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ABSTRACT 

 
Early rearing experiences are important in one’s 
whole life, whereas early adverse rearing experience 
(EARE) is usually related to various physical and 
mental disorders in later life. Although there were 
many studies on human and animals, regarding the 
effect of EARE on brain development, neuroendocrine 
systems, as well as the consequential mental disorders 
and behavioral abnormalities, the underlying 
mechanisms remain unclear. Due to the close 
genetic relationship and similarity in social 
organizations with humans, non-human primate 
(NHP) studies were performed for over 60 years. 
Various EARE models were developed to disrupt the 
early normal interactions between infants and 
mothers or peers. Those studies provided important 
insights of EARE induced effects on the physiological 
and behavioral systems of NHPs across life span, 
such as social behaviors (including disturbance 
behavior, social deficiency, sexual behavior, etc), 
learning and memory ability, brain structural and 
functional developments (including influences on 
neurons and glia cells, neuroendocrine systems, e.g., 
hypothalamic-pituitary-adrenal (HPA) axis, etc). In 
this review, the effects of EARE and the underlying 
epigenetic mechanisms were comprehensively 
summarized and the possibility of rehabilitation was 
discussed. 

Keywords: Early adverse rearing experience; Non-
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INTRODUCTION 
 
One of factors affecting life-long health of humans is the stability 
of early childhood, especially children’s relationship with their 
mothers. John Bowlby's attachment theory suggests that 

individual's social relationship throughout life is influenced by 
the initial attachment with the mother (Bowlby, 1969). 
Attachment theory is a psychological, evolutionary and 
ethological theory concerning relationships among humans. 
Within the theory, attachment means an affectional bond or tie 
between an individual and an attachment figure (usually a 
caregiver). The core is that a child needs to build relationship 
with at least one primary caregiver to develop normal social and 
emotional behaviors. In many orphans, the lack of normal 
attachment to parents would cause behavioral and physical 
problems in childhood and possibly continuing throughout adult 
life (McEwen, 2003). Adults with adverse experience were more 
vulnerable to physical, psychosocial and mental disorders 
(Maughan & McCarthy, 1997; 1Pirkola et al., 2005). In human, 
early adverse rearing experience (EARE) usually refers to child 
abuse, which is a worldwide problem and is defined as neglect 
or physical, sexual or emotional mistreatment or abuse of 
children (Newton & Vandeven, 2009, 2010). Although human 
based studies revealed compelling associations between EARE 
and psychological outcomes, both retrospective and 
prospective studies showed their limits, e.g., inaccurate self-
report due to biased or even false memory, failure in controlling 
accompanying environmental and genetic factors. Therefore, 
the long-term effects of EARE on subjects were usually not 
the direct consequences, but were inevitably intervened or 
masked by uncontrollable factors. However, experimental 
animals can be raised in laboratory environments, therefore 
allow researchers to carry out randomized prospective 
longitudinal studies, e.g., rigorously control or systematically 
manipulate early experiences throughout the entire period of 
investigation. 
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Rodents are easy to manipulate genetically, and the related 
studies indicate EARE as a developmental risk factor with 
profound, long-term effects on later life (Meaney, 2001; Pryce et 
al., 2005b; Sánchez et al., 2001). Whereas the high similarities 
of NHPs with humans make it irreplaceable in investigating the 
effects of EARE on physiological and behavioral development, 
e.g., NHPs and chimpanzees in specific, share over 90% and 
98.8% genomes with human beings, respectively (Lovejoy, 
1981). High similarities were found in both biological (Azmitia & 
Gannon, 1986; Uylings & van Eden, 1991) and socio-
ecological aspects, e.g., social organizations and clear 
dominance hierarchies (Bailey & Aunger, 1990; DeVore, 1990; 
Wright, 1990). The phenomenon that in NHPs, 2%-10% of 
infants were physically abused or neglected by their mothers 
in group-living conditions, allow the possible screening of 
natural child abuse models (Maestripieri & Carroll, 1998; 
Maestripieri et al., 1997). Moreover, like humans NHPs has 
prolonged postnatal period of maturation during which 
mother–infant relationship and neural system development 
can be influenced by environment and early life experience 
(Levine & Wiener, 1988; Suomi, 2005).  

Harlow (Harlow & Harlow, 1965) introduced the concept of 
affectional systems to characterize the relationships in the 
social groups of primates, and five distinct affectional systems 
were described, including the infant-mother affectional system, 
the maternal affectional system, the age-mate/peer affectional 
system, the heterosexual affectional system and the paternal 
affectional system. The infant-mother and the maternal 
affectional systems in Harlow’s affectional systems are similar 
to Bowlby’s concept of mother-infant attachment theory in 
humans. In normal living group, most monkey infants virtually 
spend all of their initial days or weeks of life clinging with their 
biological mothers, ventral to ventral, during which, specific and 
strong attachment bonds are built. When about 2-month old, 
infants begin to explore the physical and social environment, 
spending increasing amount of time participating social 
interactions, especially playing with peers. From 6-month of age 
until puberty, playing with peers becomes the major social 
activity (Hinde & Spencer-Booth, 1967; Suomi, 1997, 2005). In 
fact, the infant and juvenile monkeys always maintain a close 
social relationship with their mothers, while the mother plays the 
role of protector especially under stressful situations, and 
mentor in teaching developing appropriate social behaviors. 
Accordingly, the studies regarding EARE usually involve 
disruption of the normal infant-mother relationships, by maternal 
deprivation of newborns, maternal separation or induced stress 
on older infants and juvenile monkeys. Although some 
epidemiological studies in humans suggest possible direct 
relationships between EARE and abnormal behaviors in later 
life, no solid evidence was raised to prove the precise impact of 
childhood adversities on psychiatric disorders (Benjet, 2010; 
Bick & Nelson, 2016; Gershon et al., 2013; Kessler et al., 1997; 
Kessler & Wang, 2008; Klein et al., 2013; Sheridan et al., 2010). 
The over 60 years NHP studies shed lights on the 
understanding of the influences of EARE on physiological and 
behavioral development, including social behaviors (e.g., 
disturbance behavior, social deficiency, sexual behavior, etc), 

learning and memory ability, brain structural and functional 
development (e.g., development of neurons and glia cells, 
neuroendocrine dysregulation, etc). In this review, the previous 
findings on EARE were systematically summarized, and the 
underlying epigenetic mechanisms and the potential methods of 
rehabilitation were thoroughly discussed.   

 
EARE MODELS IN NON-HUMAN PRIMATES  
 
Controlled rearing conditions in standard laboratory settings are 
designed to simulate natural environments. The infants are 
reared by their mothers and live in a group consisted of other 
infants, juveniles and adults, allowing infants to be exposed to 
complex social interactions. In abnormal rearing conditions, the 
mother deprivation method is applied. The newborn is taken 
away from their mothers at birth and is reared in incubators with 
regular medical attention and laboratory nursery. A period of 
time (usually 1-month) later, when able to feed themselves, 
infants are moved to other rearing conditions depending on 
aims of research, e.g., be reared alone in social isolation 
condition, with nursery/peers of the same age in nursery/peer 
rearing condition, with a surrogate in surrogate mother/foster 
rearing condition, etc. They could also be separated from 
mothers at later time for once (temporary maternal separations) 
or several times (repetitive maternal separations); or even 
though staying with their mother all the time, but still suffer from 
EARE (maternal neglect). 
 
Social isolation 
Social isolation (including total and partial social isolation) is 
initially described in early 1960s by Harlow and his colleagues, 
and has been used ever since to raise monkeys in simulating 
social behavior deficits in humans (Table 1). In total isolation, 
the infant is reared in a cage alone without any auditory, visual, 
olfactory and tactile contact with conspecifics, including mothers, 
peers and other monkeys (Baysinger et al., 1972; Harlow & 
Harlow, 1962; Harlow et al., 1964, 1965). In partial social 
isolation, although infants are separately caged from their 
mothers, peers, and social groups, they have auditory, visual, 
and olfactory but not tactile contact with their conspecifics 
(Cross & Harlow, 1965; Mason & Sponholz, 1963; Struble & 
Riesen, 1978; Suomi et al., 1971). These early studies by 
Harlow and his colleagues, especially their extreme 
manipulations, including total isolation, "pit of despair" and "rape 
rack" devices, were controversial and were most likely 
forbidden to perform due to ethical issues. In 1950s, many 
researchers assumed that the only necessity of mother was 
supplying food to infants, whereas excessive intimacy 
between mother and infant would hinder the growth of infant, 
or even induce over dependence in adulthood. Harlow 
disagreed with the viewpoints; performed a series of 
isolation studies on primates to prove that to acquire 
necessary social skills, to obtain both physically and 
psychologically healthy development, infants need mothers’ 
affection, as well as normal social interaction and emotional 
relationship with peers. However, their intention was to 
prove the essential role of mother's love to infants, in the  
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Table 1  Early adverse rearing experience (EARE) methods 

Paradigms Description References 

Total Infants are reared in a cage alone at birth, no any auditory, visual, 

olfactory and tactile contact with conspecifics is allowed 

Baysinger et al., 1972; Harlow et al., 1965; 

Harlow & Harlow, 1962; Harlow et al., 1964

Social 

Isolation 

Partial Infants are separately caged at birth, reared with auditory, visual, and 

olfactory, but not tactile contact with conspecifics  

Cross & Harlow, 1965; Mason & Sponholz, 

1963; Struble & Riesen, 1978; Suomi et al., 

1971 

Continuous Infants are reared by pairs throughout 

development 

Chamove et al., 1973; Erwin et al., 1973; 

Sackett, 1967; Worlein & Sackett, 1997 

Intermittent Peers are allowed to contact with each 

other for a limited period of time and 

then infants are housed singly during 

the rest of the time 

Rommeck et al., 2009b 

Peer-rearing 

Rotational Infants are continuously housed with 

different peers 

Novak & Sackett, 1997; Rommeck et al., 

2009b 

Surrogate mothers 

rearing (SMR) 

Inanimate objects are placed into the cage as an 

artificial surrogate mother 

Capitanio & Mason, 2000; Dettmer et al., 

2008; Schneider & Suomi, 1992; Suomi, 

1973 

Permanent 

Surrogate-peer 

rearing (SPR ) 

Combination of SMR and PR Bastian et al., 2003; Lutz et al., 2007; 

Meyer et al., 1975 

One time Infants are taken away from their mothers at later 

stages of life for a period of time, followed by mother-

infant reunion  

Hinde & Mcginnis, 1977; Hinde et al., 1966; 

Kaufman & Rosenblum, 1967; Seay et al., 

1962; Spencer-Booth & Hinde, 1971 

Maternal 

separation 

Temporary 

Repetitive Repeatedly separating infants from their natal group 

for relatively short periods of time, followed by 

repeated reunions 

Clarke et al., 1998; Dettling et al., 2002a, b; 

Levine & Mody, 2003; Sánchez et al., 

2005; Suomi et al., 1983 

Maternal neglect Infant-mother was confronted with various foraging 

conditions to induce different levels of stress in the 

mother 

Andrews & Rosenblum, 1991; Coplan et 

al., 1996; Rosenblum & Andrews, 1994; 

Rosenblum & Paully, 1984 

 
form of her availability all the time, her physical touching, 
caring and protection, which was an obvious fact to us today 
without any necessity to prove.  

