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ABSTRACT 

 
Acute kidney injury (AKI) and chronic kidney disease 
(CKD) are worldwide public health problems 
affecting millions of people and have rapidly 
increased in prevalence in recent years. Due to the 
multiple causes of renal failure, many animal models 
have been developed to advance our understanding 
of human nephropathy. Among these experimental 
models, rodents have been extensively used to 
enable mechanistic understanding of kidney disease 
induction and progression, as well as to identify 
potential targets for therapy. In this review, we 
discuss AKI models induced by surgical operation 
and drugs or toxins, as well as a variety of CKD 
models (mainly genetically modified mouse models). 
Results from recent and ongoing clinical trials and 
conceptual advances derived from animal models 
are also explored. 

Keywords: Acute kidney injury; Chronic kidney 
disease; Mouse models; Transgenic mice 
 
INTRODUCTION 

 
Acute kidney injury (AKI) and chronic kidney disease (CKD) are 
linked to high morbidity and mortality. AKI is regarded as a rapid 
and reversible decline in renal function and is associated with 
accelerated CKD (Siew & Davenport, 2015). The ability to 
diagnose AKI has progressed significantly. Recent consensus 
diagnostic criteria include an increase in serum creatinine ≥0.3 
mg/dL (≥26.5 µmol/L) within 48 h; an increase in serum 
creatinine to ≥1.5 times baseline; or urine volume <0.5 mL/kg/h 
for 6 h (Khwaja, 2012). Many risk factors such as drugs/toxins, 
sepsis, and ischemia-reperfusion (IR) commonly result in AKI 
and lead to reduced glomerular filtration rate (GFR) as well as 
acute tubular cell death (Sanz et al., 2013). CKD is a significant 
medical problem globally, with a rapid increase in incidence due 
to the rise in hypertension and diabetes (Tomino, 2014). CKD is 
usually diagnosed by the presence of albuminuria or estimated 
GFR from serum creatinine <60 mL/min/1.73 m2 (Andrassy, 2013). 

There is increasing recognition that AKI and CKD are closely 
linked and are therefore regarded as an integrated clinical 
syndrome (Chawla & Kimmel, 2012) (Figure 1). Key biological 
processes such as cell death, cell proliferation, inflammation, 
and fibrosis, as well as common biomarkers, are detected in 
both kinds of nephropathy (Andreucci et al., 2017; Endre et al., 
2011). Generally, tubular cell death, which includes necrosis, 
apoptosis, or necroptosis, is the main histological feature in 
early stage AKI, whereas fibrosis tends to occur under CKD. An 
increasing number of studies have shown that AKI is a major 
risk factor that can accelerate CKD progression (Pannu, 2013). 
Clinical observations have also found a strong relationship 
between AKI and CKD. Compared to patients with no history of 
AKI or CKD, AKI patients are more likely to develop new CKD 
or end-stage renal disease (ESRD) (Chawla et al., 2014; 
Chawla & Kimmel, 2012). Conversely, CKD also plays an 
important role in AKI. Patients with CKD may suffer higher risk 
of transient decreases in renal function consistent with AKI 
(Chawla et al., 2014). The underlying mechanism that results in 
acute renal dysfunction may involve decreased GFR, increased 
proteinuria, renal auto-regulation failure, and drug side effects 
(Hsu & Hsu, 2016). 1 

Mechanisms of disease generation and progression in AKI 
and CKD remain incompletely understood (Singh et al., 2013; 
Tampe et al., 2017). Although several clinical studies have 
investigated early stage predictive biomarkers of kidney disease, 
few has been applied in clinical practice (Endre et al., 2013; 
Francoz et al., 2016; Peng et al., 2008; Soto et al., 2010). Our 
group identified urinary fractalkine as a marker of acute kidney 
transplant rejection (Peng et al., 2008). However, considerable 
challenges still lay ahead for the design and implementation of 
clinical kidney disease trials. Large sample size and long follow-
up duration are essential in a multicenter clinical trial to  
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Figure 1  Relationship between acute kidney injury (AKI) and chronic kidney disease (CKD) 
AKI and CKD show some common risk factors such as age, race, and hypertension. Persistent AKI can induce interstitial fibrosis, failed cell 
differentiation, and finally CKD. Conversely, CKD also plays an important role in the development of AKI. Both are associated with an increased risk of 
death and can result in serious kidney events such as end-stage renal disease. 
 

 
Figure 2  Summary of major acute kidney injury (AKI) and chronic kidney disease (CKD) models 
A: Common causes of acute kidney injury (AKI). Traditional animal modeling approaches are included. B: Classification of chronic kidney disease 
(CKD). The following are available animal models for CKD; UUO: Unilateral ureteral obstruction; FSGS: Focal segmental glomerulosclerosis.  
 
guarantee the quality, efficiency, and safety of intervention and 
treatments as there are many different types and causes of 
kidney disease and treatment can be protracted (Luyckx et al., 
2013). Moreover, serious complications greatly contribute to 

total mortality in kidney disease (Di Lullo et al., 2015; Pálsson & 
Patel, 2014; Ross & Banerjee, 2013), making it difficult to 
determine the major cause and best treatment. Thus, mature 
animal models are an indispensable part of scientifically 
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designed kidney disease studies, and play an important role in 
resolving the bottleneck issue in treatment. 

