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Abstract: Lightweight security algorithms are tailored for resource-constrained environment. To improve the 

efficiency of an algorithm, usually, a tradeoff is involved in lightweight cryptography in terms of its memory 

requirements and speed. By adopting several performance enhancement techniques, a security framework for IoT 

enabled applications is presented in this paper. Proposed BRIGHT family of ciphers is comparably better than existing 

lightweight ciphers and support a range of block and key sizes for constraint environment. It enables users to match 

their security needs with application requirements by supporting a range of cryptographic solutions. The BRIGHT 

family of ciphers is a software-oriented design. The performance of BRIGHT family of lightweight ciphers is 

evaluated on different parameters. All versions of BRIGHT family ciphers fulfill Strict Avalanche Criteria, key 

sensitivity test, and randomness test.  BRIGHT family ciphers show better performance in terms of memory 

requirements, cost and speed as compared to existing lightweight ciphers.  

Keywords: Performance evaluation, BRIGHT, Cryptographic solutions, Lightweight block cipher, ARX, GFN, 

Feistel block ciphers. 

 

 

1. Introduction 

In IoT field, various resource constraints devices 

communicate in the network using RFID (Radio 

Frequency Identification Devices) which is a fast-

growing technology that allows automated 

identification of items having RFID tags. These 

RFID tags are integrated circuits having an antenna. 

RFID reader, through radio interface, communicate 

with these RFID tags [1]. WSN have some form of 

design limitations, different communication and 

deployment patterns that pose a number of security 

problems to it. Moreover, making a good security 

solution requires analyzing security requirements of 

WSN [2]. A number of low cost and low energy 

sensor nodes are involved in Wireless Sensor 

Networks (WSNs).  These nodes communicate via 

wireless links at a short distance. For such a platform, 

regular algorithms may incur very high power 

consumption. Like sensor networks which connects 

numerous sensors to a central hub. Batteries or solar 

panels run these sensors. For all of these connected 

devices information security is evidently necessary 

[3]. To provide high security and privacy, 

cryptographic solutions must be used. However, due 

to very low available energy, the limited size of ROM 

and RAM consumption and high-security demand in 

a resource-constrained environment, lightweight 

cryptographic security solutions are required [4]. 

Lightweight ciphers vary from traditional 

cryptographic algorithms. These can be implemented 

either through software implementation or through 

hardware implementations. Software oriented cipher 

designs provide more flexibility at lower costs on 

manufacturing and maintenance as compared to 

hardware implementations. Even providing strong 

resistance against mathematical attacks could not 

protect hardware-oriented block ciphers from side 

channel attacks thereby losing its keys. So a good 

software design is required to provide enough 

security guard against attacks.  

This paper proposes a software-oriented family of 

highly optimized lightweight block cipher, BRIGHT. 

The structure of BRIGHT family of cipher is so 

designed that makes it more efficient than existing 
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ones. It uses ARX operations, pre-key whitening and 

round permutation which are so designed that it not 

only leads to smaller code size it also provides fast 

diffusion. For resource constraint devices in IoT 

environment, proposed cipher supports a range of 

block and key sizes. There is a total of 6 variants of 

BRIGHT cipher with prevalent block sizes 64-bit and 

128-bit. This enables users to match their security 

needs with application requirements. All 6 versions 

of BRIGHT family ciphers fulfill Strict Avalanche 

Criteria (SAC) along with key sensitivity test and 

randomness test. In this paper performance of 

BRIGHT cipher is evaluated on a 64-bit processor 

and is compared with benchmarked ARX-based 

lightweight block ciphers. All variants of BRIGHT 

cipher have a comparably lower cost, low memory 

utilization, and high speed. 

The rest of the paper is structured as follows: 

section 2 summarized related work followed by 

section 3 describing performance enhancement 

implementation techniques and ideas. Section 4 

explains BRIGHT cipher design, and the 

performance evaluation of the proposed family of 

lightweight cipher BRIGHT is presented in section 5.  

2. Related work 

Some of the benchmarked lightweight block 

ciphers with ARX structure are LEA (2015) [5], 

HIGHT [6], SIMON [7], SPECK [7], Chaskey [8], 

RoadRunneR [9] and SPARX [10].  

LEA has a block size of 128-bits and supports 

three different key sizes viz. 128, 192 and 256-bits 

long. LEA uses a generalized FN with four branches 

of 32-bit each. It is optimized for 32-bit processor 

than a 64-bit processor [5]. There exists a 15 round 

boomerang attack on this cipher [11].  