However, although isolation models are important in highlighting 
the devastating consequences of maternal deprivation, the 
extreme manipulations could induce severe cognitive and 
emotional deficits, or even self-injurious behaviors, which are 
very difficult to remediate in primates. Therefore, less severe 
rearing conditions were developed afterwards at least partially 
due to ethical considerations.  

 
Maternal separations 
Peer-rearing (PR) (or nursery rearing, NR) (including continuous 
pair rearing, intermittent and rotational peer rearing) is another 
widely used rearing condition, in which infants were reared 
together with peers of the same age (Chamove et al., 1973; 
Erwin et al., 1973; Sackett, 1967; Worlein & Sackett, 1997) 
(Table 1). In continuous pair rearing condition, infants are 
usually reared by pairs throughout development (Chamove et 
al., 1973; Fekete et al., 2000; Hotchkiss & Paule, 2003; Novak 
& Sackett, 1997). Intermittent peer rearing allow peers to 
contact with each other for a limited period of time, and then 
infants are housed singly during the rest of the time (Rommeck 
et al., 2009b). Within the rotational peer rearing condition, 
infants are continuously peer housed with different infant 
partners (Novak & Sackett, 1997; Rommeck et al., 2009b). 

Previous study showed that continuous rotational pairing 
induces a behavioral profile quite similar with that of mother 
rearing in socially complex environment (Rommeck et al., 2011). 
Compared with social isolation, PR is less severe and thus 
more widely used in recent NHP EARE studies. Surrogate 
mothers rearing (SMR) is another early rearing method, in 
which inanimate object is placed into the cage as an artificial 
surrogate mother (Capitanio & Mason, 2000; Dettmer et al., 
2008; Eastman & Mason, 1975; Harlow, 1958; Harlow & 
Zimmermann, 1959; Hennessy & Kaplan, 1982; Kaplan, 1974; 
Mason & Berkson, 1975; Roy et al., 1978; Schneider & Suomi, 
1992; Suomi, 1973). Infants could quickly develop attachment 
with surrogate mothers, and some studies indicated that the 
infants usually preferred cloth surrogate mothers than wired 
ones (Harlow, 1958; Harlow & Zimmermann, 1959). Previous 
study reported that surrogate mothers could affect the 
behaviors of infants, and different characters of surrogate 
mothers such as mobility and orientation had different 
influences (Dettmer et al., 2008). Surrogate-peer rearing (SPR) 
method is a combination of SMR and PR, in which the infants 
are reared with inanimate surrogate mothers (SMR condition) 
during the initial several months of life, and then are allowed to 
have peer interactions for a limited period of time (PR condition) 
(Bastian et al., 2003; Lutz et al., 2007; Meyer et al., 1975). 
Comparing with permanent removal of the mother, infants are 
not separated from their mothers right away at born in 
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temporary maternal separations, but after a period of time 
usually several hours, days or weeks, following by mother-infant 
reunion (Hinde et al., 1966; Hinde & McGinnis, 1977; Kaufman & 
Rosenblum, 1967; Seay et al., 1962; Spencer-Booth & Hinde, 
1971). Temporary maternal separation usually contains a one-
time separation although different time delay could be adopted. 
A modified version of one-time separation is repetitive mother-
infant separation, in which infants are separated from and 
reunited with their natal group repeatedly for relatively short 
periods of time (Clarke et al., 1998; Dettling et al., 2002b; 
Levine & Mody, 2003; Sánchez et al., 2005; Suomi et al., 1983). 
The impact of these procedures appeared to be further 
intensified if the separations were unpredictable (Levine, 2000; 
Sánchez et al., 2005). Unlike social isolation, maternal 
separation adopted relatively mild manipulations, the presence 
of surrogate mothers and the opportunity of direct contact with 
mothers and peers added social complexity to the infants’ living 
environment, therefore could avoid severe social and emotional 
deficits associated with mothers’ absence. 
 
Maternal neglect 
Compared with isolation and maternal separation methods 
described above, maternal abuse and neglect during early life 
are more common in humans, therefore are more widely used 
on NHPs to study adult mood and anxiety disorders. In NHP 
maternal neglect models, in order to induce stress in the mother, 
infant mothers are confronted with various foraging conditions, 
such as variable/unpredictable foraging demand (VFD), 
consistently low foraging demand (LFD) and consistently high 
(but predictable) foraging demand (HFD). Mothers in LFD 
condition have easy access to food while those in high foraging 

demand have to work hard to get food (Andrews & Rosenblum, 
1991; Coplan et al., 1996; Rosenblum & Andrews, 1994; 
Rosenblum & Paully, 1984). The advantage of this model is that 
even though infants are still in adverse situation, the severe 
adverse experience of mother and peer deprivation can be 
avoided. In addition, other rearing strategies are applied in this 
model, i.e., infants were reared by a female which was not their 
biological mother (Maestripieri, 2005; Novak & Suomi, 1991); 
infants were housed with non-reproductive female adults 
(Champoux et al., 1989b).  
 
EARE EFFECTS 
 
Although partial social isolation tends to induce less severe 
defects than total social isolation, the expression of behavior 
defects is similar. Isolated monkeys reared without exposure to 
companions during early life, especially the first 6 months, develop 
a pervasive pattern of abnormalities referred to as the isolation 
syndrome. Mason (Mason, 1968) summarized the syndrome 
under four headings: (1) abnormal posturing and movements, 
such as rocking; (2) motivational disturbances, such as 
excessive fearfulness or arousal; (3) poor integration of motor 
patterns, such as inadequate sexual behavior; (4) deficiencies 
in social communication, such as failure to withdraw after being 
threatened by an aggressing animal. In this section, the effects 
of EARE on social behaviors, learning and memory ability, brain 
structural and functional developments, including influences on 
neurons and glia cells, neuroendocrine dysregulation, 
especially stress related HPA axis will be reviewed.  
 
Social behavior 
Effects of EARE on social behaviors are detailed in Table 2. 

Table 2  Effects of EARE on social behaviors 

Behavior types Behavior descriptions 

Whole-body stereotypes (e.g., rocking, pacing, bouncing, swing, and back-flipping) Stereotypic behaviors 

Self-directed stereotypes (e.g., saluting, digit-sucking, self-clutching, self-clasping, eye-poking,  

eye-covering and hair-pulling) 

Self-manipulation, self-scratching, self-grasping, self-rubbing Self-directed behaviors 

Self-injurious behavior (SIB) 

Aggression Less aggression during infancy and more aggression during later life 

Affiliative behavior Tend to show more affiliative behavior during infancy but less affiliative behavior during adulthood 

Social and environmental exploration Decreased social and environmental exploration  

Social dominance Tend to show low dominance rank 

Sexual behaviors Less and abnormal sexual behaviors  

Others Polyphagia and polydipsia 

 
 

Disturbance behavior 
Monkeys exposed to adverse early experience tended to show 
more disturbance behaviors, such as stereotypic and self-
directed behaviors, motivational disturbances and social 
deficiency. The isolated monkeys appeared to show more 
disturbance behaviors, including crouching, clutching, rocking, 
pacing, flipping, hugging, clasping, thumb-sucking (Harlow & 

Harlow, 1962; Harlow & Suomi, 1971a; Mason & Sponholz, 
1963; Mitchell, 1968; Suomi et al., 1971). Among these 
monkeys, some abnormal movements, such as rocking and 
self-grasping, could present very early in their lives, even at the 
first month (Baysinger et al., 1972). Additionally, some of these 
behaviors could turn into stereotypic behaviors, including 
repetitive movements or postures, as well as ritualized 
movements, and could be divided into whole-body stereotypes 
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(e.g., rocking, pacing, bouncing, swing, and back-flipping), self-
directed stereotypes (e.g., saluting, digit-sucking, self-clutching, 
self-clasping, eye-poking, eye-covering and hair-pulling) and 
other idiosyncratic behaviors (e.g., teeth grinding, head tossing, 
or making noise by blowing air into the cheeks). It was reported 
that whole-body stereotypes were much more common than 
self-directed stereotypes (Lutz et al., 2003). Previous studies 
indicated that isolated monkeys showed more repetitive whole-body 
stereotypes (Mitchell, 1968), while PR monkeys showed more self-
directed stereotypes (Lutz et al., 2003; Suomi et al., 1971). 

EARE exposed monkeys tended to show more self-directed 
behaviors. Isolated monkeys showed self-manipulation, self-
scratching, self-grasping, self-rubbing, and autoeroticism while 
in isolation (Baysinger et al., 1972), or showed remarkable 
increases in self-clasping soon after removal from isolation 
(Harlow et al., 1965; Suomi et al., 1974), or self-clutching after 
surrogate mother removing (Harlow & Zimmermann, 1959). PR 
reared infants and juvenile monkeys showed increased self-
stimulation behaviors, including self-sucking, self-clinging, self-
clasping and other self-directed behaviors (Champoux et al., 
1991; Lutz et al., 2003; Suomi et al., 1971). Moreover, short-
term stress by temporary physical restrictions could also induce 
significant increases in self-clasping and huddling behaviors 
when the infants returned to their home cages (Harlow & Suomi, 
1971a). Those self-directed behaviors often turned into self-
injurious behavior (SIB), with males showing a much higher 
level of vulnerability than females (Cross & Harlow, 1965; 
Gluck & Sackett, 1974; Lutz et al., 2003; Suomi et al., 1971), 
and PR monkeys usually much more vulnerable than MR 
monkeys (Rommeck et al., 2009a). Surrogate mothers 
appeared to provide a certain degree of contact acceptability, 
security and trust sufficient for isolated monkeys to suppress 
existing self-directed disturbance activity, and to initiate crude 
social interactions with other isolated monkeys (Harlow & 
Suomi, 1971b). However, Lutz et al. (Lutz et al., 2007) reported 
that SPR monkeys showed significantly more self-biting 
comparing to PR and MR reared animals, and it was suggested 
that surrogate rearing in combination with lower levels of social 
contact during play may be risk factors for the later 
development of self-biting behavior. Actually, self-directed 
behaviors were hypothesized to result from the redirection of 
normal social behaviors toward one's own body and were 
suggested to be symptoms of some mental diseases (Goosen, 
1981; Mason & Berkson, 1975). These findings indicate that 
EARE exposed monkeys could be used as an ideal model of 
related human mental disorders from behavioral perspective. 

