedule

A complex key schedule results in the increase in

RAM size or gate area. For lightweight algorithms,

an increase in memory size is not acceptable so it is

common to not consider related key attacks in

lightweight cryptography and allows to use simple

key scheduling [10]. Furthermore, if keys can be

chosen independently and randomly then it provides

resistance against related-key attacks [20]. Small key

sizes usually 80 bits or smaller offers slight security

margin against brute-force search. Time-memory-

data tradeoff can turn out to be an issue if in multi-

key setting key size is very small [21]. To limit the

data available to the attacker, changing key

frequently provides resistance to the related key

attacks [22]. XORing actual key prior to its use

thwarts the weak key attacks in a cipher. Same was

realized by the authors in [23] in which a lightweight

algorithm SIT was proposed in which actual key is

not used, the key is first XORed before its use.

Received: January 22, 2019 73

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.08

3.2 Internal state

To minimize the constraints posed by IoT, most

of the lightweight block algorithms considered to use

smaller internal states in the form of block sizes. As

a result, most of the block ciphers in IoT use a block

size of 64-bits. This results in low memory footprints

in software implementation as well as in hardware

implementation of the security algorithm. This

reduced block size, as a result, creates a problem as

the security of some modes of operation like CBC

(Cipher Block Chaining) erodes rapidly when the

number of 𝑛-bit blocks encrypted reaches 2𝑛/2 [24].

XOR function is mostly used in ARX-based

ciphers. Using addition mod 2b is more useful in

place of bitwise XOR because for several reasons.

Using a mod 2b key addition improves the diffusion

layer by introducing sufficient non-linearity. This is

done at the same cost and same speed as by bitwise

XOR. It also helps to provide enough resistance

against structural attacks [25]. Rotations are not

considered good operations, especially rotations of

same amount on neighboring large operands.

Furthermore, different rotation amounts offer a

reasonable amount of different trade-offs between

efficiency and security (especially linear and

differential probabilities) [26]. So choosing carefully

best rotation amounts is considered as a good

decision in a cipher design [27].

For most efficient implementation choosing the

word size is an important decision, it is advisable to

choose the word size equal to the register size of the

microcontroller. Furthermore, if the register size of

the microcontroller is greater than that of word/

operand size, the worst results are obtained.

Consequently, normal implementation efficiency is

achieved when the word size is a multiple of register

size [26]. For optimization, using same size bitwise

operations as the platform is, provides good

efficiency because these can be directly mapped to

the ARM instructions. For example, using 32-bitwise

ARX operations for a 32-bit platform can be mapped

without additional effort to 32-bit ARM instruction

[28].

It is good to define the integer type length

explicitly which are available in “inttypes.h” like

int8_t in place of char, int32_t in place of int. This

gives consistent behavior and when defined for local

variables, it improves register usage.

4. Proposed BRIGHT cipher

By adopting several performance enhancement

techniques presented in section 3, a security

framework for IoT enabled applications is presented

in this section. The main features of the proposed

design are:

1) Supports two prevailing block sizes viz. 64-bits

and 128-bits.

2) Minimum key size chosen is 80-bits.

3) Pre-key whitening is used to thwart the weak key

attacks.

4) Use of addition mod 2b for better diffusion.

5) Different amount of rotations to improve security.

6) Round permutation for fast diffusion.

7) Chosen word size is equal to register size i.e. 64-

bitwise ARX operations for 64-bit platform.

8) Defined integer type length explicitly for better

register usage.

4.1 Notation

Throughout the paper the following notations are

used:

Vi Word/ Branch

+ Addition modulo 2n

^ n-bit exclusive OR

x<<<m Left circular shifts by m-bits

x>>>m Right circular shifts by m-bits

Mk Master-key

Rki Round key for ith round

& Bitwise AND

4.2 Design

BRIGHT cipher is a family of new lightweight

Feistel type block cipher which is based on 4-branch

GFN. Here the term lightweight does not only mean

that a security algorithm is suitable for some

constraint platform but it should be platform

independent. Proposed family of BRIGHT cipher has

an application independent design choice that

provides good performance. Since devices and the

applications vary greatly, proposed cipher provides a

wide range of options in form of block sizes and key

sizes. Prevailing block sizes are 64-bit and 128-bit

and key sizes are related to the desired security level,

for instance, a very low-cost device may achieve

sufficient security using just 64-bits of a key while on

the other hand, more sensitive applications may

require 256 bits of key. BRIGHT has low decryption

overhead, means it is easy to apply decryption from

encryption. BRIGHT operations are fast and are

supported in multiple platforms in an efficient and

parallel way. A total of six instances of BRIGHT

cipher has proposed, these are, BRIGHT 64/80,

BRIGHT 64/96, BRIGHT 64/128, BRIGHT 128/128,

BRIGHT 128/192 and BRIGHT 128/256. A general

description of BRIGHT n/m describes BRIGHT

cipher with n-bit block size and m-bit key size.