Animal models have been extensively used to clarify the 
pathogenesis and underlying mechanisms of renal disease. 
Among these models, mice and rats are the most commonly 
used to study nephropathy events and potential therapeutic 
targets and to identify specific biomarkers of disease. Mice and 
rats are easily bred and are relatively inexpensive to house and 
maintain (Wei & Dong, 2012). Classic acute kidney disease can 
be induced in a variety of murine models by surgery or 
administration of drugs or toxins (Ortiz et al., 2015; Singh et al., 
2012). Furthermore, genetically engineered mice and inbred 
strains provide a new platform for investigating complex human 
nephropathy (such as IgA nephropathy and diabetic nephropathy) 
(Marchant et al., 2015; Suzuki et al., 2014). In this review, we 

focused on murine models of AKI and CKD (Figure 2).  
 
ACUTE KIDNEY INJURY MODELS 
 
Recently, several reviews of available models, including their 
advantages and disadvantages, have been discussed (Ortiz et 
al., 2015; Ramesh & Ranganathan, 2014); however, the types 
of models are incomplete and many details, such as model 
techniques and modeling time, are not mentioned. Current 
models of AKI can be induced by IR (pre-renal acute kidney 
failure), injection of drugs, toxins, or endogenous toxins (sepsis-
associated AKI), and ureteral obstruction (post-renal acute 
kidney failure) (Sanz et al., 2013; Singh et al., 2012) (Table 1). 
This section will discuss experimental AKI models, surgical 
operations, model time courses, and drug/toxin dose ranges. 

Table 1  Comparison of conventional acute kidney injury (AKI) mice models     

Models Species Time-course/Dose range Advantages Disadvantages References  

Sepsis 
induced 

Rats/mice Cecal ligation and punctured  
to induce AKI; single i.p. 
dose of 10–15 mg/kg LPS 
are commonly used to 
induced AKI 

Simple; inexpensive; 
standardized dose of 
LPS 

Variable response between models; 
expected acute renal necrosis is not 
always achieved; AKI is not 
produced clinically and 
pathologically 

Dejager et al., 2011; 
Liu et al., 2015; Liu 
et al., 2016 
 

Ischemia-
reperfusion 

Rats/mice Ischemia time: 30–45 min; 
reperfusion time: 24–48 h 

High clinical relevance; 
classical model with  
high knowledge 
background  

Surgery requires; reproducible 
outcome dependent on accurate 
Ischemia/ Reperfusion time 

Hesketh et al., 2014; 
Wei & Dong, 2012 
 

UUO Rats/mice 1–2 weeks; longer time for 
renal fibrosis studies 

Technically simple; 
 reproducible 

Surgery requires; not widely used 
as AKI mode; renal function can be 
compensated by the non-ligated 
kidney; 

Bander et al., 1985; 
Chevalier et al., 
2009; Ucero et al., 
2014  

Cisplatin Rats/mice Single does 6–20 mg/kg; 
cisplatin within 72 h to 
induce AKI 

Simple and 
reproducible; similar to 
human renal disease 

Requires higher does to induce AKI; 
the cisplatin use is decreased in 
clinical 

Ko et al., 2014; Li et 
al., 2005; Morsy & 
Heeba, 2016; Xu et 
al., 2015 

Aristolochic 
acid 

Rats/mice 5 mg/kg/day Aristolochic acid 
for 5 days 

Useful to study AKI-
CKD transition; 

No clinical correlate; less 
nephrotoxicity report 

Matsui et al., 2011; 
Wu et al., 2014 

Folic acid Rats/mice Single dose of 250 mg/kg 
induce AKI in 24-48 h 

Simple and 
reproducible 

Wen et al., 2012; 
Soofi et al., 2013 

Warfarin Rats 5/6 nephrectomy for 3 weeks 
and 8 days on warfarin 

Clinically relevant; 
useful to study AKI 
caused by 
anticoagulants 

Only modeled in rats Brodsky, 2014; 
Ozcan et al., 2012; 
Ware et al., 2011 

Glycerol Rats/mice Deprived of water for 24 h 
and single injection of 8–10 
mg/kg 50% glycerol 

Simple; reproducible Severe pathology Geng et al., 2014; 
Kim et al., 2014 
 

Gentamicin Rats Dose range 40–200 mg/kg 
for 4–10 days 

Highly relevant; 
reversible AKI 

Requires higher dose of 
Gentamicin; different symptoms in 
human and rodents 

Boroushaki et al., 
2014; He et al., 
2015; Heidarian et 
al., 2017 

 
 

Sepsis-associated AKI 
Sepsis-associated AKI (SA-AKI) is characterized by severe 
inflammatory complications and high morbidity and mortality 
(Swaminathan et al., 2015). Frequently used experimental 

models of SA-AKI can be divided into two types: (1) injection of 
bacteria or endogenous toxins (e.g., LPS) into the peritoneum 
or blood; and (2) release of intestinal excreta by cecal ligation 
and puncture (CLP) or colon ascendens stent peritonitis (CASP) 
(Xu et al., 2014; Liu et al., 2015a). 
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LPS models LPS-induced AKI has mainly been studied in 
rats and mice. Compared with other species, rodents are 
significantly more resistant to the toxic or lethal effects of LPS. 
The dose of LPS commonly used in research is 10–15 mg/kg 
(Fink, 2014; Liu et al., 2015b; Venkatachalam & Weinberg, 
2012). After LPS interacts with specific receptors such as Toll-
like receptor 4 (TLR-4) (Solov'eva et al., 2013) on host immune 
cells, inflammatory cytokines like IL-1, TNF-α, and IL-6 are 
secreted, leading to hemodynamic alteration, widespread 
inflammation, and sepsis (Solov'eva et al., 2013). This is an 
acute model that usually terminates at 72–96 h. 