  
Social deficiency  
In natural environments, infants and juvenile monkeys are 
supposed to be more active in joining the social play with peers, 
but monkeys exposed to EARE show decreased social playing. 
Isolated monkeys showed less (Harlow et al., 1965; Mitchell, 
1968), or even no contact playing at all (Harlow et al., 1965). 
Pair and peer reared infants (Chamove et al., 1973), VFD 
reared infants (Andrews & Rosenblum, 1991; Rosenblum & 
Paully, 1984), repeated parental deprivation infants (Dettling et 
al., 2002b; Levine & Mody, 2003) all showed less social playing 

compared with MR infants. Lack of sufficient social interaction 
led to the fact that EARE exposed monkeys could not 
successfully adapt to living in a large social group (Griffin & 
Harlow, 1966; Harlow & Harlow, 1962; Mason & Sponholz, 
1963; Ruppenthal et al., 1991). Not only social interaction, 
studies also showed decreased environmental exploration in 
isolated monkeys (Griffin & Harlow, 1966; Mason & Sponholz, 
1963; Mitchell, 1968), VFD and PR monkeys (Rosenblum & 
Paully, 1984; Ruppenthal et al., 1991). Another major index of 
exploratory behavior is locomotor activity, while some NHP 
studies showed less locomotion in isolated adults (Harlow & 
Suomi, 1971a; Mason & Sponholz, 1963; Mitchell, 1968) and 
PR infants (Feng et al., 2011), others found no differences in 
PR adults (Winslow et al., 2003), or even higher activity levels 
in PR infants during the first month after isolation (Champoux et 
al., 1991). Therefore, there was no agreed tendency of EARE 
influence on locomotor activity in monkeys, making it an invalid 
measure of exploratory behavior if used alone (Wright, 1983).  

Another domain of EARE induced social deficiency is social 
dominance. In monkey society, social dominance is a complex 
phenomenon mediated by different mechanisms and various 
factors such as kinship, age, sex, and physical factors like body 
weight, appearance and health (Bernstein & Cooper, 1999; 
Bernstein & Mason, 1963; Morgan et al., 2000; Sprague, 1998; 
Takahashi, 2002). Kinship seemed to be the major factor in 
determining dominant rank at least until puberty (Koford, 1963; 
Koyama, 1967), but became weaker during the development 
(Bernstein & Williams, 1983). Both dominance formation and 
maintenance among males in a living group are usually 
achieved by aggressive behavior such as fighting, with the 
stronger and more aggressive subjects winning and thus 
becoming dominant. However, appropriate use of aggression is 
critical for both acquiring and maintaining social status, as 
overly aggressive monkeys may risk social ostracism from their 
conspecifics. Moreover, aggressive behavior was not 
indispensable to obtain and keep dominance status and 
dominance sustained without aggression was more stable than 
that formed on the basis of aggression (Fonberg, 1988).   

Monkeys exposed to EARE tended to show less aggression 
during infancy (Chamove et al., 1973; Harlow et al., 1965), and 
more aggression during later life (Chamove et al., 1973; 
Mitchell, 1968; Suomi et al., 1974; Winslow et al., 2003). The 
aggressive monkeys exposed to EARE may repeatedly attack a 
helpless infant or attempt to attack a dominant male, while 
infant-directed aggression is abnormal adult-directed aggression is 
both abnormal and suicidal (Chamove et al., 1973; Mitchell, 
1968; Suomi et al., 1974; Winslow et al., 2003). On the other 
hand, studies showed EARE exposed monkeys showed 
heightened fear in all age stages (Champoux et al., 1991; 
Dettling et al., 2002b; Levine & Mody, 2003; Mitchell, 1968). It 
seems that EARE makes monkeys more emotional in two 
opposite directions, both aggression and fear. In addition to 
aggression, affiliative behavior, such as grooming and proximity, 
is also important in establishing and maintaining alliances and 
reinforcing the dominance hierarchy. Affiliative behavior was 
suggested to be more positively related to dominance rank than 
kinship in Japanese monkeys (Singh et al., 1992). On the 
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contrary to aggression, EARE exposed monkeys showed more 
affiliative behavior during infancy (Chamove et al., 1973; 
Rosenblum & Paully, 1984; Ruppenthal et al., 1991), but less 
affiliative behavior during adulthood (Kraemer & McKinney, 1979; 
Rosenblum & Paully, 1984; Winslow et al., 2003). With more 
aggressive and less affiliative behavior which both contribute to 
acquiring and reinforcing social dominance, EARE exposed adult 
monkeys are supposed to have low social dominant rank in a 
living group, and studies indeed indicated that both isolated and 
PR adult monkeys showed low social dominance (Kraemer & 
McKinney, 1979; Mitchell, 1968; Ruppenthal et al., 1991).  

 
Sexual behavior 
Monkeys exposed to EARE demonstrated less or abnormal 
sexual behaviors (Chamove et al., 1973; Harlow et al., 1966; 
Harlow, 1962; Harlow et al., 1965; Mitchell, 1968). Abnormal 
sexual behaviors (abortive mount) is defined as any improperly 
oriented mount, accompanied by pelvic thrusting including 
standing-to-head, standing-to-side and ventral lie-on (Wallen et 
al., 1981). Males usually were not mount properly as they 
engaged in varied but misplaced heterosexual efforts, while 
females were not maintain the sexual present (stood 
quadripedally with the perineal area directed towards the 
recipient) or turned their bodies when mounted. Mount behavior 
includes no-foot-clasp mount and foot-clasp mount, which could 
be differentially affect by different EARE. Males with short 
access periods with peers (0.5 h) rarely or never foot-clasp-
mounted peers, while those given 24 h access regularly foot-
clasp-mounted peers (Wallen et al., 1981). Isosexually 
reared males showed less foot-clasp mounting and more 
presenting than heterosexual males, while conversely, 
isosexually reared females showed statistically more 
mounting and less presenting than heterosexual females 
(Goldfoot et al., 1984). Moreover, females exposed to EARE 
also showed abnormal maternal behaviors, in a way that 
those never experienced mother caring not only were unable 
to exhibit caring to their own offspring, but also far more 
likely to display inadequate, abusive or neglectful behavior 
toward their offspring (Bridges et al., 2008; Champoux et al., 
1992; Harlow & Suomi, 1971b; Seay et al., 1964; Suomi, 
1978; Suomi et al., 1974; Suomi & Ripp, 1983), consistent 
with human findings showing abusive behavior appeared to 
be transmitted across generations (Roustit et al., 2009). 

Primate studies also showed other EARE induced behavioral 
effects besides listed above, including polyphagia and 
polydipsia in isolated adults (Miller et al., 1969), more 
vulnerable to excessive alcohol consumption (Fahlke et al., 
2000; Higley et al., 1991) and elevated response to both 
aversive and rewarding stimuli (Nelson et al., 2009) in PR 
monkeys and abnormal sleep rhythmicity (Barrett et al., 2009; 
Boccia et al., 1989; Kaemingk & Reite, 1987; Reite et al., 1974; 
Reite & Short, 1978). An interesting research showed EARE 
significantly influenced the development of lateralisation, as PR 
monkeys demonstrated greater left-hand bias compared to MR 
reared monkeys (Bennett et al., 2008). Despite of EARE effects 
described above, recent research suggested that modern PR 
practices might not result in inevitable perturbations in 

aggressive, rank-related, sexual, and emotional behavior in 
rhesus monkeys (Bauer & Baker, 2016).  

 
Learning and memory 
Early primate studies showed EARE exposed adults performed 
adequately on simple discriminations or delayed-response 
(Gluck et al., 1973), but showed impairments in certain complex 
tasks such as those requiring engaging working memory with 
dynamic rules or delays or response inhibition (Beauchamp & 
Gluck, 1988; Beauchamp et al., 1991; Gluck et al., 1973; Gluck & 
Sackett, 1976; Sánchez et al., 1998). These results were 
obtained mostly from adult monkeys separated from their 
mothers at birth and reared in total isolation for 9-12 months. 
PR reared juvenile monkeys also showed cognitive deficits, 
they had more difficulty acquiring the delayed non-matching to 
sample (DNMS) task and were also impaired in object but not 
spatial reversal learning (Sánchez et al., 1998). Moreover, even 
brief social isolation impaired performance in a multiple video-
task assessment in adult rhesus monkeys (Washburn & 
Rumbaugh, 1991) and impaired reversal learning and 
behavioral inhibition in adult marmosets (Pryce et al., 2004a, b). 
These results were consistent with the results of human studies, 
which showed the post institutionalized children (Bauer et al., 
2009) and childhood exposed to neglect and abuse (Majer et al., 
2010) were associated with impaired learning and memory 
during adulthood. Although those studies revealed EARE 
induced impairment of learning and memory ability in a task 
dependent way in adult monkeys, other primate studies indicate 
exposure to mild early life stress improves prefrontal dependent 
response inhibition in primates, suggesting its beneficial effect 
on cognitive control (Parker et al., 2005, 2012). 
 
Brain structure and function 
The first documentation of the effects of negative early 
experiences on monkey brain was provided by Martin et al. 
(1991), which showed significant alterations in the chemo 
architecture of the striatum 19-24 years after social deprivation. 
Additionally, Siegel et al. (1993) demonstrated that early social 
deprivation resulted in an increase in the amount of non-
phosphorylated neurofilament protein in hippocampal dentate 
gyrus granule cells in rhesus monkeys. Further studies showed 
structure and function changes in many brain regions including 
amygdala, hippocampus, prefrontal cortex (PFC), anterior 
cingulate cortex (ACC), corpus callosum and cerebellum etc, 
both in humans and animals exposed to EARE (Andersen, 
2015; Bick & Nelson, 2016; Gilmer & McKinney, 2003; Gorman 
et al., 2002; Hart & Rubia, 2012; Korosi et al., 2012; McEwen, 
2003; Worlein, 2014)(Table 3). 