Received: January 22, 2019 74

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.08

Table 1. Parameters for all versions of BRIGHT

Block

Size

4n

Key

size

mn

Word

Size

n

Key

Words

m

Rounds Rotation

Amount

a b

64 80 16 5 32 2 6

96 6 33 2 6

128 8 34 2 6

128 128 32 4 35 5 8

192 6 36 5 8

256 8 37 5 8

Figure. 1 Layers in the BRIGHT family of ciphers

Performance of BRIGHT is better than existing

lightweight ciphers. To thwart most of the attacks on

this cipher, first, the minimum number of rounds ‘R',

required to reach complete diffusion is found for all

the variants of BRIGHT family. Then, the actual

number of rounds is given by applying the formula

3R, 3R+1, 3R+2 for BRIGHT 64/80, BRIGHT 64/96

and BRIGHT 64/128.

Table 1 gives the block size, key size, and the

number of rounds for BRIGHT family ciphers.

The encryption function of BRIGHT has three

layers, these are key whitening, ARX operations, and

round permutation. Fig. 1 depicts the structure of

proposed cipher. There are three layers, first, the

input plain text is divided into 4 words/ branches of

equal length on which key whitening is applied in the

first layer. After applying pre-key whitening, the

second layer performs ARX operations on the round

input. The last layer performs round permutation to

give the output for the next round. The operations of

second and third layers are performed for a specific

number of times which is equal to the number of

rounds.

a) Key Whitening:

To provide immunity against brute force and

MITM attacks, the actual key is first XORed as a pre-

whitening affect. This does not provide any immunity

to analytical attacks like linear cryptanalysis and

differential cryptanalysis. We have used only pre-

whitening, post whitening just adds to the code length.

Furthermore, it is due to the key whitening that makes

it almost impossible to extend the attack by even one

round which requires searching for all n-keys.

b) ARX Operations:

A software implementation of ARX ciphers gives

efficient implementation in a parallel way. In

BRIGHT, ARX operations are so arranged that it

leads to not only smaller code size, it also improves

diffusion in form of fast diffusion. To add non-

linearity to the cipher addition modulo 2n is used.

This is done at the same speed as by bitwise XOR.

Addition modulo 2n are non-linear operations and

propagate differences indefinitely. Different amount

of left and right circular shifts are used to add

diffusion in the cipher and XOR operation is used in

combination with addition modulo 2n to improve the

diffusion layer. This improves the diffusion layer and

offers different trade-offs between security and

efficiency.

c) Round Permutation:

Generalized Feistel Network has slow diffusion

property due to which some attacks like impossible

differential cryptanalysis can be applied easily to

these ciphers. To further improve the diffusion speed

in BRIGHT cipher, round permutations are added at

the end of each round.

Encryption is a composition of round functions

given by Eq. (1):

Rkr-1 ° Rkr-2 ° … Rk1 ° Rk0 (1)

This can be read from right to left. Decryption

uses the same round function but here the order of the

operations viz. key whitening, round constants, round

keys, and ARX operations are reversed. In place of

addition modulo 2n, subtraction modulo 2n is replaced.

All versions are BRIGHT performs fast diffusion and

are supported in multiple i.e. 8/16/32/64-bit

platforms in an efficient and parallel way. The

operations have so arranged that lead to fast

encryption and small code size.

4.3 Encryption algorithm

INPUT: Block (n-bits long) and master-key (m-bits

long).

OUTPUT: Block (n-bits long)

1) Compute n-bits after applying initial key-

whitening by partitioning n-bits plain text ‘P’

into 4 equal parts and XORing with sub-key i.e.

P = P0^k0 | P1^k1 | P2^k2 | P3^ k3.

ARX Operations

Plain Text

Cipher Text

V
0
 V

1
 V

2
 V

3

Round Input

V
0
 V

1
 V

2
 V

3
 Key

Whitening

Round

Permutation

Received: January 22, 2019 75

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.08

2) Apply ARX operations on Pi for ith round i.e.