CLP model The CLP model is the most frequently used 
model due to its simplicity. Firstly, ligation of the cecum from the 
distal to the ileocecal valve is made. After that, two needle 
punctures are made to extrude stool into the abdominal cavity 
(Liu et al., 2016b; Poli-De-Figueiredo et al., 2008). CLP in mice 
can develop the typical symptoms of bacterial peritonitis 
observed in humans and yield good results (Fink, 2014). 
However, it is difficult to control the severity of sepsis and the 
differences in age and strain in CLP models (Zarjou & Agarwal, 
2011). Moreover, reproducible AKI cannot be developed in a 
CLP model (Dejager et al., 2011).  

Although experimental models have extended our 
understanding of sepsis and sepsis-associated AKI, there is still 
no effective clinical therapy (Alobaidi et al., 2015). Several 
clinical trials targeting specific signaling pathways based on 
convincing results in murine models have failed to improve 
survival in septic patients.  

 
Ischemia-reperfusion (IR) model 
Currently, IR is the most widely used model for clinical AKI and 
renal transplant studies (Hesketh et al., 2014). Among the 
variety of existing models, the mouse clamping model is often 
applied due to its low costs and choice of transgenic models 
(Sanz et al., 2013). According to previous studies, commonly 
used models contain bilateral renal IR (Huang et al., 2012; Hu 
et al., 2010; Kim et al., 2012) and unilateral renal IR (Braun et 
al., 2012; Chen et al., 2011; Gall et al., 2011). 

First, 50–60 mg/kg of pentobarbital (5 mg/mL) is used to 
anesthetize mice by intraperitoneal (i.p.) injection, with body 
temperatures then maintained at 36.5–37 °C during surgery. 
Second, the renal artery and vein are clamped by micro-
aneurysm clips for a variable length of time to induce different 
severities of kidney injury. In general, clamping the renal 
pedicle for 30 min is used to induce IR injury (Huang et al., 
2015; Liu et al., 2016a). Successful ischemia can be confirmed 
by gradual darkening of the kidney (from red to dark purple). The 
clamp is then removed at the desired time to achieve reperfusion, 
with the kidney color immediately reverting to red (Hesketh et al., 
2014; Wei & Dong, 2012). Ischemia-reperfusion will trigger 
tubular cell necrosis and apoptosis, inflammation, and oxidative 
stress (Rovcanin et al., 2016; Sanz et al., 2013; Zhou et al., 
2015), which can result in a decline of renal function, as 
evaluated by blood urea nitrogen (BUN) and serum creatinine. 
Despite the view that the IR model is less stable, experimental 
factors such as anesthesia dose, mouse strain, age, gender, and 
feeding conditions can be well-controlled (Wei & Dong, 2012). 

Obstructive AKI 
Unilateral ureteric obstruction (UUO) is the most common 
rodent model used to study AKI and CKD (Ucero et al., 2014). 
This model can result in hydronephrosis and blood flow 
changes. Ischemia, hypoxia, and oxidative stress (Dendooven 
et al., 2011) contribute to the tubular cell death, followed by 
interstitial inflammation. Additionally, transformed fibroblasts 
can interact with extracellular matrix deposition to cause renal 
fibrosis (Xiao et al., 2016; Zhou et al., 2014). 

Recent studies using the UUO model have shown that 
adenosine levels (Tang et al., 2015), nuclear factor-erythroid-2-
related factor 2 (Nrf2) (Chung et al., 2014), interleukin-10 (Jin et 
al., 2013), and the JAK/STAT signaling pathway (Koike et al., 
2014) are related to renal fibrosis, thus offering a potential 
therapeutic target for renal injury. The UUO model is relatively 
straightforward. Male animals, which are recommended in this 
model, undergo a midline abdominal incision under anesthesia, 
with the left ureter then ligated with 4–0 silk. After 24 h, the 
ureter obstruction is removed (Bander et al., 1985). Different 
from the complete UUO model, a partial UUO is created by 
inserting the ureter into a surgically created tunnel in the psoas 
muscle (Sugandhi et al., 2014). Reversible partial UUO is 
generally performed in neonatal mice to investigate kidney 
recovery after obstruction (Ucero et al., 2014). However, the 
complete UUO model is more popular because it is less 
technical and more easily reproduced. 