 
Amygdala 
Amygdala is a group of almond-shaped nuclei located deep 
within the medial temporal lobes of the brain in complex 
vertebrates. It was considered as the emotion center and 
responsible for emotion reactions like reward, fear and anxiety 
(Davis, 1992; Gallagher & Chiba, 1996; Ledoux, 2003; Phelps, 
2006). Rodent studies showed acceleration of amygdala 
development in early weaning rodents (Kikusui & Mori, 2009;  
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Table 3  Effects of EARE on brain structure and function 

 Outcomes Human Studies Primate Studies 

No significant volumes changes De Bellis et al., 2001; De Brito et al., 2013; 

Hanson et al., 2010; Woon & Hedges, 2008

Larger volume and elevated 

response 

Lupien et al., 2011; Mehta et al., 2009; 

Tottenham et al., 2010 

Children 

Decreased volume Edmiston et al., 2011; Hanson et al., 2015; 

Luby et al., 2013 

No significant volume changes Bremner et al., 1997; Cohen et al., 2006 

Larger volume Evans et al., 2016; Lyons-Ruth et al., 2016 

Amygdala 

Adults 

Elevated activity Casement et al., 2014; Javanbakht et al., 

2015; Kim et al., 2013 

No significant volume changes (Howell 

et al., 2014);  

Decreased SERT binding potential 

(Ichise et al., 2006);  

Differential expression of one gene 

GUCY1A3 (Sabatini et al., 2007) 

Decreased volume Edmiston et al., 2011; Hanson et al., 2015; 

Luby et al., 2013 

Children 

No significant volume change Carrion et al., 2001; De Bellis et al., 2001; 

De Bellis et al., 1999; De Bellis et al., 2002; 

Mehta et al., 2009; Tottenham et al., 2010; 

Woon & Hedges, 2008 

Hippocampus 

Adults Decreased volume Bremner et al., 1997; Cohen et al., 2006; 

Stein et al., 1997; Woon & Hedges, 2008 

No significant volume change (Law et 

al., 2009a, b; Sánchez et al., 1998; 

Spinelli et al., 2009) 

No significant volume changes De Bellis et al., 1999 

Decreased volume 

De Bellis et al., 2002; Edmiston et al., 2011; 

Hanson et al., 2010; Morey et al., 2016; 

Thomaes et al., 2010 

Children 

Larger volume Carrion et al., 2009; Richert et al., 2006 

Decreased volume 
Tomoda et al., 2009; van Harmelen et al., 

2010 

Reduced activity 
Casement et al., 2015; Kim et al., 2013; 

Romens et al., 2015; Schweizer et al., 2016

Prefrontal 

cortex (PFC) 

Adults 

Increased response 

Casement et al., 2014; Javanbakht et al., 

2015; Jedd et al., 2015; Wang et al., 2016; 

White et al., 2015 

Greater enlarged medial prefrontal 

cortex (mPFC) size (Spinelli et al., 

2009) 

 
Ono et al., 2008). The limited amount of primate studies found 
no significant amygdala volume changes (Howell et al., 2014), 
but functional changes including decreased SERT binding 
potential (Ichise et al., 2006) and differential expression of one 
gene GUCY1A3 (Sabatini et al., 2007) in amygdala of EARE 
exposed monkeys. However, human studies in maltreated 
children showed contrary results, with some studies found no 
volume changes (De Bellis et al., 2001; De Brito et al., 2013; 
Hanson et al., 2010; Woon & Hedges, 2008), while others 
revealed decreased volume (Edmiston et al., 2011; Hanson et 
al., 2015; Luby et al., 2013) or greater volume and elevated 
response (Lupien et al., 2011; Mehta et al., 2009; Tottenham et 
al., 2010). Furthermore, those studies found greater volume 
and elevated response of amygdala (Mehta et al., 2009; 
Tottenham et al., 2010) were performed several years after the 
institutionalized children adopted by high socio-economic status 
families. These data suggested that EARE modified amygdala 
changes was resistant to recovery, and it was consistent with 
primate research that suggested abnormal behaviors was 
resistant to environmental enrichment treatments (Lutz et al., 
2004; Lutz & Novak, 2005; Novak et al., 1998; Rommeck et al., 
2009a). Similarly, in adults exposed to EARE some studies 

found no significant changes of amygdala volume (Bremner et 
al., 1997; Cohen et al., 2006), while others found larger volume 
(Evans et al., 2016; Lyons-Ruth et al., 2016), interrupted 
regulation of negative emotion (Kim et al., 2013), increased 
response to potential rewards (Casement et al., 2014), elevated 
amygdala responses to threat but not happy faces (Javanbakht 
et al., 2015). In addition to amygdala structure and activity 
changes, its connectivity with other brain regions was also 
affected (Barch et al., 2016; Jedd et al., 2015). Despite those 
controversial results, the influence of EARE on emotion such as 
the elevated response to emotion stimuli both in human and 
primates (Casement et al., 2014; Javanbakht et al., 2015; 
Nelson et al., 2009) should be mainly achieved through its 
influence on amygdala. 

 
Hippocampus 
Hippocampus, a major component of the brains located inside 
the medial temporal lobe and beneath the cortical surface, is 
involved in episodic, declarative, contextual, and spatial 
learning and memory, as well as being a component in the 
control of autonomic and vegetative functions (Buckley, 2005; 
Eichenbaum, 2001; Eichenbaum et al., 1992, 1996; Manns & 
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Eichenbaum, 2006; Opitz, 2014; Shohamy & Turk-Browne, 
2013). In human studies, EARE induced significant reduction of 
hippocampal volume was an consistent finding in adults 
(Bremner et al., 1997; Cohen et al., 2006; Hart & Rubia, 2012; 
McCrory et al., 2011; Stein et al., 1997; Woon & Hedges, 2008). 
However, children and adolescents studies showed inconsistent 
results, with few found decreased volume (Edmiston et al., 2011; 
Hanson et al., 2015; Luby et al., 2013), while most found no 
significant change (Carrion et al., 2001; De Bellis et al., 2001, 
1999, 2002; Mehta et al., 2009; Tottenham et al., 2010; Woon & 
Hedges, 2008). Primate studies also found no significant 
hippocampal volume change in PR (Sánchez et al., 1998; 
Spinelli et al., 2009) and repeated mother deprived (Law et al., 
2009b) juvenile monkeys, suggesting changes of hippocampus 
seemed to happen later in life compared to early life amygdala 
changes. Two possible explanations could account for the 
discrepancy of children and adult findings. Firstly, that might 
due to the fact that the hippocampus develops mainly in the first 
years of life, therefore less affected by exposure to adversity in 
childhood and adolescence (Houston et al., 2014; Lenroot & 
Giedd, 2006; Richards & Xie, 2015). Another possibility is that 
EARE might not have an immediate effect on the hippocampus 
but induced changes over time, and long-term effects of EARE 
exposure may be delayed and became manifest only in later 
phases of development when the vulnerable brain reaches 
maturation (Andersen & Teicher, 2004; Brunson et al., 2005; 
Gluckman & Hanson, 2004; Gluckman et al., 2007; Sapolsky et 
al., 1985). Moreover, human studies found interesting results 
concerned with influence of EARE exposure on structure and 
activity of hippocampus and amygdala, with decreased 
hippocampal volume and activity in humans exposed to 
adulthood stress (Bremner et al., 2007; Lupien et al., 2007; 
Rauch et al., 2000) and adults experiencing EARE (Bremner et 
al., 1997; Cohen et al., 2006; Stein et al., 1997; Woon & 
Hedges, 2008), while increased amygdala volume and activity 
in humans exposed to adulthood stress (Bremner et al., 2007; 
Lupien et al., 2007; Rauch et al., 2000) and adults experiencing 
EARE (Mehta et al., 2009; Tottenham et al., 2010). Although the 
biological mechanism and meaning of this phenomenon 
remains unclear, that might contribute to or even be the direct 
reason for the impaired learning and memory ability (decreased 
hippocampal volume and activity related) and elevated 
response to emotional stimuli (increased amygdala volume and 
activity related) described above. 

 
Prefrontal cortex 
The prefrontal cortex (PFC) is the anterior part of the frontal 
lobes of the brain and implicated in planning complex cognitive 
behaviors, personality expression, decision making and 
moderating correct social behavior. Children and adolescents 
studies showed inconsistent results of EARE induced PFC 
structural changes, with findings of either no significant 
differences (De Bellis et al., 1999), or significantly smaller 
volume (De Bellis et al., 2002; Edmiston et al., 2011; Hanson et 
al., 2010; Morey et al., 2016; Thomaes et al., 2010) or 
significantly larger volume (Carrion et al., 2009; Richert et al., 
2006). In contrast, decreased PFC volume in adults exposed to 

childhood maltreatment was a consistent finding (Tomoda et 
al., 2009; van Harmelen et al., 2010). That might due to the 
fact that PFC continues to develop during adolescence 
(Houston et al., 2014; Lenroot & Giedd, 2006; Richards & Xie, 
2015), therefore might be particularly vulnerable to the effects 
of stress during adolescence. In addition to the structural 
changes, EARE could also induce PFC functional changes, 
with some human adults exposed to EARE showing reduced 
prefrontal cortex activity during monetary reward anticipation 
and emotion regulation (Casement et al., 2015; Kim et al., 
2013; Romens et al., 2015; Schweizer et al., 2016), while 
others showing increased response to potential rewards and 
threatening faces and in passive viewing conditions 
(Casement et al., 2014; Javanbakht et al., 2015; Jedd et al., 
2015; Wang et al., 2016; White et al., 2015). One primate 
report indicated PR juvenile monkeys showed greater 
enlarged medial prefrontal cortex (mPFC) size (Spinelli et al., 
2009). Moreover, both rodent and primate studies revealed 
the direct underlying epigenetic mechanisms of EARE on PFC 
through influencing differential gene expression, histone 
acetylation and DNA methylation (Blaze et al., 2015a; 
Provençal et al., 2012; Wall et al., 2012). Studies regarding 
EARE effects on PFC in primates are rare, and further 
investigations are necessary.  
 
Other brain regions 
The anterior cingulate cortex (ACC) is the frontal part of the 
cingulate cortex, and appears to play a role in a wide variety of 
rational cognitive functions, such as reward anticipation, 
decision-making, empathy and emotion (Devinsky et al., 1995; 
Drevets et al., 2008). It can be divided anatomically into dorsal 
and ventral components, with dorsal part connected with PFC 
making its involvement in cognition possible, and the ventral 
part connected with amygdala making its involvement in 
emotion possible (Bush et al., 2000; Morecraft et al., 2007). 
Human studies showed reduced volume of adult ACC in people 
with mood disorders (Botteron et al., 2002; Drevets et al., 1997; 
Yamasue et al., 2003), adults exposed to early life stress (ELS) 
(Cohen et al., 2006) and abuse-related Posttraumatic stress 
disorder ( PTSD ) (Kitayama et al., 2006; Thomaes et al., 2010) 
and major depressive disorder (Treadway et al., 2009). On the 
contrary, a primate study found enlarged ACC in PR juvenile 
monkeys (Spinelli et al., 2009). Moreover, an epigenetic study 
showed parental separations in infant marmoset affected 
expression of genes in the ACC of adolescent monkeys (Law et 
al., 2009a). Additionally, both human and primate studies 
revealed EARE affected cerebellum, with human studies 
showing decreased cerebellum (Bauer et al., 2009; Edmiston et 
al., 2011), while a primate study revealing larger cerebellar 
vermis area in PR juvenile monkeys (Spinelli et al., 2009). 
EARE effect on primate cerebellum might due to the fact that 
macaque cerebellum has high density of glucocorticoid 
receptors (GRs) (Sánchez et al., 2000), which put it particularly 
vulnerable to stress hormones related over stimulation. Striatum 
was another brain region affected by EARE, with increased 
response to potential rewards (Casement et al., 2014) and 
elevated dopamine responses to amphetamine (Oswald et al., 
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2014), and a potential neurobiological mechanism linking early-
life adversity and altered ventral striatal development was 
indicated (Goff & Tottenham, 2015). In addition to those specific 
regional changes, PR chimpanzees showed less global white-
to-grey matter volume and cortical folding (Bogart et al., 2014). 
Structural connectivity between different brain regions was also 
affected by EARE, as studies showed affected corpus callosum, 
a wide and flat bundle of axons beneath the cortex connecting 
left and right cerebral hemispheres and facilitating inter-
hemispheric communication, in a inconsistent way that most 
human studies showing EARE reduced corpus callosum (De 
Bellis et al., 1999; Rinne-Albers et al., 2016; Teicher et al., 2004, 
1997), while few showing no significant changes (Mehta et al., 
2009). Primate studies also found either decreased corpus 
callosum size (Sánchez et al., 1998) or no significant changes 
(Spinelli et al., 2009).  