Pi1=(Pi1<<<b)^Rki,

Pi0=((Pi0+P1)&C)<<<a,

Pi3=Pi3<<<b,

Pi2=(Pi2+Pi3)&C,

Pi3=Pi3^Pi2,

Pi0=Pi0^Pi3,

Pi3=Pi0^Pi3,

Pi2=Pi2^Pi1,

Pi1=(Pi1<<<b)^Pi2,

Pi2=Pi2<<<a

3) Perform Round Permutation i.e. Pi0|Pi1, Pi1|Pi2,

Pi2|Pi3, Pi3|Pi0.

4) Perform steps 2 and 3 for the remaining rounds.

4.4 Key scheduling

Key scheduling is the most fundamental and

crucial part in a cipher’s design and it can lead to

break down the cipher if otherwise not designed

cleverly. The entire security of the data is dependent

on the data scheduling and key scheduling of a cipher

design. Furthermore, GFN based algorithms are

composed of several rounds and each round requires

a separate key. Classes of weak keys can be found if

there is relatively weak key scheduling used by a

cipher which ultimately makes the cipher non-

resistant to different key scheduling attacks like zero

correlation attack, MITM attack, weak key attack,

and their variants. BRIGHT key scheduling is

inspired from SPECK key scheduling. Key

scheduling stores a user-defined master key is in the

register key, represented by Eq. (2).

K = kn kn-1 kn-2 … k2 k1 k0 (2)

After applying initial key whitening (where the

original sub-key from the master key is XORed with

the plain text), sub-keys are derived from the master

key which are fed to the BRIGHT rounds, i.e. ‘n’

keys for n-rounds. More confusion-diffusion is

introduced with the increase in the number of rounds,

providing more security. Furthermore, no attack

should be faster than exhaustive key search i.e. brute

force attack. To provide resistance against exhaustive

search attack, the master key length must be large

enough so that it becomes difficult for the attacker to

perform 2k-1 encryptions for the key searching attacks.

Also, longer key sizes require more number of rounds

so that every key bit affect the ciphertext bit in a

similar way i.e. without measurable differences

which would otherwise allow any cryptanalysis.

Key scheduling part uses the round function to

generate round keys ki. Let K be a key for a BRIGHT

4n block cipher. We can write K = (l m-2,… l0, k0)

where li, k0 € GF(4)n, for a value of m in {2,3,4}.

Sequences ki and li are defined by Eq. (3) and Eq. (4)

respectively.

Li+m-1 = (ki + li>>>2) ^ i (3)

Ki+1= ki <<<5 ^ li+m-1 (4)

The value ki is the ith round key, for 0 ≤ i < T.

5. Performance evaluation

Most of the IoT devices interact with other similar

devices and higher-end backend server. These

constraints systems have to perform some functions

like aggregating data received from sensors or

inventory. Hence, lightweight block cipher should

support sound performance on 64-bit processors.

There is a need for flexible secure block cipher which

is able to perform well on all of these platforms.

Confusion and diffusion are two main parameters

which test the suitability of a cipher. Confusion

means that there must exist a complicated relation of

ciphertext with plaintext and key. This is achieved by

mixing operations in a complicated way. Diffusion

means that every ciphertext bit must be influenced by

every plaintext bit and a key bit. Spreading every

plaintext bit influence over many ciphertext bits hides

the statistical structure of the plaintext. A cipher is

considered secure if a cipher proves to be secure

against all known cryptanalytic attacks until it is

realized otherwise. A number of cryptanalytic attacks

can be applied to a cipher. Out of these, two main

attacks are linear and differential cryptanalysis. In

this paper, our main goal for the security of BRIGHT

is to thwart possible attacks and to provide sufficient

security margin against unknown attacks.

Implementation results of the proposed BRIGHT

family of lightweight ciphers on a processor Intel (R)

Core (TM) i5-2430M CPU @ 2.40 GHz are observed.

Evaluation Parameters

Following criteria are taken to evaluate the

security of the proposed BRIGHT family of ciphers.

1. Strict Avalanche Criteria (SAC): According

to Strict Avalanche Criteria (SAC), the test is

considered to be perfect if a single bit change in input

(key/ plaintext) results in 50% change in the bits.

Cipher fulfilling SAC has a higher probability to

thwart all possible attacks [29]. Contrary, if SAC is

not satisfied, it is considered that poor randomization

occurs and cipher is not considered good. Table 2

summarizes the results of diffusion for BRIGHT

64/128, when there is a single-bit change in plaintext.