 
Toxin-induced AKI 
Exogenous drugs or poisons and endogenous toxins are used 
to stimulate AKI by their side or poisoning effects. Among these 
models, 6–20 mg/kg cisplatin can result in acute tubular injury 
within 72 h, whereas administration of 40–200 mg/kg 
gentamicin in rats for 4–10 d can induce acute renal failure. 
Aristolochic acid and high dose folic acid (FA) are frequently 
used to study AKI-CKD transition, with AKI models developed 
by warfarin and glycerol also used. 

 
Cisplatin-induced AKI 
Cisplatin is a chemotherapy agent that is widely used in the 
treatment of solid tumors (Karasawa & Steyger, 2015). 
However, high doses of cisplatin can induce prominent 
nephrotoxicity in humans (Humanes et al., 2012; Malik et al., 
2015). Among cisplatin’s adverse effects, direct proximal 
tubular toxicity is significant. Tubular cell necrosis and apoptosis 
are mediated by inflammation, oxidative stress, and calcium 
overload. These modes of cell death both lead to increased 
vascular resistance and decreased GFR (Ozkok & Edelstein, 
2014). The pathology and recovery phase of cisplatin-induced 
AKI models are comparable with those of humans. Many 
studies have reported that single i.p. injection of 6–20 mg/kg 
cisplatin can induce AKI within 72 h in rodent models (Ko et al., 
2014; Lee et al., 2009; Morsy & Heeba, 2016; Xu et al., 2015). 
Furthermore, other groups have developed AKI models by 
injecting higher doses of cisplatin, including 30 mg/kg, i.p. (Lu et 
al., 2008; Mitazaki et al., 2009) and 40 mg/kg, i.p. (Zhang et al., 
2016). Based on results from this experimental model, several 
therapeutic targets have been established. 
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Aristolochic acid nephropathy 
It has been reported that i.p. injection of aristolochic acid (AA) 
(5 mg/kg/d for 5 d) can induce AKI (Matsui et al., 2011; Wu et 
al., 2014). The pathology of acute aristolochic acid nephropathy 
(AAN) involves proximal tubular cell injury and necrosis with 
oxidative stress and progressive interstitial renal fibrosis 
(Baudoux et al., 2012; Nortier et al., 2015; Yang et al., 2010). 
Rabbit and rat models were first used to recapitulate human 
CKD and confirmed that aristolochic acid is related to Chinese 
herb nephropathy and Balkan endemic nephropathy (De Broe, 
2012; Sanz et al., 2013). Recently, studies on AA in AKI-CKD 
transition have increased. Signaling pathways such as nuclear 
factor erythroid 2-related factor 2 (Nrf2) (Wu et al., 2014) and 
Jun N-terminal kinases (JNK) signaling (Rui et al., 2012; Yang 
et al., 2010) have been shown to play important roles in AA-
induced acute kidney lesions, thus providing several new 
therapeutic targets. 

 
Folic acid-induced AKI  
A high dose of FA can also induce AKI in mice (Wen et al., 
2012). Intraperitoneal injection of 250 mg/kg of FA (dissolved in 
0.3 mmol/L NaHCO3) can cause acute renal toxicity and injury 
in rodents (Soofi et al., 2013; Wen et al., 2012). The 
mechanism of FA nephropathy might be due to FA crystal 
deposition in the tubular lumen, which results in obstruction and 
extensive necrosis (Kumar et al., 2015; Szczypka et al., 2005). 
A more recent study showed that inhibition of ferroptosis can 
protect kidneys from FA-induced AKI, implicating its important 
role in FA nephropathy (Martin-Sanchez et al., 2017). 
Additionally, mitochondrial dysfunction and early renal fibrosis, 
which are related to CKD pathology, can be found in the FA-
induced AKI model, thus providing a new way in which to 
investigate AKI-CKD transition (Stallons et al., 2014). 

 
Warfarin-induced AKI 
A new model of warfarin-induced hematuric AKI based on 5/6 
renal nephrectomized rats (Ware et al., 2011) was established 
to study the pathology of warfarin-related nephropathy (WRN) 
in patients with excessive anticoagulant (Rizk & Warnock, 
2011). The 5/6 nephrectomy was performed in Sprague Dawley 
rats, with animals allowed three weeks recovery from the 
surgery before warfarin treatment. Warfarin was given orally via 
drinking water, and warfarin dosage was based on rat weight 
(Brodsky, 2014). Extensive glomerular hemorrhage and tubular 
obstruction can occur in rats after seven days administration of 
warfarin (0.4 mg/kg/d), as well as increased serum creatinine 
(Brodsky, 2014; Ozcan et al., 2012). Besides, WRN can also 
induce AKI, accelerate CKD, and increase the mortality rate in 
warfarin-treated patients (Brodsky et al., 2011). However, the 
mechanism and therapeutic strategies to ameliorate WRN-
induced AKI remain to be demonstrated. 