 
Neurons and glia cells 
Neurons are the basic unit of brain. Neuronal network is 
responsible for the daily cognitive and emotional behaviors. Glia 
cell is a group of non-neuronal cells that support and protect the 
neurons in the brain. Rodent studies showed that maternal 
separation could induce morphological alteration of the apical 
dendrites of CA3 pyramidal neurons (Kwak et al., 2008); could 
increase corticotropin releasing factor (CRF)-containing neurons 
in amygdala (Becker et al., 2007); and could decrease in vivo 
firing activity of amygdala neurons (Adams & Rosenkranz, 2016) 
and sex related neurogenesis (Oomen et al., 2009). Chronic 
stress could induce atrophy of dendrites in hippocampus of rats 
(Brunson et al., 2005; McEwen, 1999) and tree shrews 
(Magariños et al., 1996), and could induce hippocampal 
neuroplasticity changes (Fenoglio et al., 2006). Bartesaghi and 
colleagues used guinea-pig as animal model to investigate the 
effects of early isolation on neurons, and they found that early 
isolation could induce morphologic changes of neurons in 
entorhinal cortex and hippocampus (Bartesaghi et al., 2003a, b; 
Bartesaghi & Serrai, 2001, 2004). Although primate studies 
found neuronal morphological changes in EARE exposed 
monkeys (Bryan & Riesen, 1989; Floeter & Greenough, 1979; 
Stell & Riesen, 1987; Struble & Riesen, 1978), these early 
findings were limited to cerebellum, somatosensory and motor 
cortex, with limited information on other important brain regions, 
such as hippocampus, amygdala and PFC. Recent studies 
showed that different environments could induce neuron 
plasticity changes in the key brain regions involved in learning 
and memory. Complex environment could enhance complexity 
of the dendritic tree and density of dendritic spine in 
hippocampus and PFC in monkeys (Kozorovitskiy et al., 2005). 
Early parental deprivation in the marmoset monkey could 
produce long-term changes in hippocampal expression of 
genes involved in synaptic plasticity and implicated in mood 
disorder (Law et al., 2009b). So these neuron morphological 
and plasticity changes might explain and account for how 
EARE take effects on cell level, and then further more leading 
to behavioral changes. 

 As EARE effects on glia cells, rodent studies revealed that 
EARE could induce long-term changes of astrocyte density and 

numbers in many brain regions, including PFC, mPFC, 
hippocampus, cingulate cortex and amygdala (Leventopoulos 
et al., 2007), and could alter behavioral, autonomic and 
endocrine responses to environmental challenge (Musholt et al., 
2009; Rüedi-Bettschen et al., 2006). Although there was no direct 
evidence pointing out that glia cell changes were responsible 
for those altered responses in rats, those studies at least 
suggested the involvement of glia cell in EARE induced effects. 
Moreover, human studies showed that glial cell depletion in 
many brain regions was related to mood disorders, as the 
number of glia cell was reduced in PFC of both major 
depressive disorder (MDD) and bipolar disorder (BD) patients 
(Öngür et al., 1998), in the amygdala of major depressive 
disorder patients (Bowley et al., 2002) and in anterior cingulate 
cortex of major depressive disorder and schizophrenia patients 
(Cotter et al., 2001). Considering the important trophic influence 
of glia on neurons, glia cell deficits induced by EARE could 
possibly be responsible for EARE effects on neurons and 
furthermore to abnormal behavioral function. If that is true, how 
does it happen? Rodent Studies showed that stress related 
hormone glucocorticoid receptors (GRs) were also expressed in 
glia cells (Bohn et al., 1991; Jung-Testas & Baulieu, 1998; 
Vielkind et al., 1990). Glucocorticoid is the product of the HPA 
axis, so EARE might take effects through its influence on stress 
related hormones, like glucocorticoid, and then exert influence 
on glia cells leading to various effects (Jauregui-Huerta et al., 
2010). Indeed, in vitro and in vivo studies showed that 
glucocorticoids could influence gene expression in glia cells 
(Bohn et al., 1994; Kumar et al., 1985) and could regulate the 
concentration of glial fibrillary acidic proteins (O'Callaghan et al., 
1989). By playing central roles in learning and memory, 
hippocampal astrocyte number was dose-dependently 
increased by corticosterone treatment (Bridges et al., 2008), 
and glial responses in hippocampus was also regulated by 
glucocorticoid through influencing gene expression (Nichols et 
al., 2005). However, few studies were performed to investigate 
this issue and EARE affected glia cell changes were link directly 
to behavioral outcomes without solid evidence. In primate 
studies, there are lack of evidence to support that EARE affects 
glia cell structural and functional changes, and furthermore, 
induces behavioral outcomes. 

 
Lateralisation 
Some studies suggested that the influence of EARE on different 
brain hemisphere might be different, and different type of EARE 
might take effects differentially on the same brain structure. A 
human study found that the institutionalized children had 
greater right amygdala volume, while the left amygdala volume 
was smaller in the children experienced longer periods of 
deprivation (Mehta et al., 2009). Another human study showed 
that patients with child abuse-related complex PTSD showed 
reduced gray matter concentration in right hippocampus and 
right dorsal ACC, but not in the left areas (Thomaes et al., 
2010). In primate studies, maternal separation was associated 
with activation in the right dorsolateral PFC and decreased 
activity in the left dorsolateral PFC of juvenile rhesus monkeys 
(Rilling et al., 2001). Not only brain structure and function 
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showed lateralisation affection by early experiences, behavioral 
research also found lateralisation in primates, as an interesting 
research showed that PR monkeys demonstrated greater left-
hand bias compared to MR reared monkeys (Bennett et al., 
2008). The number of lateralisation related studies is limited 
and the underlying mechanism remains unknown, which 
certainly adds complexity to the understanding of the influence 
EARE on brain structure and functional changes and the 
related abnormal behavioral outcomes. 

  
Other EARE effects 
Young animals are particularly vulnerable to EARE effects 
Adverse experience has its influence over all life stages, 
including early, middle and later life, in which infants are 
especially vulnerable to EARE and the consequences could 
persistent into later life. That might due to the fact that the most 
sensitive period of the whole life is the early stage, during which 
the body is undergoing profound physiological development, 
such as HPA axis, and brain is also undergoing profound neural 
development, such as neurogenesis. The amygdala developes 
rapidly during the early postnatal period in animals, e.g., in rats, 
cats and primates (Kikusui & Mori, 2009; Lupien et al., 2009; 
Payne et al., 2010; Wakefield & Levine, 1985). Stress related 
hormones and receptors were also maximally expressed in the 
brain early in development (Avishai-Eliner et al., 1996; Baram & 
Hatalski, 1998; Meaney & Szyf, 2005; Pryce et al., 2005a; 
Vazquez et al., 2006). These early physiological development 
heighten the vulnerability of the brain to environmental 
exposures. On the other hand, the proper development needs 
proper environmental stimuli, and the natural and best stimuli 
during early life is the attachment between caregivers, 
especially mothers, and infants, as mothers could supply tactile 
contact, physical warmth, nourishment, and psychological 
comforts. As stated in attachment theory and affectional system, 
infants need to develop a stable relationship with the mother for 
social and emotional development to occur normally, while 
various EARE intervene the forming of the bonds of this relation, 
therefore both short-term and long-term devastating influence 
are inevitable.  
 
Sexual differences in EARE effects 
Humans studies showed that affectability of various mental 
disorders were sex-related during development, with boys 
showing higher tendencies to develop aggression and novelty 
seeking behaviors (Farrington & Loeber, 2000) while girls more 
susceptible to anxiety and depression (Kessler, 2003). 
Additionally, EARE influence might also be sex related, e.g., 
corpus callosum volume reduction was only found in EARE 
exposed males (De Bellis et al., 1999). Similarly, animal studies 
also revealed the vulnerability of males to EARE in rodents 
(Galea et al., 1997; Kikusui & Mori, 2009) and primates (Clarke, 
1993; Cross & Harlow, 1965; Mitchell, 1968; Rommeck et al., 
2009a; Suomi et al., 1971). On the contrary, other studies 
showed preference of EARE on females in humans (Heim & 
Nemeroff, 2001; Klimes-Dougan et al., 2001), rodents (Hoyer et 
al., 2013; Ziabreva et al., 2003b) and primates (Sánchez et al., 
2005). Previous studies showed that stress could induce 

decreasing in number and length of apical dendritic branch of 
medial prefrontal cortex in male rats, whereas increasing in 
apical dendritic length in female rats (Garrett & Wellman, 2009). 
Isolated males showed less dendritic branches, shorter 
dendritic length and smaller dendritic spine density than control 
males, while isolated females had more dendritic branches than 
control females in guinea pig (Bartesaghi et al., 2003a). 
Neurogenesis was significantly increased in male but 
decreased in female offspring after maternal deprivation in rats 
(Oomen et al., 2009). The mechanism of those sexual 
differences remains unclear, but one possible explanation is the 
gender related physiological differences, such as neuroendocrine 
system and brain structure and function, which may induce 
different behavioral and physiological responses in male and 
female subjects. . 
 
Time effects of EARE 
Early life is a time of heightened susceptibility to EARE and 
expression of adverse experiences induced effects would be 
different across life time, therefore the time of administration of 
adverse experiences and subjects age of measurement might 
partially explain the discrepant findings across studies 
(Tottenham & Sheridan, 2009). 

The time of adverse experiences administration is important, 
as different brain regions might have unique windows of 
vulnerability to stress, e.g., human studies indicate that the time 
window of hippocampus, corpus callosum and frontal cortex is 
at ages of 3-5, 9-10 and 14-16 years, respectively (Andersen et 
al., 2008). Rodent studies revealed the critical importance of 
specific time windows early in life for the outcome of maternal 
separation (Bock et al., 2005; Gos et al., 2008; Pryce et al., 
2005b). Early primate studies by Harlow et al. showed the 
importance of administration time of adverse experiences 
(isolation), in a way that isolation beginning at birth generated 
most severe effects and persisting abnormalities (Harlow et al., 
1965; Mitchell, 1968), while the isolation starting until later in life 
would produce less severe effects and persistent abnormalities 
(Harlow et al., 1965; Mitchell, 1968). Moreover, different lasting 
period of EARE also produced different effects even was all 
initiated at birth, i.e., 3 months isolation only induced reversible 
debilitating behavioral deficits, while at least six months 
isolation generated most severe effects and persisting 
abnormalities; 3 months isolation induced least, 6 months 
isolation induced moderate and 12 months isolation induced 
most severe defects (Griffin & Harlow, 1966; Harlow et al., 
1965; Mitchell, 1968). These studies suggested that both the 
time point of administration of EARE and the lasting period 
have different influences on behavioral and biological 
outcomes. 