HIGHT is another ARX based lightweight block 

cipher optimized for 8-bit operations [6]. Designers 

studied a 26 round impossible differential attack on 

HIGHT [12]. Some other attacks implemented on 

HIGHT are multidimensional zero-correlation attack 

[13], biclique attack [14], and related-key attack [15].  

SPECK and SIMON family of lightweight 

ciphers have 10 instances of each. Speck applies 

simple round functions due to which its code size is 

very small.  There exist differential attacks targeting 

19 rounds out of 26 in SPECK-64/96 and 20 rounds 

out of 27 in Speck-64/128 [16]. SIMON cipher with 

a block size of 128-bit is comparable with LEA, 

LEA’s performance exceeds that of SIMON in both 

32-bit and 64-bit processors. Whereas performance 

of SPECK exceeds LEA'S performance in 64-bit 

processor because of SPECK's 64-bit addition in a 

64-bit processor.  

CHASKEY is a permutation-based Message 

Authentication Code (MAC) lightweight cipher 

optimized for 32-bit processor [8]. Because of its 

Even-Mansour structure, key generation does not 

follow any key schedule, it simply consists of two 

shifts and two conditional XORs with the state for 

two sub-keys. Differential-linear attack targeting 7 

out of 8 rounds is the best-known attack against 

Chaskey [17]. 

RoadRunneR is a 64-bit lightweight block cipher 

with key sizes 80-bits or 128-bits. It is optimized for 

an 8-bit processor. The Feistel function is an SPN 

composed of four 4-bit S-box layers, three linear 

layers, and three key additions [9]. The best-known 

attack is high-probability truncated trail targeting 5 

out of 7 rounds in RoadRunneR-128 [18].  

SPARX cipher follows LTS (Long Trail design 

Strategy) and supports two block sizes viz. 64-bits 

and 128-bits. Three versions are supported by 

SPARX, these are Sparx-64/128 having 8 steps with 

3 rounds in each step, Sparx-128/128 having 8 steps 

with 4 rounds in each step, and Sparx-128/256 having 

10 steps with 4 rounds in each step [10]. There exists 

an integral attack covering 15 and 22 rounds out of 

24 and 32 rounds of SPARX-64/128 and SPARX-

128/128 respectively [10].  

3. Performance enhancement ideas 

It is really a challenging task to choose the best 

algorithm in terms of its memory requirements and 

energy efficiency [19]. This section presents some 

useful performance enhancement implementation 

ideas to improve the software based primitives. 

3.1 Key schedule 

A complex key schedule results in the increase in 

RAM size or gate area. For lightweight algorithms, 

an increase in memory size is not acceptable so it is 

common to not consider related key attacks in 

lightweight cryptography and allows to use simple 

key scheduling [10]. Furthermore, if keys can be 

chosen independently and randomly then it provides 

resistance against related-key attacks [20]. Small key 

sizes usually 80 bits or smaller offers slight security 

margin against brute-force search. Time-memory-

data tradeoff can turn out to be an issue if in multi-

key setting key size is very small [21]. To limit the 

data available to the attacker, changing key 

frequently provides resistance to the related key 

attacks [22]. XORing actual key prior to its use 

thwarts the weak key attacks in a cipher. Same was 

realized by the authors in [23] in which a lightweight 

algorithm SIT was proposed in which actual key is 

not used, the key is first XORed before its use. 
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3.2 Internal state 

To minimize the constraints posed by IoT, most 

of the lightweight block algorithms considered to use 

smaller internal states in the form of block sizes. As 

a result, most of the block ciphers in IoT use a block 

size of 64-bits.  This results in low memory footprints 

in software implementation as well as in hardware 

implementation of the security algorithm. This 

reduced block size, as a result, creates a problem as 

the security of some modes of operation like CBC 

(Cipher Block Chaining) erodes rapidly when the 

number of 𝑛-bit blocks encrypted reaches 2𝑛/2 [24].  

XOR function is mostly used in ARX-based 

ciphers. Using addition mod 2b is more useful in 

place of bitwise XOR because for several reasons. 

Using a mod 2b key addition improves the diffusion 

layer by introducing sufficient non-linearity. This is 

done at the same cost and same speed as by bitwise 

XOR. It also helps to provide enough resistance 

against structural attacks [25]. Rotations are not 

considered good operations, especially rotations of 

same amount on neighboring large operands. 