 
Glycerol-induced AKI 
Rhabdomyolysis is a syndrome in which the breakdown of 
skeletal muscle leads to the release of intracellular proteins and 
toxic compounds into circulation (Hamel et al., 2015). AKI is a 
common complication of rhabdomyolysis and accounts for the 

high mortality (Elterman et al., 2015; Zhang et al., 2012). 
Presently, oxidative damage and inflammation are the two 
major causes of rhabdomyolysis-induced AKI (Tomino, 2014). 
To reproduce the typical symptoms observed in humans, rats or 
mice are deprived of water for 24 h, after which a 8–10 mL/kg 
dose of 50% glycerol is administrated in the hindlimb muscle 
(Geng et al., 2014; Kim et al., 2014b). Although studies have 
reported that vitamin C (Ustundag et al., 2008), L-carnitine 
(Aydogdu et al., 2006; Ustundag et al., 2009), and resveratrol 
(Aydogdu et al., 2006) can ameliorate rhabdomyolysis-induced 
AKI, there is currently no effective therapy for this disease 
except aggressive rehydration (Gu et al., 2014). 

 
Gentamicin nephropathy  
Gentamicin is an aminoglycoside antibiotic commonly used to 
prevent gram-negative bacterial infection. Nevertheless, 
nephrotoxicity limits its use in clinical practice (He et al., 2015). 
Doses of gentamicin ranging from 40–200 mg/kg administered 
for 4–10 d (Bledsoe et al., 2008; Boroushaki et al., 2014; 
Heidarian et al., 2017; Jabbari et al., 2011) can induce acute 
renal failure in rats. Administration of 100 mg/kg i.p. for 5 d is 
recommended to mimic gentamicin-induced nephrotoxicity (Hur 
et al., 2013; Stojiljkovic et al., 2008; Stojiljkovic et al., 2012). 
This acute model is characterized by increased levels of serum 
urea and creatinine, decreased GFR, tubular lesions, and 
fibrosis (Romero et al., 2009; Al-Shabanah et al., 2010; 
Balakumar et al., 2010). 

 
CHRONIC KIDNEY DISEASE MODELS 
 
CKD models mainly include diabetic/hypertensive nephropathy, 
glomerular injury, polycystic kidney disease (PKD), and chronic 
tubulointerstitial nephritis (Table 2). In this section, key 
information on various rodent models of CKD is discussed. 

 
Renal mass reduction 
The remnant kidney model has been one of most commonly 
used experimental models of CKD. The 5/6 subtotal 
nephrectomy approach is widely used to mimic human CKD in 
rats. The right kidney is removed and the upper and lower poles 
(2/3 of the left kidney) are resected after ligation of the left renal 
artery (He et al., 2012). After surgery, activation of the renin-
angiotensin system (RAS) can cause glomerular 
hypertension/hyperfiltration (Ergür et al., 2015; Tapia et al., 
2012). Together with oxidative stress and inflammation, the 
glomerular hypertension/hyperfiltration finally results in 
glomerulosclerosis, tubulointerstitial injury, renal atrophy, 
proteinuria, and possible ESRD (Gong et al., 2016; Kim et al., 
2009). The remnant kidney model is highly influenced by the 
animal strain used. C57BL/6 mice are resistant to fibrosis or 
progressive CKD, whereas other animal strains such as rats 
and CD-1, 129/Sv, and Swiss-Webster mice are susceptible 
(Leelahavanichkul et al., 2010; Orlando et al., 2011). In 
addition, high mortality and little renal tissue after 5/6 
nephrectomy are also challenges to this model. 
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Table 2  Advantages and disadvantages of experimental CKD mice models 

Pathology  Models Advantages Disadvantages Reference 

Renal mass reduction 5/6 nephrectomy (rats) Mimics the progressive renal 
failure; after loss of renal mass in 
human 

Highly influenced by back 
ground strains; surgery 
requires 

Ergur et al., 2015; He 
et al., 2012; Kim et al., 
2009 

Hypertension SHR rats+UNX; 
angiotensin II infusion 
models 

Highly relevant to hypertension 
nephropathy; useful to study AngII 
effect over kidney 

Surgery requires; high cost; 
slow progression 

Guo et al., 2015; 
Lankhorst et al., 2015; 
Zhong et al., 2016 

Diabetic nephropathy Streptozotocin mice/rats; 
NOD mice BB-DP rat; 
ob/ob mice db/db mice; 
DBA/2J mice; STZ-eNOS-/-; 
db/db-eNOS/ mice 

Gene modified; commercially 
available; available on multiple 
strains 
 

No ideal model to mimics; 
diabetic nephropathy; 
expensive; some strains are 
infertile 
 

Betz & Conway, 2014; 
Graham & Schuurman, 
2015; Kitada et al., 
2016; Ostergaard et al., 
2017 

Primary glomerular 
nephropathy; focal 
segmental 
glomerulosclerosis 

Adriamycin (rat, mice) 
models; Puromycin (rat) 
models 

Widely used; induce podocyte 
injury 

Highly depends on species 
and strains; toxic for most 
other cells 

De Mik et al., 2013; 
Hakroush et al., 2014; 
Lee & Harris, 2011; 
Wada et al., 2016 

Crescentic 
glomerulonephritis 

Nephrotoxic nephritis 
model; anti-GBM nephritis 
model 

Similar to human Crescentic 
glomerulonephritis 

Single symptom; difficult to 
induce 

Borza & Hudson, 2002; 
Cheungpasitporn et al., 
2016 

Membranous 
nephropathy 

heymann nephritis rats;  
Cationic BSA mouse model 

Widely used; identical pathology; 
marked proteinuria  

Antigen (megalin) not found 
in human MN; limited 
experience 

Cybulsky, 2011; 
Jefferson et al., 2010; 
Motiram Kakalij et al., 
2016 

IgA nephropathy ddY mouse, HIGA mice 
Uteroglobin-deficient mice 
CD89-transgenic mouse 