Received: January 22, 2019 76

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.08

Table 2. Summarizes the results of diffusion and randomness test for BRIGHT 64/128, when there is a single-bit

change in plaintext (Key (Hexadecimal) = 07 04 02 03 08 29 2a 0b 10 11 4f ae)

Plaintext

(Hexadecimal)

Ciphertext (Binary) Number of

Zero’s One’s

00 00 00 00 00 00 00 00 10010011 11001100 01110111 01101100 11100000 11100001 01100111 00110010 31 33

00 00 00 00 00 00 00 01 01010100 01110100 11001111 10011011 01000000 10010100 00101110 10000111 34 30

00 00 00 00 00 00 00 02 00101100 11111111 11010101 10100100 11101000 10100000 01010001 10011010 32 32

00 00 00 00 00 00 00 03 11101111 11110100 00100000 01000010 01111000 00101001 11000110 01100000 36 28

00 00 00 00 00 00 00 04 11011010 00010100 11010000 11000010 01111111 10111110 01100001 01001100 32 32

00 00 00 00 00 00 00 05 11100110 11001100 10010000 10001010 00111010 01001110 00010001 10011011 35 29

00 00 00 00 00 00 00 06 00101110 10110011 00010000 01001000 01001011 11001110 10110000 01000111 36 28

00 00 00 00 00 00 00 07 11000010 00010111 10010111 11111111 11001111 00111111 00000110 00111101 25 39

Number of bits

changed

(0, 1) = 35 (0, 2) = 27 (0, 4) = 37 (1, 3) = 38 (2, 3) = 34

(3, 7) = 35 (4, 6) = 28 (6, 7) = 35 (5, 7) = 34

Average diffusion = 33.66 (52.60%)

32.62

31.38

Table 3. Summarizes the diffusion range and average diffusion between plaintext block and ciphertext block when there

is a single-bit change in plaintext

Block Length Key Length Diffusion Range Average diffusion Diffusion Percentage

64 80 29 - 35 32.67 bits 51.04 %

64 96 26 - 37 31.89 bits 49.82 %

64 128 27 - 38 33.66 bits 52.60 %

128 128 48 - 71 62.78 bits 49.05 %

128 192 57 - 68 65.33 bits 51.04 %

128 256 56 - 72 63.56 bits 49.65 %

Table 4. Summarizes the results of randomness test and diffusion for BRIGHT 64/128, when there is a single-bit

change in key (Plaintext (Hexadecimal) = 00 00 00 00 00 00 00 00 00 00)

S.No Key

(Hexadecimal)

Ciphertext (Binary) Number of

Zero’s One’s

1 00 04 02 03 08

29 2a 0b 10 11

10011111 01111001 01100100 10111101 00000100 00101111 00110011 00111011 29 35

2 01 04 02 03 08

29 2a 0b 10 11

10110111 00011110 01010011 00110100 01101011 00111010 10000101 10110000 32 32

3 02 04 02 03 08

29 2a 0b 10 11

00010001 00100001 11011000 11011001 11000011 10111011 11000100 10101011 33 31

4 03 04 02 03 08

29 2a 0b 10 11

10011011 00001100 00000010 01010100 01001100 10011011 11000011 10001000 39 25

5 04 04 02 03 08

29 2a 0b 10 11
01001001 01111001 00101110 11110011 11100011 11000000 11111001 10100010 30 34

6 05 04 02 03 08

29 2a 0b 10 11
10000000 00010101 01110011 00110010 00010101 00101010 11111011 01101110 34 30

7 06 04 02 03 08

29 2a 0b 10 11
10001001 00000001 10010111 00011000 00010000 01101010 11111110 01000110 39 25

8 07 04 02 03 08

29 2a 0b 10 11
00100101 11111000 11111100 10110101 10011100 00011010 10100001 01001111 34 34

9
Number of

bits changed

(1, 2) = 33 (1, 3) = 32 (1, 5) = 33 (2, 4) = 23 (3, 4) = 28

(4, 8) = 35 (5, 7) = 34 (7, 8) = 34 (6, 8) = 30

Average diffusion = 31.33 (48.96%)

33.75 30.25

It also gives the average diffusion and diffusion

percentage for BRIGHT 64/128. Similar results of

Avalanche test are obtained for all versions of

BRIGHT family when there is a single-bit change in

plaintext which is summarized in Table 3. The

diffusion range given in Table 3 shows that a similar

amount of diffusion is not obtained for all cases.