Furthermore, different rotation amounts offer a 

reasonable amount of different trade-offs between 

efficiency and security (especially linear and 

differential probabilities) [26]. So choosing carefully 

best rotation amounts is considered as a good 

decision in a cipher design [27]. 

For most efficient implementation choosing the 

word size is an important decision, it is advisable to 

choose the word size equal to the register size of the 

microcontroller. Furthermore, if the register size of 

the microcontroller is greater than that of word/ 

operand size, the worst results are obtained. 

Consequently, normal implementation efficiency is 

achieved when the word size is a multiple of register 

size [26]. For optimization, using same size bitwise 

operations as the platform is, provides good 

efficiency because these can be directly mapped to 

the ARM instructions. For example, using 32-bitwise 

ARX operations for a 32-bit platform can be mapped 

without additional effort to 32-bit ARM instruction 

[28].  

It is good to define the integer type length 

explicitly which are available in “inttypes.h” like 

int8_t in place of char, int32_t in place of int. This 

gives consistent behavior and when defined for local 

variables, it improves register usage.  

4. Proposed BRIGHT cipher 

By adopting several performance enhancement 

techniques presented in section 3, a security 

framework for IoT enabled applications is presented 

in this section. The main features of the proposed 

design are: 

1) Supports two prevailing block sizes viz. 64-bits 

and 128-bits. 

2) Minimum key size chosen is 80-bits. 

3) Pre-key whitening is used to thwart the weak key 

attacks. 

4) Use of addition mod 2b for better diffusion. 

5) Different amount of rotations to improve security. 

6) Round permutation for fast diffusion. 

7) Chosen word size is equal to register size i.e. 64-

bitwise ARX operations for 64-bit platform. 

8) Defined integer type length explicitly for better 

register usage. 

4.1 Notation 

Throughout the paper the following notations are 

used: 

Vi  Word/ Branch 

+  Addition modulo 2n 

^  n-bit exclusive OR 

x<<<m   Left circular shifts by m-bits 

x>>>m   Right circular shifts by m-bits 

Mk   Master-key 

Rki   Round key for ith round  

&   Bitwise AND 

4.2 Design 

BRIGHT cipher is a family of new lightweight 

Feistel type block cipher which is based on 4-branch 

GFN. Here the term lightweight does not only mean 

that a security algorithm is suitable for some 

constraint platform but it should be platform 

independent. Proposed family of BRIGHT cipher has 

an application independent design choice that 

provides good performance. Since devices and the 

applications vary greatly, proposed cipher provides a 

wide range of options in form of block sizes and key 

sizes. Prevailing block sizes are 64-bit and 128-bit 

and key sizes are related to the desired security level, 

for instance, a very low-cost device may achieve 

sufficient security using just 64-bits of a key while on 

the other hand, more sensitive applications may 

require 256 bits of key.  BRIGHT has low decryption 

overhead, means it is easy to apply decryption from 

encryption. BRIGHT operations are fast and are 

supported in multiple platforms in an efficient and 

parallel way. A total of six instances of BRIGHT 

cipher has proposed, these are, BRIGHT 64/80, 

BRIGHT 64/96, BRIGHT 64/128, BRIGHT 128/128, 

BRIGHT 128/192 and BRIGHT 128/256. A general 

description of BRIGHT n/m describes BRIGHT 

cipher with n-bit block size and m-bit key size. 
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Table 1. Parameters for all versions of BRIGHT 

Block 

Size  

4n 

Key 

size 

mn 

Word 

Size  

n 

Key 

Words 

m 

Rounds Rotation 

Amount 

a                               b 

64 80 16 5 32 2 6 

96 6 33 2 6 

128 8 34 2 6 

128 128 32 4 35 5 8 

192 6 36 5 8 

256 8 37 5 8 

 

 
Figure. 1 Layers in the BRIGHT family of ciphers 

 

Performance of BRIGHT is better than existing 

lightweight ciphers. To thwart most of the attacks on 

this cipher, first, the minimum number of rounds ‘R', 

required to reach complete diffusion is found for all 

the variants of BRIGHT family. Then, the actual 

number of rounds is given by applying the formula 

3R, 3R+1, 3R+2 for BRIGHT 64/80, BRIGHT 64/96 

and BRIGHT 64/128.  