Reproduces human pathology; 
multiple models available 

Mild disease development 
usually without progression 
towards end-stage renal 
disease 

Eitner et al., 2010; 
Papista et al., 2015; 
Suzuki et al., 2014 
 

Secondary nephrotic 
syndrome; Amyloid A 
(AA) amyloidosis 

Injection of chemical or  
biological compounds 
models 

Widely used; reproduce features 
of human diseases 

Rarely develop renal failure Kisilevsky & Young, 
1994; Teng et al., 2014 
 

Systemic lupus 
erythematosus 

NZB/NZW F1 mice 
MRL and CD95 mutants 
model 

Widely used; marked proteinuria Incomplete features of SLE Fagone et al., 2014; 
Nickerson et al., 2013; 
Otani et al., 2015 

Hereditary nephritis; 
polycystic kidney 
disease; Alport 
syndrome 
 
 

pkd1 or pkd2 gene 
engineered mouse; 
COL4A3 gene knockout 
mouse 

Widely used and useful to study 
PKD; major model; develop 
proteinuria and renal failure 
 

 Kashtan & Segal, 2011; 
Ko & Park, 2013; 
Korstanje et al., 2014; 
Ryu et al., 2012 

 
 
Diabetic nephropathy  
Diabetic nephropathy (DN) is the leading cause of ESRD. 
There are many kinds of rodent models relevant to diabetic 
nephropathy, but none of them perfectly mimics the human 
disease (Deb et al., 2010). The Animal Models of Diabetic 
Complications Consortium (AMDCC) defines the ideal rodent 
model of human diabetic nephropathy and complications (Kong 
et al., 2013; Kitada et al., 2016). The latest validated criteria 
are: (1) more than 50% decrease in GFR; (2) greater than 10-
fold increase in albuminuria compared with controls; and (3) 
pathological changes in kidneys including advanced mesangial 
matrix expansion±nodular sclerosis and mesangiolysis, 
glomerular basement membrane (GBM) thickening by >50% 
over baseline, arteriolar hyalinosis, and tubulointerstitial fibrosis. 

Classical type 1 diabetes can be modeled by the administration 
of streptozotocin (a toxin to β-cells that results in insulin 
deficiency), with spontaneous autoimmunity (e.g., NOD mice or 
BB-DP rat) or with gene mutation (Akita and OVE26 mice) 
(Graham & Schuurman, 2015; Kitada et al., 2016). A high fat 
diet is commonly used to induce obesity and insulin resistance 
and develop glomerular lesions in mice (Soler et al., 2012). 
Typical type 2 diabetes nephropathy (DN) model can be 
establised by leptin deficiency (e.g., ob/ob mice) or inactivation 
of the leptin receptor (e.g., db/db mice, Zuker rat) (Soler et al., 
2012). To exhibit more pathological features of human DN, 
recent studies have focused on (1) targeted gene knockout in 
mice (e.g., eNOS-deficient mice (Takahashi & Harris, 2014)), (2) 
selection of more susceptible rodent species and strains (e.g., 
FVB (Chua et al., 2010) and DBA/2J mice (Østergaard et al., 



 

www.zoores.ac.cn 78 

2017), and (3) monogenic manipulations or superimposing 
additional key factors to accelerate nephropathy (e.g., STZ-
eNOS-/-, db/db eNOS-/-) (Betz & Conway, 2014; Nakayama et 
al., 2009). 

 
Hypertension-induced renal injury 
Spontaneously hypertensive rats are usually used to investigate 
hypertension-induced nephropathy. Additionally, unilateral 
nephrectomy is required to promote significant renal injury with 
increased glomerular pressure and flow (Zhong et al., 2016). 
Chronic injection of angiotensin II for weeks also results in 
persistent hypertension and renal injury (Dikalov et al., 2014). 
Vascular endothelial growth factor (Lankhorst et al., 2015), 
Smad signaling (Liu & Davidson, 2012a), and inflammatory 
cytokines (Guo et al., 2015) are also involved in this process. 

 
Primary glomerular nephropathy 
Focal segmental glomerulosclerosis (FSGS) 
FSGS is a common primary glomerular disorder characterized 
by podocyte injury and loss and marked proteinuria (Fogo, 
2015). Although there is currently no primary FSGS model 
available, several secondary FSGS models have been 
established. Adriamycin (ADR) and puromycin are widely used 
to study FSGS. Single injection of these specific toxins can 
result in podocyte foot process effacement, deficient filtration 
barrier, and nephrotic syndrome (Fogo, 2003; Zhang et al., 
2013). However, the dosage of adriamycin is highly dependent 
on species and strain. Most rat species are susceptible to low 
doses of ADR ranging from 1.5–7.5 mg/kg (Lee & Harris, 2011), 
whereas most mouse strains are resistant to ADR. To produce 
a successful model, higher doses of ADR are required, for 
example 9.8–12 mg/kg in male BALB/C (Wada et al., 2016) and 
13–25 mg/kg in C57BL/c mice (Cao et al., 2010; Hakroush et 
al., 2014; Jeansson et al., 2009; Maimaitiyiming et al., 2016; 
Wang et al., 2000). 