Human studies showed different, or even contrary effects of 
EARE in children and adults, suggesting EARE might induce 
differential outcomes across lifespan. For example, childhood 
abuse induced significant reduction of hippocampal volume in 
adults (Bremner et al., 1997; Cohen et al., 2006; Stein et al., 
1997; Woon & Hedges, 2008) but not in children (Carrion et al., 
2001; De Bellis et al., 2001, 1999; Woon & Hedges, 2008); 
EARE induced hypercortisolism in children (Essex et al., 2002; 
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Fernald & Gunnar, 2009; Flinn & England, 1997; Kaufman et al., 
1997) but hypocortisolism in adults (Carpenter et al., 2009; 
Elzinga et al., 2008); adults with abuse related PTSD showed 
ACC volume reductions (Kitayama et al., 2006; Thomaes et al., 
2010), whereas pediatric PTSD showed increased ACC 
(Richert et al., 2006). Primate studies also found similar results, 
e.g., monkeys exposed to EARE showed less aggression 
during infancy (Chamove et al., 1973; Harlow et al., 1965) but 
more aggression during latter life (Chamove et al., 1973; 
Mitchell, 1968), whereas showed more affiliative behavior 
during infancy (Chamove et al., 1973; Rosenblum & Paully, 
1984; Ruppenthal et al., 1991) but less during adulthood 
(Kraemer & Mckinney, 1979; Rosenblum & Paully, 1984; 
Winslow et al., 2003). Monkeys exposed to EARE showed 
more activity during infants (Champoux et al., 1991) but less 
activity during adulthood (Harlow & Suomi, 1971a; Mason & 
Sponholz, 1963; Mitchell, 1968); The number and style of 
stereotypies exhibited in monkeys also varied by age, e.g., 
the number of whole-body stereotypies were negatively 
correlated with age, whereas self-directed stereotypies were 
positively correlated; moreover younger monkeys exhibited 

more pacing, body-flipping, and swinging, while older ones 
exhibited more hair-pulling and saluting (Lutz et al., 2003). 
These studies showed different, or even opposite effects of 
EARE on behavioral and biological outcomes between infants 
and adults, indicating EARE induce different outcomes across 
lifespan. 

 
MECHANISMS UNDERLYING EARE INDUCED EFFECTS  
 
Neuroendocrinological mechanisms 
Some recent study linked behavioral outcomes with EARE 
affected neuroendocrine systems, and suggested that EARE 
might modulate subsequent social behaviors through regulating 
both the production and body’s sensitivity to neurotransmitters 
and hormones (Cushing & Kramer, 2005). Moreover, studies 
indicate that the involved neurotransmitters and hormones were 
mainly monoamine neurotransmitter serotonergic systems, 
including serotonergic system and catecholamine system (both 
noradrenergic system and dopaminergic system), and 
glucocorticoid hormones (cortisol in non-human primates and 
humans), oxytocin and growth hormone (GH)(Table 4). 

Table 4  EARE induced effects on neuroendocrine systems 

 Outcome Primate studies Human studies 

PR and SPR monkeys showed decreased CSF 

levels of 5-HIAA 

Fahlke et al., 2000; Higley et al., 1996a; 

Maestripieri et al., 2006; Shannon et al., 

2005 

PR monkeys showed decreased SERT binding 

potential 

Ichise et al., 2006 

Serotonin system 

VFD monkeys were hyporesponsive to the 

serotonergic probe mCPP 

Rosenblum et al., 1994 

PR monkeys showed lower CSF concentrations 

of HVA and attenuated NE secretion 

Clarke et al., 1999; Clarke et al., 1996 

VFD monkeys were hyper responsive to the 

noredrenergic probe yohimbine 

Rosenblum et al., 1994 

Catecholamine system 

PR monkeys showed significantly lower DOPAC 

concentrations 

Clarke et al., 1999; Clarke et al., 1996 

 

Hormone level Barrett et al., 2009; Coplan et al., 2005; 

Coplan et al., 1996; Coplan et al., 2001; 

Suomi, 1991 

Essex et al., 2002; Flinn 

& England, 1997; Gunnar 

et al., 2001; Kaufman et 

al., 1997 

Hypercortisolism 

Increased HPA response Fahlke et al., 2000; Higley et al., 1992; 

Kraemer et al., 1983, 1984; Sánchez et 

al., 2005; Suomi, 1991 

Heim et al., 2000b; Kikusui 

& Mori, 2009; Pesonen et 

al., 2010 

Hormone level Clarke et al., 1998; Capitanio et al., 

2005; Shannon et al., 1998 

Brand et al., 2010; De 

Bellis et al., 1994; Heim 

et al., 2000a 

HPA axis dysregulation 

 

Hypocortisolism 

Decreased HPA response Barr et al., 2004; Capitanio et al., 2005; 

Clarke, 1993; Dettling et al., 1998; Dettling 

et al., 2002a, b; Lyons et al., 2000; Parker 

et al., 2004 

Carpenter et al., 2009; 

Elzinga et al., 2008; Hart 

et al., 1995 

 
 

Monoamine and hormone systems 
The serotonergic system was shown to moderate the effects of 
EARE on the risk of depression in humans (Eley et al., 2004; 
Kaufman et al., 2004), and primate studies also indicate the role 

of serotonin system in regulating the effects of EARE. Maternal 
rejected, PR and SPR reared infant monkeys exhibited lower 
CSF 5-HIAA concentrations (Fahlke et al., 2000; Higley et al., 
1996a; Maestripieri et al., 2006; Shannon et al., 2005); PR 
monkeys showed decreased SERT binding potential across a 
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range of brain areas (Ichise et al., 2006); VFD reared monkeys 
were hyporesponsive to the serotonergic probe meta-
Chlorophenylpiperazine (mCPP) (Rosenblum et al., 1994). 
Moreover, epigenetic studies also indicate the role of serotonin 
system plays in EARE induced HPA axis dysfunction (Barr et al., 
2004; Rosenblum et al., 1994; Shannon et al., 2005; Spinelli et 
al., 2007) and subsequent abnormal behavioral outcomes (Barr 
et al., 2003, 2004; Law et al., 2009b; Maestripieri et al., 2006; 
Vicentic et al., 2006; Ziabreva et al., 2003a). Many studies 
showed catecholamine system is another candidate through 
which EARE takes its effect. PR monkeys showed attenuated 
Norepinephrine (NE) secretion (Clarke et al., 1999, 1996) and 
reduced CSF concentrations of catecholamine metabolite 
(Clarke et al., 1999, 1996), while VFD reared monkeys were 
hyper responsive to the noredrenergic probe yohimbine 
(Rosenblum et al., 1994). It was further suggested that EARE 
might influence the differentiation of noradrenergic neurons and 
thus alter HPA responses stress during adulthood (Liu et al., 
2000). Dopamine system (another catecholamine system) 
might also be involved in EARE effects, as significantly lower 
concentrations of dopamine metabolite were revealed in PR 
infant monkeys (Clarke et al., 1999, 1996) and history of childhood 
adversity was positively associated with striatal dopamine 
responses to amphetamine (Oswald et al., 2014).  

Additionally, primate studies indicate potential hormonal 
pathways through which EARE takes effects, including oxytocin, 
growth hormone (GH), and most importantly, cortisol. Monkeys 
exposed to EARE showed abnormal aggressive and affiliative 
behaviors, and oxytocin was suggested to be a neuropeptide 
for affiliation and involved in the regulation of social bonding 
behaviors (Insel, 1992; Lim & Young, 2006). Therefore, oxytocin 
is a possible pathway for EARE to take effects, which indeed 
was probed by Winslow et al. (Winslow et al., 2003), showing 
that the decrease in affiliative behavior in PR rhesus monkeys 
was significantly and positively correlated with cerebrospinal 
oxytocin. Another hormone, GH, was also related to early 
adversity, as PR and social separation experiences in infant 
monkeys showed abnormal GH levels (Champoux et al., 
1989a; Laudenslager et al., 1995). Most importantly, the main 
target of EARE under investigation is HPA axis. While some 
studies showed blunt HPA response, and thus decreased 
cortisol and ACTH levels (Barr et al., 2004; Capitanio et al., 
2005; Clarke, 1993; Dettling et al., 1998, 2002a, b; Lyons et 
al., 2000; Parker et al., 2004), others showed the opposite 
(Barrett et al., 2009; Coplan et al., 2005, 1996, 2001; Suomi, 
1991). Although consistent results were not achieved, the 
importance of HPA dysregulation in EARE induced effects 
was suggested.  

 
Hypothalamic-pituitary-adrenal (HPA) axis dysregulation 
EARE is associated with elevated levels of stress and fear. 
The adverse impact of stress on brain development was 
suggested to be largely through hypothalamic-pituitary-
adrenal (HPA) axis both in humans (Loman & Gunnar, 
2010) and primates (Sanchez, 2006). The effects of EARE 
on HPA circadian rhythmicity and the function of HPA axis 
were reviewed in this section. 

 
Circadian rhythmicity 
TheHPA axis is a complex set of direct influences and feedback 
interactions among three endocrine glands, i.e., hypothalamus, 
pituitary gland, and adrenal glands. Under basal conditions, 
HPA axis exhibits a circadian rhythmicity with a peak around the 
time of waking and a trough during the quiescent time of the 
activity cycle (Dickmeis et al., 2013; Leliavski et al., 2015; Tsang 
et al., 2016, 2014). So cortisol levels typically follow the 
circadian rhythm with levels highest occurring about 20 minutes 
after awakening in the morning (cortisol awakening response, 
CAR) and declining throughout the day. Alterations in the 
normal pattern of HPA rhythmicity, including CAR response and 
diurnal decrease of cortisol, were found in human studies. Most 
studies found higher morning cortisol level than controls in 
maltreated children (Cicchetti & Rogosch, 2001; Cutuli et al., 
2010) and EARE exposed adults (Gonzalez et al., 2009; 
Gustafsson et al., 2010), while some found lower morning 
cortisol level (Carlson & Earls, 1997). Moreover, different kind of 
EARE might have differential influence on morning cortisol 
values, as studies indicate more emotionally and sexually 
abused children showed higher morning cortisol values, 
whereas more severe physically neglected and abused children 
showed lower levels (Bruce et al., 2009; Cicchetti & Rogosch, 
2001). Additionally, EARE exposed children also showed higher 
incidences of atypical diurnal rhythmicity patterns, such as a 
peaking in the afternoon or evening (Cicchetti et al., 2010; 
Dozier et al., 2006). Similarly, abnormal HPA circadian 
rhythmicity were also found in limited amount of primate studies 
on rhesus monkeys, with morning peak occurring late in PR 
infants (Thomas et al., 1995) and flattened diurnal rhythm in 
repetitive maternal separation exposed infants (Sánchez et al., 
2005). However, a recent study found no shift in diurnal 
patterns of cortisol in PR reared juvenile rhesus monkeys 
(Barrett et al., 2009). Although how EARE induces those 
abnormal HPA axis circadian rhythmicity, and its different or 
even contrary effects remains unknown, these HPA axis 
circadian rhythmicity abnormalities certainly contribute to 
various abnormal behavioral outcomes. 
 