Table 1 gives the block size, key size, and the 

number of rounds for BRIGHT family ciphers. 

The encryption function of BRIGHT has three 

layers, these are key whitening, ARX operations, and 

round permutation. Fig. 1 depicts the structure of 

proposed cipher. There are three layers, first, the 

input plain text is divided into 4 words/ branches of 

equal length on which key whitening is applied in the 

first layer. After applying pre-key whitening, the 

second layer performs ARX operations on the round 

input. The last layer performs round permutation to 

give the output for the next round. The operations of 

second and third layers are performed for a specific 

number of times which is equal to the number of 

rounds.  
 

a) Key Whitening: 

To provide immunity against brute force and 

MITM attacks, the actual key is first XORed as a pre-

whitening affect. This does not provide any immunity 

to analytical attacks like linear cryptanalysis and 

differential cryptanalysis. We have used only pre-

whitening, post whitening just adds to the code length. 

Furthermore, it is due to the key whitening that makes 

it almost impossible to extend the attack by even one 

round which requires searching for all n-keys. 

   

b) ARX Operations: 

A software implementation of ARX ciphers gives 

efficient implementation in a parallel way. In 

BRIGHT, ARX operations are so arranged that it 

leads to not only smaller code size, it also improves 

diffusion in form of fast diffusion. To add non-

linearity to the cipher addition modulo 2n is used. 

This is done at the same speed as by bitwise XOR. 

Addition modulo 2n are non-linear operations and 

propagate differences indefinitely. Different amount 

of left and right circular shifts are used to add 

diffusion in the cipher and XOR operation is used in 

combination with addition modulo 2n to improve the 

diffusion layer. This improves the diffusion layer and 

offers different trade-offs between security and 

efficiency. 

 

c) Round Permutation: 

Generalized Feistel Network has slow diffusion 

property due to which some attacks like impossible 

differential cryptanalysis can be applied easily to 

these ciphers. To further improve the diffusion speed 

in BRIGHT cipher, round permutations are added at 

the end of each round.  

Encryption is a composition of round functions 

given by Eq. (1): 

 

Rkr-1  ° Rkr-2 ° … Rk1 ° Rk0     (1) 

 

This can be read from right to left. Decryption 

uses the same round function but here the order of the 

operations viz. key whitening, round constants, round 

keys, and ARX operations are reversed. In place of 

addition modulo 2n, subtraction modulo 2n is replaced. 

All versions are BRIGHT performs fast diffusion and 

are supported in multiple i.e. 8/16/32/64-bit 

platforms in an efficient and parallel way. The 

operations have so arranged that lead to fast 

encryption and small code size. 

4.3 Encryption algorithm 

INPUT: Block (n-bits long) and master-key (m-bits 

long). 

 

OUTPUT: Block (n-bits long) 

 

1) Compute n-bits after applying initial key-

whitening by partitioning n-bits plain text ‘P’ 

into 4 equal parts and XORing with sub-key i.e.  

P = P0^k0 | P1^k1 | P2^k2 | P3^ k3. 

ARX Operations 

Plain Text 

Cipher Text 

V
0
 V

1
 V

2
 V

3
 

Round Input 

V
0
 V

1
 V

2
 V

3
 Key 

Whitening 

Round 

Permutation 
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2) Apply ARX operations on Pi for ith round i.e. 

Pi1=(Pi1<<<b)^Rki,  

Pi0=((Pi0+P1)&C)<<<a,  

Pi3=Pi3<<<b,  

Pi2=(Pi2+Pi3)&C,  

Pi3=Pi3^Pi2,   

Pi0=Pi0^Pi3,  

Pi3=Pi0^Pi3,  

Pi2=Pi2^Pi1,  

Pi1=(Pi1<<<b)^Pi2,  

Pi2=Pi2<<<a 

3) Perform Round Permutation i.e. Pi0|Pi1, Pi1|Pi2, 

Pi2|Pi3, Pi3|Pi0. 

4) Perform steps 2 and 3 for the remaining rounds. 