Gene modification approaches in mice, such as inactivation 
of Mpv-17 (Casalena et al., 2014; Viscomi et al., 2009), 
knockout α-actinin-4 (De Mik et al., 2013; Henderson et al., 
2008) or NPHS2 (Mollet et al., 2009), or introducing the 
expression of Thy-1.1 antigen on podocytes, can also lead to 
proteinuria and FSGS (Smeets et al., 2004). 

 
Crescentic glomerulonephritis 
Antibodies fixation in the whole glomeruli (nephrotoxic nephritis) 
or GBM (anti-GBM nephritis) are the primary models used to 
mimic human crescentic glomerulonephritis (Hénique et al., 
2014). Intraperitoneal injection of heterologous antibodies to 
heterologous whole glomeruli can induce nephrotoxic nephritis 
(Gigante et al., 2011). Anti-GBM nephritis can be caused by 
immunization with the non-collagenous domains of the alpha-3 
chain of type IV collagen or passive transfer of anti-GBM 
antibodies (Cheungpasitporn et al., 2016; Kambham, 2012; 
Kvirkvelia et al., 2015). After treatment, severe proteinuria and 
azotemia appear in the following weeks. 

 
Membranous nephropathy 
Membranous nephropathy (MN) is a major cause of nephrotic 

syndrome in the elderly and is characterized by subepithelial 
deposits and diffuse thickening of the GBM (Makker & Tramontano, 
2011). Active and passive Heymann nephritis model in rats 
closely resemble human MN and have been used to study MN 
(Sendeyo et al, 2013). 

Autologous antibodies are exposed to target antigens by 
injection of kidney extracts or antiserum to antigen generated in 
another animal species (Cybulsky, 2011; Jefferson et al., 2010), 
resulting in immune deposits associated with heavy proteinuria 
(Cybulsky et al., 2005). In rat models, megalin and receptor 
associated protein (RAP) are the major podocyte antigens 
targeted by the circulating antibodies (Ronco & Debiec, 2010). 
However, studies have shown that megalin is neither expressed 
in human podocytes nor detected in patients with membranous 
nephropathy (Beck & Salant, 2010; Ma et al., 2013). Recently, 
M-type phospholipase A2 receptor (PLA2R) was identified as a 
target antigen for autoantibodies in human MN (Debiec & 
Ronco, 2011; Herrmann et al., 2012; Kao et al., 2015). 
Additionally, circulating thrombospondin type-1 domain-
containing 7A (THSD7A) has been detected in a subgroup of 
patients with idiopathic MN rather than PLA2R, suggesting a 
new target antigen in human MN (Tomas et al., 2014). 

The cationic BSA mouse model also produces features of 
human MN. Mice are preimmunized with cationic bovine serum 
albumin (cBSA) every other day for a week. Two weeks later, 
mice are reimmunized with cBSA in Freund’s adjuvant (Motiram 
Kakalij et al., 2016). Mice will develop symptoms of MN, 
including severe proteinuria, diffuse thickening of the GBM, 
subepithelial deposits, and GBM spikes. 

 
IgA nephropathy (IgAN) 
IgAN is the most common form of glomerulonephritis, and is 
characterized by mesangial immune complex depositions that 
contain IgA1, IgG, complement C3, and IgM (Daha & Van 
Kooten, 2016). Inducible IgAN models include intravenous 
injection of IgA containing immune complexes to develop mild 
and transient IgAN (Rifai et al., 1979), and oral administration of 
protein antigens that result in mesangial IgA deposits 
(Emancipator et al., 1983). The ddY mouse is a spontaneous 
IgAN model derived from a non-inbred strain that develops 
glomerulonephritis and mild proteinuria without hematuria 
(Suzuki et al., 2014). Mouse line HIGA, an inbred strain with 
high levels of circulating IgA, shows significant early-onset 
immune deposits (Eitner et al., 2010). Other genetically 
modified mice, such as uteroglobin-deficient mice (Lee et al., 
2006) and CD89-transgenic mice (Moura et al., 2008; Papista 
et al., 2015), can also be used to investigate IgA nephropathy. 
Although some models are available, the underlying 
mechanism of IgAN is still not fully understood. 
 
Secondary nephrotic syndrome 
In this section, murine models of systemic lupus erythematosus 
and amyloidosis are reviewed. Transgenic murine models are 
widely used to investigate these complex diseases, especially 
systemic lupus erythematosus (SLE). Both MRL and CD95 
gene mutant animals can serve as research models to develop 
SLE symptoms and investigate potential therapies. 
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Amyloid A (AA) amyloidosis 
Amyloid A (AA) amyloidosis is a serious complication of chronic 
inflammation. AA-type amyloid deposition can cause alteration 
in tissue structure and function, with the kidney noted to be a 
major target organ (Simons et al., 2013). Injection of chemical 
or biological compounds such as casein, lipopolysaccharide 
(Kisilevsky & Young, 1994; Skinner et al., 1977), an extract of 
amyloidotic tissue or purified amyloidogenic light chains (Teng 
et al., 2014) are widely used to create AA amyloidosis mouse 
models. However, unlike clinical AA-amyloid patients, these 
models rarely develop renal failure (Simons et al., 2013). In 
recent years, a striking transgenic murine model has been 
developed. Mice carrying the human interleukin-6 gene under 
the control of the metallothionein-I promoter or with 
doxycycline-inducible transgenic expression of SAA provide 
another way to investigate AA-amyloid (Simons et al., 2013). 