HPA axis dysregulation 
In humans, the HPA axis develops over the initial several years 
of life and is highly sensitive to EARE (De Weerth et al., 2003; 
Watamura et al., 2004). The key elements of the HPA axis are 
as following: the hypothalamus synthesizes and secretes 
corticotropin-releasing hormone (CRH); CRH stimulates the 
secretion of adrenocorticotropic hormone (ACTH) in pituitary 
gland; ACTH acts on the adrenal cortices, which then produces 
glucocorticoid hormones (mainly cortisol in NHPs and humans); 
glucocorticoids in turn act back on the hypothalamus and 
pituitary to suppress CRH and ACTH production in a negative 
feedback cycle. When activated in response to a stressor, the 
HPA axis participates in a cascade of neuroendocrine responses, 
and a typical HPA stress response involves a period of 
increased glucocorticoids in circulation induced by stimulation 
of elevated levels of CRH and ACTH, followed by a return to 
baseline levels induced by negative feedback of glucocorticoids 
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(Herman & Cullinan, 1997). Thus CRH, ACTH and glucocorticoids 
levels could indicate the reactivity levels of HPA axis, with CRH 
an important neurotransmitter in HPA axis to initiate the 
autonomic and behavioral changes in response to stress 
(Heinrichs et al., 1995; Krohg et al., 2008; Ohmura & Yoshioka, 
2009; Smagin & Dunn, 2000). Studies showed EARE induced 
elevated cerebrospinal fluid (CSF) concentrations of CRH 
levels in mother deprived rats (Ladd et al., 1996) and VFD 
reared infant monkeys (Coplan et al., 1996). Not only the CRH 
levels was increased, a study showed that EARE increased 
the density of CRH binding sites in many brain regions, 
including PFC cortex, amygdala and hippocampus (Anisman 
et al., 1998). As analysis of CRH requires sampling of CSF, 
it was hard to perform the experiment on healthy humans. 
On the other hand, analysis of ACTH and glucocorticoids 
(cortisol) only requires blood or urine sampling, so they are 
more widely investigated in humans.  

Glucocorticoids was revealed to be released from the adrenal 
cortex during neuroendocrine responses to stress (Herman et 
al., 2003, 1996), and then regulate HPA axis via negative 
feedback by binding to two types of receptors, mineralocorticoid 
receptors (MRs) with high affinity (important in proactive 
maintenance of HPA basal activity), and GRs with low affinity 
(primarily responsible for negative feedback). Glucocorticoids 
could pass through the blood-brain barrier to influence brain 
function (Zarrow et al., 1970), and MRs’ expression was 
significantly greater in monkey infants than other ages (Pryce et 
al., 2005a). Therefore, HPA axis was one of the major pathways 
through which EARE induces stress and shapes brain 
development, particular in infants. Glucocorticoids could facilitate 
HPA axis activation by occupying its receptors in amygdala, 
leading CRH increase within amygdala (Kolber et al., 2008), 
whereas it could also suppress HPA axis by occupying its 
hippocampal receptors (van Haarst et al., 1997). Amygdala and 
hippocampus are important brain regions for socio-emotional 
functioning and learning and memory throughout development, 
and they have a high density of receptors for unbound 
glucocorticoids, therefore are major targets of EARE affected 
HPA axis (Johnson et al., 2005; Sánchez et al., 2000). 
Additionally, EARE could affect HPA axis function 
bidirectionally, with some studies showing attenuated basal 
and challenge induced levels of cortisol (hypocortisolism), 
while others showing elevated levels in both conditions 
(hypercortisolism). 
 
Hypercortisolism 
Human studies showed that EARE could induce hypercortisolism 
of basal cortisol level in children, reflected by elevated levels of 
cortisol (Essex et al., 2002; Flinn & England, 1997; Gunnar et 
al., 2001) and ACTH (Kaufman et al., 1997) in EARE exposed 
children. Primate studies also showed EARE induced 
hypercortisolism, reflected by increased plasma coritsol and 
ACTH in PR infants and juvenile monkeys (Barrett et al., 2009; 
Suomi, 1991). The elevated cortisol levels in hairs of PR infants 
indicate the long time accumulation of EARE outcomes 
(Dettmer et al., 2012). Increased basal cortisol levels were 
found to be induced by prenatal stress (Pryce et al., 2011). 

Persistently elevated CSF concentrations of CRF in both infants 
and mothers under VFD conditions were reported (Coplan et al., 
2005, 1996). Not only EARE could affect infants and children, it 
was suggested that childhood abuse was associated with a 
persistent sensitization of the HPA axis to stress in human 
adults (Elzinga et al., 2008), e.g., adults exposed to EARE had 
higher HPA reactivity during the Trier Social Stress Test (TSST) 
(Heim et al., 2000b; Pesonen et al., 2010). Animal studies also 
showed hyper-response of HPA axis activity when facing stress 
in both infants and adults exposed to EARE. Rodent studies 
revealed higher HPA response to novelty stress in early-
weaned mice (Kikusui & Mori, 2009). Primate studies showed 
hyper-responsiveness in EARE reared monkeys, reflected by 
increased cortisol response to stress in monkeys exposed to 
PR rearing (Fahlke et al., 2000; Suomi, 1991), VFD rearing 
(Coplan et al., 2001), repetitive maternal separation (Sánchez 
et al., 2005) and parental deprivation (Higley et al., 1992; Sánchez 
et al., 2005). Amphetamine challenge test also revealed 
neurochemical and behavioral hyper-responseness in isolated 
monkekys (Kraemer et al., 1983, 1984). All those studies 
suggested EARE induced hypercortisolism, reflected by elevated 
basal and stress or challenge facing levels of cortisol, ACTH or CRF. 
 
Hypocortisolism 
EARE induced hypocortisolism was also a common finding 
(Gunnar & Vazquez, 2001), e.g., maltreated children showed 
decreased basal levels of cortisol (Brand et al., 2010; Heim et 
al., 2000a) and ACTH (De Bellis et al., 1994). Primate studies 
revealed attenuated basal levels of cortisol and ACTH in PR 
monkeys (Capitanio et al., 2005; Clarke et al., 1998; Shannon 
et al., 1998). When facing stress or challenge, EARE exposed 
children and adults both showed blunt cortisol response and 
thus reduced cortisol level (Carpenter et al., 2009; Elzinga et al., 
2008; Hart et al., 1995). Similarly, primate studies showed blunt 
HPA responses during stress and thus decreased coritsol and 
ACTH levels in PR reared infants (Barr et al., 2004; 
Capitanio et al., 2005; Clarke, 1993), in young adults 
exposed to maternal deprivation and intermittent separation 
(Capitanio et al., 2005; Lyons et al., 2000) and in the hairs of 
PR infants (Feng et al., 2011) of rhesus monkeys. EARE 
induced hypocortisolism was also found in other monkey 
species, including maternal neglect exposed juvenile 
Goeldi's monkeys (Dettling et al., 1998), intermittent stress 
exposed squirrel monkeys (Parker et al., 2004) and parental 
deprivation exposed marmosets (Dettling et al., 2002a, b). 
All those studies indicate hypocortisolism reflected by 
decreased basal and stress or challenge facing levels of 
cortisol or ACTH. 

As described above, it is controversial as to the effects of 
EARE on HPA axis, with some studies showing hypercortisolism 
while other showing hypocortisolism. There are several possible 
reasons. Firstly, different types of EARE vary between different 
research, and even for a same type of EARE, the procedures, 
manipulations, tests and measuring indexes could be different 
in different experiments. Secondly, different genotype among 
human races or animal species could contribute to the 
divergence as well, in a way that individuals with certain 
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genotype may be more sensitive to a particular type of EARE 
than others. In addition, subjects’ personality or temperaments 
could also partially contribute to the divergence, e.g., children 
with inhibited temperaments tended to have higher cortisol 
levels than extroverted children (Gunnar et al., 1995; Kagan et 
al., 1988), indicating that long-term consequences of EARE 
may not uniform across subject populations.. 
 
A sample of EARE induced neurotransmitter and hormonal 
changes related behavioral outcomes - social status of 
primates 
Studies suggest that EARE could induce abnormal changes of 
neurotransmitters and hormones and then influence social 
status of primates. Serotonergic system was the most widely 
studied neurotransmitter involved. Primate studies showed that 
different levels of CSF serotonin (5-HT) or its main metabolite 5-
Hydroxyindoleacetic acid (5HIAA) were related to different 
social status, with higher levels related to more dominant status 
(Higley et al., 1996b; Raleigh et al., 1983). Additionally, 
serotonergic drugs were found to be able to influence 
dominance status, in a way that serotonergic enhancing drugs 
increase social dominance while serotonergic reducing drugs 
decrease dominance (Raleigh et al., 1991). 5-HT seems to be 
positively related to social dominance status, and studies 
suggested that might due to its influence on affiliative and 
aggressive behaviors which are important factors in dominance 
formation and maintenance. Primate studies showed positive 
correlation between CSF 5-HIAA and affiliative approaching and 
grooming behavior (Mehlman et al., 1995; Raleigh et al., 1985) 
and negative correlation between CSF 5-HIAA and aggressive 
behavior (Higley et al., 1996a), which were consistent with the 
previous presumption that affliliative behavior was much more 
effective in acquiring and reinforcing social dominance than 
aggressive behaviors. Supporting evidence also came from 
another genetic primate study that suggested certain serotonin 
transporter (5-HTT/SERT) diplotypes might modulate 
acquisition of dominance status (Miller-Butterworth et al., 2007). 
Beside serotonergic system, dopaminergic systems might also 
affect social dominance status, as dopamine transporter (DAT) 
gene variants were suggested to be associated with social rank 
in cynomolgus monkeys (Miller-Butterworth et al., 2008). As to 
hormones, although a study showed that cortisol concentration 
was significantly higher in dominant monkeys (Czoty et al., 
2009), most studies failed to find the relationship between 
cortisol level and social rank (Czoty et al., 2009; Goo & 
Sassenrath, 1980; Morgan et al., 2000; Stavisky et al., 2001). 
Those studies suggested that EARE could influence social 
status of primates through its influence on neurotransmitters 
and hormones. The effects of EARE should not be limited on 
social status but also might on some other abnormal behaviors. 