4.4 Key scheduling 

Key scheduling is the most fundamental and 

crucial part in a cipher’s design and it can lead to 

break down the cipher if otherwise not designed 

cleverly. The entire security of the data is dependent 

on the data scheduling and key scheduling of a cipher 

design. Furthermore, GFN based algorithms are 

composed of several rounds and each round requires 

a separate key. Classes of weak keys can be found if 

there is relatively weak key scheduling used by a 

cipher which ultimately makes the cipher non-

resistant to different key scheduling attacks like zero 

correlation attack, MITM attack, weak key attack, 

and their variants. BRIGHT key scheduling is 

inspired from SPECK key scheduling. Key 

scheduling stores a user-defined master key is in the 

register key, represented by Eq. (2). 

 

K = kn kn-1 kn-2 … k2 k1 k0                                    (2) 

 

After applying initial key whitening (where the 

original sub-key from the master key is XORed with 

the plain text), sub-keys are derived from the master 

key which are fed to the BRIGHT rounds, i.e. ‘n’ 

keys for n-rounds. More confusion-diffusion is 

introduced with the increase in the number of rounds, 

providing more security. Furthermore, no attack 

should be faster than exhaustive key search i.e. brute 

force attack. To provide resistance against exhaustive 

search attack, the master key length must be large 

enough so that it becomes difficult for the attacker to 

perform 2k-1 encryptions for the key searching attacks. 

Also, longer key sizes require more number of rounds 

so that every key bit affect the ciphertext bit in a 

similar way i.e. without measurable differences 

which would otherwise allow any cryptanalysis.  

Key scheduling part uses the round function to 

generate round keys ki. Let K be a key for a BRIGHT 

4n block cipher. We can write K = (l m-2,… l0, k0) 

where li, k0 € GF(4)n, for a value of m in {2,3,4}. 

Sequences ki and li are defined by Eq. (3) and Eq. (4) 

respectively. 

 

Li+m-1 = (ki + li>>>2) ^ i       (3) 

 

Ki+1= ki <<<5 ^ li+m-1    (4) 

 

The value ki is the ith round key, for 0 ≤ i < T. 

5. Performance evaluation 

Most of the IoT devices interact with other similar 

devices and higher-end backend server. These 

constraints systems have to perform some functions 

like aggregating data received from sensors or 

inventory. Hence, lightweight block cipher should 

support sound performance on 64-bit processors. 

There is a need for flexible secure block cipher which 

is able to perform well on all of these platforms. 

Confusion and diffusion are two main parameters 

which test the suitability of a cipher. Confusion 

means that there must exist a complicated relation of 

ciphertext with plaintext and key. This is achieved by 

mixing operations in a complicated way. Diffusion 

means that every ciphertext bit must be influenced by 

every plaintext bit and a key bit. Spreading every 

plaintext bit influence over many ciphertext bits hides 

the statistical structure of the plaintext. A cipher is 

considered secure if a cipher proves to be secure 

against all known cryptanalytic attacks until it is 

realized otherwise. A number of cryptanalytic attacks 

can be applied to a cipher. Out of these, two main 

attacks are linear and differential cryptanalysis. In 

this paper, our main goal for the security of BRIGHT 

is to thwart possible attacks and to provide sufficient 

security margin against unknown attacks. 

Implementation results of the proposed BRIGHT 

family of lightweight ciphers on a processor Intel (R) 

Core (TM) i5-2430M CPU @ 2.40 GHz are observed.  

 

Evaluation Parameters 

Following criteria are taken to evaluate the 

security of the proposed BRIGHT family of ciphers. 

 

1. Strict Avalanche Criteria (SAC): According 

to Strict Avalanche Criteria (SAC), the test is 

considered to be perfect if a single bit change in input 

(key/ plaintext) results in 50% change in the bits. 

Cipher fulfilling SAC has a higher probability to 

thwart all possible attacks [29]. Contrary, if SAC is 

not satisfied, it is considered that poor randomization 

occurs and cipher is not considered good. Table 2 

summarizes the results of diffusion for BRIGHT 

64/128, when there is a single-bit change in plaintext. 
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Table 2. Summarizes the results of diffusion and randomness test for BRIGHT 64/128, when there is a single-bit 

change in plaintext (Key (Hexadecimal) = 07 04 02 03 08 29 2a 0b 10 11 4f ae) 

Plaintext 

(Hexadecimal) 

Ciphertext (Binary) Number of 

Zero’s One’s 

00 00 00 00 00 00 00 00 10010011 11001100 01110111 01101100 11100000 11100001 01100111 00110010 31 33 

00 00 00 00 00 00 00 01 01010100 01110100 11001111 10011011 01000000 10010100 00101110 10000111 34 30 