 
Systemic lupus erythematosus (SLE) 
Lupus nephritis is characterized by autoantibodies against 
nuclear autoantigens such as DNA, histones, and nucleosomes 
(Liu & Davidson, 2012b). Most studies on SLE are based on 
murine models. Genetically modified models include MRL and 
CD95 mutants such as MRLlpr and FasLgld mice (Nickerson et 
al., 2013; Otani et al., 2015), BXSB mice (McGaha et al., 2005; 
McPhee et al., 2013), and NZB/NZW F1 mice (Fagone et al., 
2014), which are widely used to develop proteinuria, 
lymphoproliferation, and similar features relevant to human 
lupus nephritis (McGaha & Madaio, 2014). Recently, TWEAK-
Fn14 signaling has been reported to play an important role in 
the progression of lupus nephritis and anti-TWEAK blocking 
antibodies can preserve renal function and increase survival 
rate in experimental models of CKD (Gomez et al., 2016; Sanz 
et al., 2014). Although multiple mouse models have been used 
to investigate lupus nephritis, each model has limitations that 
impede our understanding of the pathogenesis and clinical 
manifestations of this disease. Subsequently, no effective 
therapy for lupus nephritis currently exists. 

 
Hereditary nephritis 
Polycystic kidney disease (PKD)  
PKD includes a group of human monogenic disorders inherited 
in an autosomal dominant (ADPKD) or recessive (ARPKD) 
fashion. PKD is mainly restricted to the liver and kidney, and 
occurs in a range of ages from children to the elderly. In 
children and adults, ADPKD and ARPKD are the most common 
genetic nephropathies and leading causes of ESRD (Liebau & 
Serra, 2013). ADPKD is caused by mutation of either PKD1 
(85%) or PKD2 (15%) (Kim et al., 2014a), whereas ARPKD is 
caused by PKHD1 gene mutations (Sweeney & Avner, 2011). 
Although hereditary PKD is complex and diverse, it is normally 
induced by single mutations in single genes. Therefore, 
genetically engineered murine models are widely used to mimic 
human PKD. As homozygous mice of PKD1 or PKD2 result in 
embryonic lethality (Woudenberg-Vrenken et al., 2009), 
conditional knockouts, inducible strategies, or the introduction of 
unstable alleles are the major ways to establish experimental 
models (Ko & Park, 2013). There have been some successful 

clinical trials based on results from these models. For example, 
tolvaptan has been proven to be effective in ADPKD and is now 
marketed in Japan (Torres et al., 2012). Moreover, combination 
therapy of tolvaptan and pasireotide has brought significant 
reduction in cystic and fibrotic volume in a PKD1 mouse model 
(Hopp et al., 2015). 

 
Alport syndrome 
Alport syndrome (AS) is a hereditary glomerulopathy resulting 
from mutations in the type IV collagen genes COL4A3, 
COL4A4, or COL4A5, and is characterized by hematuria, renal 
failure, hearing loss, ocular lesions (Savige et al., 2011), and 
abnormal collagen IV composition in the GBM (Savige et al., 
2013). The COL4A3 gene knockout mouse is the major model 
used to study the pathogenesis of AS. Homozygous mice can 
develop proteinuria at 2–3 months of age and die from renal 
failure at 3–4 months (Kashtan & Segal, 2011). In COL4A3-/- 
mice, studies have shown that TNF-α contributes to Alport 
glomerulosclerosis by inducing podocyte apoptosis (Ryu et al., 
2012). Furthermore, spontaneous COL4A4 mutation in 
NONcNZO recombinant inbred mice exhibits early stage 
proteinuria associated with glomerulosclerosis. These 
genetically modified mice provide valuable models for potential 
therapy testing and help understand the mechanisms of AS 
(Korstanje et al., 2014). 

 
CONCLUSIONS 
 
Although AKI and CKD are significantly increasing worldwide 
and cause high mortality, clinical diagnosis and therapeutic 
interventions are lagging. AKI-CKD transition and the 
underlying mechanisms of complex CKD such as IgA 
nephropathy, diabetic nephropathy, and FSGS are still unclear 
and impede the search for potential therapies. Despite the 
valuable new insights into kidney disease gained from existing 
models, many do not fully reproduce human clinical diseases. 
Thus, improved murine models are still desperately needed to 
investigate potential diagnostic and therapeutic approaches. In 
AKI models, obtaining new mouse strains susceptible to 
toxins/drugs is urgent, and finding new approaches to develop 
stable and reproducible AKI models is necessary. As for CKD 
models, to develop complex and specific pathologies, mice with 
multiple genetically modified will be widely used to develop 
complex and specific pathology in the near future. Additionally, 
models that faithfully develop common conditions such as DN 
or SLE are also imperative. 
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