Achieving different amount of diffusion is significant

and it shows the strength of the cipher’s properties. A

total of nine diffusion values are taken for each

variant for which Table 3 gives the diffusion range

and average diffusion. It is proved that all versions of

BRIGHT family fulfill SAC criteria by achieving

approximately 50% diffusion for all versions.

Received: January 22, 2019 77

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.08

Tale 5. Summarizes the diffusion range and average diffusion between plaintext block and ciphertext block when

there is a single-bit change in key.

Block Length Key Length Diffusion Range Average diffusion Diffusion Percentage

64 80 23-35 31.33 bits 48.96

64 96 29-40 31.89 bits 49.82

64 128 27-41 33 bits 51.56

128 128 59-68 64.56 bits 50.43

128 192 56-74 65.11 bits 50.87

128 256 54-74 63.22 bits 49.39

2. Key sensitivity: An algorithm is said to be key

sensitive if retrieving original data is not possible

when the key has even a minute difference from the

original key. For this, Avalanche test is used to

evaluate the amount of changes in the resulting

ciphertext. Table 4 summarizes the results of key

sensitivity for BRIGHT 64/128, when there is a

single-bit change in key. It also gives the average

diffusion and diffusion percentage for BRIGHT

64/128. Similar results of key sensitivity are obtained

against all versions of BRIGHT family when there is

a single-bit change in key which is summarized in

Table 5. Diffusion range in Table 5 shows that

different amount of diffusion is obtained and

approximately there is a 50% average diffusion for all

versions. Results of key sensitivity test shown in

Table 5 are obtained for nine diffusion values for

each variant of BRIGHT family for which it gives the

diffusion range and average diffusion. It shows that

all members of BRIGHT family fulfill key sensitive

criteria.

3. Randomness Test: Randomness test is based

on diffusion characteristics of the cipher. It is the

ability of the cipher's round function to produce

random output. The process of randomness test

consists of two steps; the first step takes the sample

sequence from the algorithm and in the second step

analysis of a sample is done by performing statistical

randomness tests. Potentially, a randomness test

could be used as a distinguisher based on diffusion. If

a cipher passes the randomness test, then there does

not exist some form of input/output relation.

Following criteria should meet to pass the

randomness test for Ψ matrices which deals with the

similarities of the diffusion instances, Ψ:

• The number of ones and zeros should be equal.

• A random distribution of ones and zeros.

• Ψi & Ψj should be dissimilar for i ≠ j.

Tables 2 and 4 show the results of randomness

test for BRIGHT 64/128 and gives an average

number of one's and zero's. It is clearly seen from the

tables that BRIGHT cipher has an almost equal

Table 6. Average number of zero’s and one’s in

ciphertext block when there is a single-bit change in

plaintext

Block

Length

Key

Length

Average

number of

Zero’s

Average

number of

One’s

64 80 30.13 33.87

64 96 30.25 33.75

64 128 32.62 31.38

128 128 65.12 62.88

128 192 63.75 64.25

128 256 60.75 67.25

Table 7. Average number of zero’s and one’s in

ciphertext block when there is a single-bit change in key

Block

Length

Key

Length

Average

number of

Zero’s

Average

number of

One’s

64 80 33.75 30.25

64 96 32.75 31.25

64 128 29.63 34.37

128 128 62.75 65.25

128 192 62.13 65.87

128 256 64.25 63.75

number of ones and zeros which are randomly

distributed and also for i ≠ j, Ψi & Ψj are dissimilar.

Tables 6 and 7 summarize the results of randomness

test for all versions of BRIGHT family when there is

a single-bit change in plaintext and key respectively.

So BRIGHT family passes the randomness test as

well.

4. Execution Time: Amount of time an algorithm

takes to encode and decode a particular data is known

as execution time. For IoT, lower execution time is

demanded and lower the execution time, better the

algorithm is. Table 7 summarizes the execution time

for each variant of BRIGHT family and a comparison

of ARX based lightweight ciphers is made. All the

algorithms compared in Table 8 and Fig. 2 are

implemented on a 64-bit processor in C-language to

compare their parameters on the same platform. This

was done so that no artifacts can be made due to

platform issues, either in results of BRIGHT cipher

or in the comparisons with other ciphers. It is clearly

Received: January 22, 2019 78

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.08

Table 8. Memory and execution time comparison of standard ARX-block ciphers with BRIGHT family implemented

on a 64-bit platform

Cipher

(Block size/ Key

size)