00 00 00 00 00 00 00 02 00101100 11111111 11010101 10100100 11101000 10100000 01010001 10011010 32 32 

00 00 00 00 00 00 00 03 11101111 11110100 00100000 01000010 01111000 00101001 11000110 01100000 36 28 

00 00 00 00 00 00 00 04 11011010 00010100 11010000 11000010 01111111 10111110 01100001 01001100 32 32 

00 00 00 00 00 00 00 05 11100110 11001100 10010000 10001010 00111010 01001110 00010001 10011011 35 29 

00 00 00 00 00 00 00 06 00101110 10110011 00010000 01001000 01001011 11001110 10110000 01000111 36 28 

00 00 00 00 00 00 00 07 11000010 00010111 10010111 11111111 11001111 00111111 00000110 00111101 25 39 

Number of bits 

changed 

(0, 1) = 35       (0, 2) = 27          (0, 4) = 37          (1, 3) = 38         (2, 3) = 34 

(3, 7) = 35         (4, 6) = 28         (6, 7) = 35      (5, 7) = 34 

Average diffusion = 33.66 (52.60%) 

 

32.62 

 

31.38 

 
Table 3. Summarizes the diffusion range and average diffusion between plaintext block and ciphertext block when there 

is a single-bit change in plaintext 

Block Length Key Length Diffusion Range Average diffusion Diffusion Percentage 

64 80 29 - 35 32.67 bits 51.04 % 

64 96 26 - 37 31.89 bits 49.82 % 

64 128 27 - 38 33.66 bits 52.60 % 

128 128 48 - 71 62.78 bits 49.05 % 

128 192 57 - 68 65.33 bits 51.04 % 

128 256 56 - 72 63.56 bits 49.65 % 

 
Table 4. Summarizes the results of randomness test and diffusion for BRIGHT 64/128, when there is a single-bit 

change in key (Plaintext (Hexadecimal) = 00 00 00 00 00 00 00 00 00 00) 

S.No Key 

(Hexadecimal) 

Ciphertext (Binary) Number of 

Zero’s One’s 

1 00 04 02 03 08 

29 2a 0b 10 11 

10011111 01111001 01100100 10111101 00000100 00101111 00110011 00111011 29 35 

2 01 04 02 03 08 

29 2a 0b 10 11 

10110111 00011110 01010011 00110100 01101011 00111010 10000101 10110000 32 32 

3 02 04 02 03 08 

29 2a 0b 10 11 

00010001 00100001 11011000 11011001 11000011 10111011 11000100 10101011 33 31 

4 03 04 02 03 08 

29 2a 0b 10 11 

10011011 00001100 00000010 01010100 01001100 10011011 11000011 10001000 39 25 

5 04 04 02 03 08 

29 2a 0b 10 11 
01001001 01111001 00101110 11110011 11100011 11000000 11111001 10100010 30 34 

6 05 04 02 03 08 

29 2a 0b 10 11 
10000000 00010101 01110011 00110010 00010101 00101010 11111011 01101110 34 30 

7 06 04 02 03 08 

29 2a 0b 10 11 
10001001 00000001 10010111 00011000 00010000 01101010 11111110 01000110 39 25 

8 07 04 02 03 08 

29 2a 0b 10 11 
00100101 11111000 11111100 10110101 10011100 00011010 10100001 01001111 34 34 

9 
Number of 

bits changed 

(1, 2) = 33       (1, 3) = 32          (1, 5) = 33          (2, 4) =  23        (3, 4) = 28            

(4, 8) = 35         (5, 7) = 34         (7, 8) = 34      (6, 8) = 30 

Average diffusion = 31.33 (48.96%) 

33.75 30.25 

 

It also gives the average diffusion and diffusion 

percentage for BRIGHT 64/128. Similar results of 

Avalanche test are obtained for all versions of 

BRIGHT family when there is a single-bit change in 

plaintext which is summarized in Table 3. The 

diffusion range given in Table 3 shows that a similar 

amount of diffusion is not obtained for all cases. 

Achieving different amount of diffusion is significant 

and it shows the strength of the cipher’s properties. A 

total of nine diffusion values are taken for each 

variant for which Table 3 gives the diffusion range 

and average diffusion. It is proved that all versions of 

BRIGHT family fulfill SAC criteria by achieving 

approximately 50% diffusion for all versions. 
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Tale 5. Summarizes the diffusion range and average diffusion between plaintext block and ciphertext block when 

there is a single-bit change in key. 