Rounds Memory (Bytes) Cost

(Cycles/

byte)

Speed

(Mbytes/

sec)
Encryption Decryption Key-schedule Encryption+

Decryption+

Key-schedule

BRIGHT (64/80) 32 633 637 640 1804 1578 1.45

RoadRunneR (64/80) 10 1642 1643 202 2334 1458 1.61

BRIGHT (64/96) 33 634 638 640 1806 1505 1.52

SPECK (64/96) 26 678 685 837 1802 2724 0.84

BRIGHT (64/128) 34 635 638 640 1807 1589 1.44

SPECK (64/128) 27 680 690 837 1820 2008 1.14

HIGHT (64/128) 32 1884 1864 1044 4280 2409 0.95

SPARX (64/128) 8 1501 1521 1453 3516 2630 0.87

BRIGHT (128/128) 35 641 639 639 1819 1774 1.29

SPARX (128/128) 8 3334 3353 1246 5059 5201 0.44

BRIGHT (128/192) 36 642 640 639 1821 2062 1.11

BRIGHT (128/256) 37 643 641 639 1823 2179 1.05

Fig. 2 represents the memory (Encryption + Decryption + Key-Scheduling) comparison of the existing lightweight

ciphers with BRIGHT cipher

seen from Table 8 that all variants of the BRIGHT

family member show better execution speed than

other existing lightweight ARX ciphers except the

RoadRunneR (64/80). RoadRunneR cipher uses on-

the-fly key scheduling which results in fast speed.

Also, the use of simple key scheduling in

RoadRunneR may lead to weak key attacks. Further

increase in the speed of BRIGHT cipher is possible

but only at the cost of increased memory. So keeping

this in mind a speed memory tradeoff is followed in

the design of proposed BRIGHT cipher.

5. Memory Utilization: In IoT based devices,

there are some constraints like low computation

power, limited memory, limited power consumption

and etc., In most of the IoT devices, there is a limited

amount of memory available to the devices which is

a major concern in resource constraint IoT

applications. Proposed BRIGHT cipher is evaluated

in terms of memory utilization. The BRIGHT family

of ciphers consumes a smaller amount of memory as

compared to other ciphers which is favorable for its

deployment in IoT. Additional code size savings are

possible but it lowers the throughput. Contrary to this,

loop unrolling can be used to improve register usage

and this speed up the process but at the cost of

increased memory size. So an intermediate concept

of loop unrolling can be used for balanced

performance. It all depends on the need of a particular

application. Table 8 summarizes the memory

utilization of BRIGHT family ciphers and compare

them with other existing ARX based lightweight

block ciphers on the same platform (64-bit processor).

Memory consumption of all variants of the BRIGHT

0

1000

2000

3000

4000

5000

6000

1804
2334

1806 1802 1807 1820

4280

3516

1819

5059

1821 1823

M
em

o
ry

 i
n
 b

y
te

s

Ciphers

BRIGHT (64/80) RoadRunneR (64/80) BRIGHT (64/96) SPECK (64/96)

BRIGHT (64/128) SPECK (64/128) HIGHT (64/128) SPARX (64/128)

BRIGHT (128/128) SPARX (128/128) BRIGHT (128/192) BRIGHT (128/256)

Received: January 22, 2019 79

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.08

family ciphers, in terms of flash memory, is lowest

except the variant with block size 64 and key size 96.

SPECK (64/96) has lower memory consumption than

BRIGHT (64/96). SPECK family has lowest flash

memory but SPECK has no security proof and

because of its simplest structure, there are a number

of attacks which are successfully applied on SPECK.

A few of these attacks are linear and differential

attacks [30 - 32].

6. Conclusion

Design and implementation of a lightweight

cipher go simultaneously and this has revealed some

significant limits and inherent conditions. Designing

a security algorithm for IoT enabled devices must

consider the criteria provided by standard

organizations from time to time. We have evaluated

the performance of newly proposed BRIGHT cipher,

a family of lightweight block ciphers with 6 instances,

supporting block sizes of 64-bit and 128-bit on a 64-

bit processor. BRIGHT ciphers fulfill Strict

Avalanche Criteria, passes key sensitivity and

randomness test. Results for execution time and

memory utilization of BRIGHT family ciphers are

better than existing ones. All the variants of BRIGHT

cipher have a comparably lower cost. So, due to its

fast execution speed and low memory utilization,

BRIGHT cipher proves to be a better security

algorithm than the existing benchmarked lightweight

block ciphers. This paper set a base for further

research work and in the near future, we will evaluate

the performance of the proposed ciphers on different

platforms (8-bit, 16-bit and 32-bit processors). This

work helps the researchers in the area of IoT security.