Block Length Key Length Diffusion Range Average diffusion Diffusion Percentage 

64 80 23-35 31.33 bits 48.96 

64 96 29-40 31.89 bits 49.82 

64 128 27-41 33 bits 51.56 

128 128 59-68 64.56 bits 50.43 

128 192 56-74 65.11 bits 50.87 

128 256 54-74 63.22 bits 49.39 

 

2. Key sensitivity: An algorithm is said to be key 

sensitive if retrieving original data is not possible 

when the key has even a minute difference from the 

original key. For this, Avalanche test is used to 

evaluate the amount of changes in the resulting 

ciphertext. Table 4 summarizes the results of key 

sensitivity for BRIGHT 64/128, when there is a 

single-bit change in key. It also gives the average 

diffusion and diffusion percentage for BRIGHT 

64/128. Similar results of key sensitivity are obtained 

against all versions of BRIGHT family when there is 

a single-bit change in key which is summarized in 

Table 5. Diffusion range in Table 5 shows that 

different amount of diffusion is obtained and 

approximately there is a 50% average diffusion for all 

versions. Results of key sensitivity test shown in 

Table 5 are obtained for nine diffusion values for 

each variant of BRIGHT family for which it gives the 

diffusion range and average diffusion. It shows that 

all members of BRIGHT family fulfill key sensitive 

criteria. 

 

3. Randomness Test: Randomness test is based 

on diffusion characteristics of the cipher. It is the 

ability of the cipher's round function to produce 

random output. The process of randomness test 

consists of two steps; the first step takes the sample 

sequence from the algorithm and in the second step 

analysis of a sample is done by performing statistical 

randomness tests. Potentially, a randomness test 

could be used as a distinguisher based on diffusion. If 

a cipher passes the randomness test, then there does 

not exist some form of input/output relation. 

Following criteria should meet to pass the 

randomness test for Ψ matrices which deals with the 

similarities of the diffusion instances, Ψ: 

• The number of ones and zeros should be equal. 

• A random distribution of ones and zeros. 

• Ψi & Ψj should be dissimilar for i ≠ j. 

 
Tables 2 and 4 show the results of randomness 

test for BRIGHT 64/128 and gives an average 

number of one's and zero's. It is clearly seen from the 

tables that BRIGHT cipher has an almost equal 

 

Table 6. Average number of zero’s and one’s in 

ciphertext block when there is a single-bit change in 

plaintext 

Block 

Length 

Key 

Length 

Average 

number of 

Zero’s 

Average 

number of 

One’s 

64 80 30.13 33.87 

64 96 30.25 33.75 

64 128 32.62 31.38 

128 128 65.12 62.88 

128 192 63.75 64.25 

128 256 60.75 67.25 

 
Table 7. Average number of zero’s and one’s in 

ciphertext block when there is a single-bit change in key 

Block 

Length 

Key 

Length 

Average 

number of 

Zero’s 

Average 

number of 

One’s 

64 80 33.75 30.25 

64 96 32.75 31.25 

64 128 29.63 34.37 

128 128 62.75 65.25 

128 192 62.13 65.87 

128 256 64.25 63.75 

 

number of ones and zeros which are randomly 

distributed and also for i ≠ j, Ψi & Ψj are dissimilar. 

Tables 6 and 7 summarize the results of randomness 

test for all versions of BRIGHT family when there is 

a single-bit change in plaintext and key respectively.  

So BRIGHT family passes the randomness test as 

well. 

 

4. Execution Time: Amount of time an algorithm 

takes to encode and decode a particular data is known 

as execution time. For IoT, lower execution time is 

demanded and lower the execution time, better the 

algorithm is. Table 7 summarizes the execution time 

for each variant of BRIGHT family and a comparison 

of ARX based lightweight ciphers is made. All the 

algorithms compared in Table 8 and Fig. 2 are 

implemented on a 64-bit processor in C-language to 

compare their parameters on the same platform. This 

was done so that no artifacts can be made due to 

platform issues, either in results of BRIGHT cipher 

or in the comparisons with other ciphers. It is clearly 
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Table 8. Memory and execution time comparison of standard ARX-block ciphers with BRIGHT family implemented 

on a 64-bit platform 

Cipher 

(Block size/ Key 

size) 

Rounds Memory (Bytes) Cost 

(Cycles/

byte) 

Speed 

(Mbytes/

sec) 
Encryption Decryption Key-schedule Encryption+ 

Decryption+ 

Key-schedule 

BRIGHT (64/80) 32 633 637 640 1804 1578 1.45 

RoadRunneR (64/80) 10 1642 1643 202 2334 1458 1.61 

BRIGHT (64/96) 33 634 638 640 1806 1505 1.52 

SPECK (64/96) 26 678 685 837 1802 2724 0.84 

BRIGHT (64/128) 34 635 638 640 1807 1589 1.44 

SPECK (64/128) 27 680 690 837 1820 2008 1.14 

HIGHT (64/128) 32 1884 1864 1044 4280 2409 0.95 

SPARX (64/128) 8 1501 1521 1453 3516 2630 0.87 

BRIGHT (128/128) 35 641 639 639 1819 1774 1.29 

SPARX (128/128) 8 3334 3353 1246 5059 5201 0.44 

BRIGHT (128/192) 36 642 640 639 1821 2062 1.11 

BRIGHT (128/256) 37 643 641 639 1823 2179 1.05 

Fig. 2 represents the memory (Encryption + Decryption + Key-Scheduling) comparison of the existing lightweight 

ciphers with BRIGHT cipher 

 

seen from Table 8 that all variants of the BRIGHT 

family member show better execution speed than 

other existing lightweight ARX ciphers except the 

RoadRunneR (64/80). RoadRunneR cipher uses on-

the-fly key scheduling which results in fast speed. 

Also, the use of simple key scheduling in 

RoadRunneR may lead to weak key attacks. Further 

increase in the speed of BRIGHT cipher is possible 

but only at the cost of increased memory. So keeping 

this in mind a speed memory tradeoff is followed in 

the design of proposed BRIGHT cipher. 

 

5. Memory Utilization: In IoT based devices, 

there are some constraints like low computation 

power, limited memory, limited power consumption 

and etc., In most of the IoT devices, there is a limited 

amount of memory available to the devices which is 

a major concern in resource constraint IoT 

applications. Proposed BRIGHT cipher is evaluated 

in terms of memory utilization. The BRIGHT family 

of ciphers consumes a smaller amount of memory as 

compared to other ciphers which is favorable for its 

deployment in IoT. Additional code size savings are 

possible but it lowers the throughput. Contrary to this, 

loop unrolling can be used to improve register usage 

and this speed up the process but at the cost of 

increased memory size. So an intermediate concept 

of loop unrolling can be used for balanced 

performance. It all depends on the need of a particular 

application. Table 8 summarizes the memory 

utilization of BRIGHT family ciphers and compare 

them with other existing ARX based lightweight 

block ciphers on the same platform (64-bit processor).  

Memory consumption of all variants of the BRIGHT 
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family ciphers, in terms of flash memory, is lowest 

except the variant with block size 64 and key size 96. 

SPECK (64/96) has lower memory consumption than 

BRIGHT (64/96). SPECK family has lowest flash 

memory but SPECK has no security proof and 

because of its simplest structure, there are a number 

of attacks which are successfully applied on SPECK. 

A few of these attacks are linear and differential 

attacks [30 - 32]. 

6. Conclusion 

Design and implementation of a lightweight 

cipher go simultaneously and this has revealed some 

significant limits and inherent conditions. Designing 

a security algorithm for IoT enabled devices must 

consider the criteria provided by standard 

organizations from time to time. We have evaluated 

the performance of newly proposed BRIGHT cipher, 

a family of lightweight block ciphers with 6 instances, 

supporting block sizes of 64-bit and 128-bit on a 64-

bit processor. BRIGHT ciphers fulfill Strict 

Avalanche Criteria, passes key sensitivity and 

randomness test. Results for execution time and 

memory utilization of BRIGHT family ciphers are 

better than existing ones. All the variants of BRIGHT 

cipher have a comparably lower cost.  So, due to its 

fast execution speed and low memory utilization, 

BRIGHT cipher proves to be a better security 

algorithm than the existing benchmarked lightweight 

block ciphers. This paper set a base for further 

research work and in the near future, we will evaluate 

the performance of the proposed ciphers on different 

platforms (8-bit, 16-bit and 32-bit processors). This 

work helps the researchers in the area of IoT security. 

We invite researchers for the cryptanalysis of the 

newly proposed family of BRIGHT cipher.  
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