We invite researchers for the cryptanalysis of the

newly proposed family of BRIGHT cipher.

References

[1] R. Baashirah, A. Kommareddy, S. K. Batchu, V.

Sunku, R. S. Ginjupalli, and S. Abuzneid,

"Security implementation using present-puffin

protocol in RFID devices", In: Proc. of 2018

IEEE Long Island Systems, Applications and

Technology Conference, pp. 1-5, 2018.

[2] C. Pei, Y. Xiao, W. Liang, and X. Han, "Trade-

off of security and performance of lightweight

block ciphers in Industrial Wireless Sensor

Networks", EURASIP Journal on Wireless

Communications and Networking, No. 1, Article

No. 117, 2018.

[3] B. J. Mohd, T. Hayajneh, K. M. Ahmad Yousef,

Z. A. Khalaf, and M. Z. A. Bhuiyan, "Hardware

design and modeling of lightweight block

ciphers for secure communications", Future

Generation Computer Systems, Vol. 83, pp. 510-

521, 2018.

[4] G. Hatzivasilis, K. Fysarakis, I. Papaefstathiou,

and C. Manifavas, "A review of lightweight

block ciphers", Journal of Cryptographic

Engineering, Vol. 8, No. 2, pp. 141-184, 2018.

[5] H. Seo, Z. Liu, J. Choi, T. Park, and H. Kim,

“Compact implementations of LEA block cipher

for low-end microprocessors”, In: Proc. of

International Workshop on Information Security

Applications, Springer, Cham, pp. 28-40, 2015.

[6] D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. S.

Koo, C. Lee, D. Chang, J. Lee, K. Jeong, H. Kim,

J. Kim, and S. Chee, “HIGHT: A new block

cipher suitable for low-resource device”,

In: Proc. of International Workshop on

Cryptographic Hardware and Embedded

Systems, pp. 46-59, 2006.

[7] R. Beaulieu, S. T. Clark, D. Shors, B. Weeks, J.

Smith, and L. Wingers, “The SIMON and

SPECK lightweight block ciphers”, In: Proc. of

Design Automation Conference (DAC), 52nd

ACM/EDAC/IEEE, pp. 1-6, 2015.

[8] N. Mouha, B. Mennink, A. V. Herrewege, D.

Watanabe, B. Preneel, and I. Verbauwhede,

“Chaskey: an efficient MAC algorithm for 32-

bit microcontrollers”, In: Proc. of International

Workshop on Selected Areas in Cryptography,

pp. 306-323, 2014.

[9] A. Baysal and S. Şahin, “Roadrunner: A small

and fast bitslice block cipher for low cost 8-bit

processors”, In: Proc. of International

Workshop on Lightweight Cryptography for

Security and Privacy, pp. 58-76, 2015.

[10] D. Dinu, L. Perrin, A. Udovenko, V. Velichkov,

J. Großschädl, and A. Biryukov, “Design

strategies for ARX with provable bounds: Sparx

and LAX”, In: Proc. of International

Conference on the Theory and Application of

Cryptology and Information Security, pp. 484-

513, 2016.

[11] D. Hong, J.-K. Lee, D.-C. Kim, D. Kwon, K. H.

Ryu, and D. Lee, “LEA: A 128-bit block cipher

for fast encryption on common processors”, In:

Proc. of International Workshop on Information

Security Applications, pp. 3-27, 2013.

[12] O. Özen, K. Varici, C. Tezcan, and Ç. Kocair,

“Lightweight block ciphers revisited:

Cryptanalysis of reduced round PRESENT and

HIGHT”, In: Proc. of Australasian Conference

on Information Security and Privacy, pp. 90-107,

2009.

[13] L. Wen, M. Wang, A. Bogdanov, and H. Chen,

"Multidimensional zero-correlation attacks on

lightweight block cipher HIGHT: improved

Received: January 22, 2019 80

International Journal of Intelligent Engineering and Systems, Vol.12, No.4, 2019 DOI: 10.22266/ijies2019.0831.08

cryptanalysis of an ISO standard", Information

Processing Letters, Vol. 114, No. 6, pp. 322-330,

2014.

[14] S. Ahmadi, Z. Ahmadian, J. Mohajeri, and M. R.

Aref, "Low-data complexity biclique

cryptanalysis of block ciphers with application

to piccolo and hight", IEEE Transactions on

Information Forensics and Security, Vol. 9, No.

10, pp. 1641-1652, 2014.

[15] B. Koo, D. Hong, and D. Kwon, "Related-key

attack on the full HIGHT", In: Proc. of

International Conference on Information

Security and Cryptology, pp. 49-67, 2010.

[16] L. Song, Z. Huang, and Q. Yang, “Automatic

differential analysis of ARX block ciphers with

application to SPECK and LEA”, In: Proc. of

Australasian Conference on Information

Security and Privacy, pp. 379-394, 2016.

[17] G. Leurent, “Improved differential-linear

cryptanalysis of 7-round Chaskey with

partitioning”, In: Proc. of Annual International

Conference on the Theory and Applications of

Cryptographic Techniques, pp. 344-371, 2016.

[18] Q. Yang, L. Hu, S. Sun, and L. Song, “Extension

of meet-in-the-middle technique for truncated

differential and its application to RoadRunneR”,

In: Proc. of International Conference on

Network and System Security, pp. 398-411, 2016.

[19] M. Katagi, and S. Moriai, “Lightweight

cryptography for the Internet of Things”, Sony

Corp., pp. 7-10, 2008.

[20] S. Banik, A. Bogdanov, T. Isobe, K. Shibutani,

H. Hiwatari, T. Akishita, and F. Regazzoni,

“Midori: A block cipher for low energy”, In:

Proc. of International Conference on the Theory

and Application of Cryptology and Information

Security, pp. 411-436, 2014.

[21] A. Biryukov, S. Mukhopadhyay, and P. Sarkar,

“Improved time-memory trade-offs with

multiple data”, In: International Workshop on

Selected Areas in Cryptography, pp. 110-127,

2005.

[22] N. Mouha, “The Design Space of Lightweight

Cryptography”, In: NIST Lightweight

Cryptography Workshop, Gaithersburg, United

States, 2015.

[23] M. Usman, I. Ahmed, M. I. Aslam, S. Khan, and

U. A. Shah, “Sit: A lightweight encryption

algorithm for secure internet of things”,

International Journal of Advanced Computer

Science and Applications, Vol. 8, No. 1, pp. 402-

411, 2017.

[24] K. Bhargavan, and G. Leurent, “On the practical

(in-) security of 64-bit block ciphers: Collision

attacks on HTTP over TLS and OpenVPN”,

In: Proc. of 23rd ACM Conference on Computer

and Communications Security, pp. 456-467,

2016.

[25] F. X. Standaert, G. Piret, N. Gershenfeld, and J.

J. Quisquater, “SEA: A scalable encryption

algorithm for small embedded applications”, In:

Proc. of International Conference on Smart

Card Research and Advanced Applications, pp.

222-236, 2006.

[26] D. D. Daniel, “Efficient and secure

implementations of lightweight symmetric

cryptographic primitives”, Doctoral

dissertation, University of Luxembourg,

Luxembourg, 2017.

[27] C. Rajarathnam, S. Bapatla, K. P. Subbalakshmi,

and R. N. Uma, “Battery power-aware

encryption”, ACM Transactions on Information

and System Security (TISSEC), Vol. 9, No.2,

pp.162-180, 2006.

[28] H. Seo, I. Jeong, J. Lee, and W. H. Kim,

“Compact Implementations of ARX-Based

Block Ciphers on IoT Processors”, ACM

Transactions on Embedded Computing

Systems, Vol. 17, No. 3, Article No. 60, 2018.

[29] G. Bansod, N. Pisharoty, and A. Patil, “PICO:

An Ultra Lightweight and Low Power

Encryption Design for Ubiquitous Computing”,

Defence Science Journal, Vol. 66, No. 3, pp.

259-265, 2016.

[30] A. Biryukov, A. Roy, and V. Velichkov,

“Differential analysis of block ciphers Simon

and Speck”, Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), Vol. 8540, pp. 546–570, 2015.

[31] A. Biryukov, V. Velichkov, and Y. L. Corre,

“Automatic search for the best trails in ARX:

Application to block cipher SPECK”, In: Proc.

of International Conference on Fast Software

Encryption, pp. 289-310, 2016.

[32] I. Dinur, “Improved Differential Cryptanalysis

of Round-Reduced Speck”, In: Proc. of

International Conference on Computational

Intelligence and Security, CIS, pp. 367–371,

2010.