 
Genetic and epigenetic influences of EARE effects 
Developing is a dynamic process involving constant and 
reciprocal interactions between organisms and the 
environments. Emerging evidence suggests that epigenetic 
modifications may serve as a critical mechanism through which 
experiences occurring during the lifespan can have sustained 

effects in developmental outcomes (Daskalakis et al., 2013). 
Epigenetics refers to the study of inherited changes in 
phenotype (appearance) or gene expression caused by 
mechanisms other than changes in the underlying DNA 
sequence, such as modifications of transcription of the genome 
by chemical markers regulation, and variation in gene 
expression rather than gene sequence is the key concept. 
Moreover, epigenetics is used to describe the dynamic 
interactions between genome and the environment (Jablonka & 
Lamb, 2002). Research suggested that environmental events 
can modify the epigenetic status of the genome by activating 
intracellular pathways to regulate interaction between 
transcription factors and their DNA binding sites, leading to 
changes in gene expression and eventually different levels of 
proteins (Bagot & Meaney, 2010; Zhang & Meaney, 2010). This 
is the biological basis for the interplay between environmental 
factors and the genome in the regulation of individual 
differences in behaviors and cognition. Both animal and human 
studies suggest that EARE can lead to lasting changes in 
neurotransmitter systems and brain function, and then induce 
cognitive and behavioral changes. However, there was 
remarked inter-individual variations in responses to adversity 
(Collishaw et al., 2007; Rutter, 2007), and these variations 
might be due to different genotype, different living environment 
and interaction between the genome and environment. 

 
Genetic influences  
Different genotype could induce different behavioral outcomes. 
Allelic variation of the monoamine oxidase A (MAOA) gene was 
implicated in aggressive behaviors (Volavka et al., 2004).  Both 
human (Caspi et al., 2002; Craig, 2005; Kim-Cohen et al., 2006) 
and primate (Karere et al., 2009) studies showed that genotype 
conferring low MAOA activity was related to mental health 
problems. These findings may partially explain the variability in 
developmental outcomes associated with maltreatment, e.g., 
why not all victims of maltreatment grow up to with abnormal 
behaviors like antisocial problems, and they provide 
epidemiological evidence that genotypes can moderate 
children's sensitivity to environmental insults. Similar results 
was revealed in 5-HTT genotype, as short promoter region of 
the serotonin transporter (5-HTTLPR) allele was related to 
increased anxious behavior in primates (McCormack et al., 
2009) and highest emotional problem scores in human (Kumsta 
et al., 2010). Those evidences suggest the importance of 
genotype in behavioral outcomes. 
 
Epigenetic influences of EARE on gene expression 
Environmental and life experience could exert influences on 
gene expression and time course analysis indicate that 
maternally induced epigenetics might emerge during the 
postnatal period and could sustain into adulthood (Weaver et al., 
2004). Epigenetic regulation of gene expression is particularly 
important during the early stages of development, and it is one 
of the main mechanisms mediating the long-term effects of 
maternal care on development (Champagne, 2008; Champagne & 
Curley, 2009; Diorio & Meaney, 2007; Meaney, 2001; Zhang et 
al., 2006). For example, rodent studies showed that postnatal 
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maternal licking/grooming (LG) behavior could induce 
increased hippocampal GR expression (Caldji et al., 1998; 
Francis et al., 1999; Liu et al., 1997; Weaver, 2007), while low 
levels of LG during neonates led to reduced expression of 
estrogen receptor in hypothalamus and reduced response to 
estrogen (Champagne et al., 2001, 2006, 2003). As to the 
effects of EARE on gene expression, isolation attenuated social 
interaction induced gene expression in rodents (Ahern et al., 
2016; Lukkes et al., 2012, 2013; Shishkina et al., 2015; Wall et 
al., 2012). A human study also showed EARE related down 
regulation of genes containing GR response elements (Miller et 
al., 2009). In primate studies, early maternal separation could 
lead to gene expression changes in many brain regions, 
including differential expression of gene GUCY1A3 in amygdala, 
decreases in hippocampal growth associated protein 43 (GAP-
43) mRNA and 5-HT receptor mRNA (Law et al., 2009b) and a 
selective long-term effect on expression of genes in ACC (Law 
et al., 2009a). Moreover, epigenetics is not a binary response 
across the whole brain. Different genes in different brain regions 
can be affected in different ways, e.g., early maternal 
deprivation could either induce reduction of gene expression 
(Liu et al., 1997; Roceri et al., 2002) or up-regulation of gene 
expressions (Plotsky et al., 2005; Ziabreva et al., 2000).  
 
Epigenetic influences of EARE on neurobiological and 
behavioral outcomes 
Epigenetic influences on gene expression may lead to different 
expression patterns of proteins, thus different levels of 
hormones and neurotransmitters, ultimately lead to different 
behavioral outcomes. Studies suggested that EARE might exert 
its effects on behavioral outcomes independent of genotype. 
Primate studies revealed the importance of environment and life 
experience independent of genotype. MR monkeys showed 
significantly up-regulated level of 5-HTT during maternal 
separation, while NR monkeys did not (Kinnally et al., 2008). 
With the same low-activity Monoamine oxidase A (MAOA) 
genotype, MR reared monkeys were more aggressive than the 
PR monkeys (Newman et al., 2005). Higher 5-HTT cytosine-
phosphate-guanosine (CpG) methylation, but not rh5-HTTLPR 
genotype, exacerbated the effects of early life stress on 
behavioral stress reactivity in infant monkeys (Kinnally et al., 
2010). Additionally, from behavioral perspective alone, infant 
monkeys exposed to mother abuse showed the same tendency 
to their offspring, regardless of whether they were reared by 
their biological mothers or by foster mothers (Maestripieri, 
2005). Rodent studies also supported the important role of 
environment and life experience on behavioral outcomes. 
Rodent studies suggested that maternal care behaviors 
especially postnatal maternal LG could be transmitted from the 
mother to her female offspring, so female offspring who 
received low levels of LG also provided low levels of this form of 
maternal care to their own offspring (Fleming et al., 2002). 
Cross-fostering studies in rodents indicate that this 
intergenerational transmission of behaviors was the result of 
early experience rather than genetic inheritance (Champagne & 
Meaney, 2001). For example, the biological offspring of low-LG 
mothers reared by high-LG dams resembled the normal 

offspring of high-LG mothers (Francis et al., 1999). All those 
studies indicate the importance of environment and life 
experience, especially maternal interactions on the subsequent 
expression of behaviors, rather than the genetic contributions. 
Moreover, primate studies showed the importance of the 
interaction between genetic factors and environmental 
experience on neurobiological outcomes, as CSF 5-HIAA 
concentrations were significantly influenced by genotype in the 
PR but not MR reared monkeys (Bennett et al., 2002), and 5-
HTT gene variation affected HPA axis activity in response to 
stress in a way that cortisol levels increased during separation 
in MR but decreased in PR monkeys (Barr et al., 2004).  

 
Transgenerational epigenetic programming 
Among the epigenetic mechanisms of EARE, such as DNA 
methylation, histone modifications, and micro-RNA expression, 
DNA methylation was the most intensively studied epigenetic 
phenomenon (Babenko et al., 2015; Blaze et al., 2015b; 
Jawahar et al., 2015; Provençal et al., 2015; Vaiserman, 2015a, 
b; Zheng et al., 2014). Actually, not only EARE exposure of the 
offspring themselves could lead to long time biological and 
behavioral outcomes, EARE exposure of parents could also 
influence their offspring, which was defined as 
transgenerational epigenetic programming phenomenon and 
has drawn much attention recently. Related studies suggested 
the underlying epigenetic mechanisms of maternal 
transgenerational influence to be DNA methylation, histone 
modifications, and micro-RNA expression (Babenko et al., 2015; 
Bale, 2014; Blaze & Roth, 2015; Gröger et al., 2016; Miska & 
Ferguson-Smith, 2016; Nagy & Turecki, 2015). 

In addition to maternal influences, fathers can exert 
influences on offspring development either through direct care 
in living social environment, or indirectly through interacting with 
maternal influences. Some recent studies showed the important 
influence of paternal early experiences on infant development 
through non-social mechanisms, even in the absence of direct 
contact with offspring. This emerging field focuses on how 
environmental influences can epigenetically alter paternal 
sperm DNA methylation, histone modification and micro-RNA 
expression, and ultimately change the phenotype and behavior 
of offspring (Braun & Champagne, 2014; Curley et al., 2011; 
Day et al., 2016; Kinnally & Capitanio, 2015; Rodgers et al., 
2013; Yuan et al., 2016).  
 
DISCUSSION  
 
Rehabilitation 
Human studies indicate the possibility of rehabilitation of EARE 
induced deficits, e.g., Fisher et al. (2000, 2006, 2007) 
suggested that the improvements of caring following EARE had 
the potential to prevent or reverse EARE induced HPA axis 
dysfunction, such as normalizing perturbed diurnal cortisol 
patterns  and reducing basal salivary cortisol level (Fernald & 
Gunnar, 2009). In primate studies, total social isolation was 
once considered to induce permanent defect, which was 
described as learning deficit in some studies, because isolated 
monkeys were lack of physical interactions and had no 
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opportunity for social learning with conspecifics, or to gradually 
develop sophisticated social behaviors (Mitchell, 1968; Sackett, 
1969; Suomi et al., 1974). These abnormities might be 
rehabilitated by socializing the isolate monkeys with 
conspecifics. Some studies reported that after the isolated 
monkeys was paired with “therapist" monkeys, less self-
directed disturbance activities, or stereotypic behaviors, but 
more social contact and exploratory behaviors were observed 
(Harlow & Suomi, 1971b; Suomi, 1973). Less severe self-
injurious behaviors were found when isolated monkeys were 
reared with surrogates (Brunelli et al., 2014; Harlow & Suomi, 
1971b) or social housing (Lutz & Novak, 2005). Additionally, 
environmental enrichment treatments were used to eliminate 
abnormal behaviors and to normalize the behavioral repertoire 
of EARE exposed monkeys (Lutz & Novak, 2005; Novak et al., 
1998; Rommeck et al., 2009a). It was suggested that 
environmental enrichment devices could only ameliorate less 
severe forms of abnormal behavior but not more severe forms 
of self-injurious or non-injurious self-abuse behaviors (Rommeck 
et al., 2009a). Those studies indicate rehabilitation is possible, 
at least partially, but it requires combination of multiple 
rehabilitation methods, such as socializing, environmental 
enrichment, and considerable time and effort. 

 
Establishing NHP mental disorder models with EARE 
methods 
EARE exposed NHPs showed signs of various mental disorders, 
including anxiety, autism and depression etc., making it a 
potential animal model to study human mental disorders, 
among which depression model was the mostly investigated 
one (Gilmer & McKinney, 2003; Pryce et al., 2005b; Worlein, 
2014). The influence of EARE on NHPs is through daily life and 
accumulates over a period of time, making it a more natural 
model of mental disorders than those induced by drugs or 
invasive surgeries. The diagnosis of mental disorders in 
humans usually depends on questionnaire investigation and 
verbal communication between patients and doctors, which are 
not doable in NHPs. Therefore NHPs studies usually include 
daily group living or single subject observation and behavioral 
analysis, biochemical index analysis (e.g., hormones), brain 
structural and functional changes analysis by using modern 
imaging methods, However, due to the complexity of mental 
disorders, it is very difficult to diagnose mental disorders in 
NHPs. Different disorders might show very similar behavioral 
symptoms and biochemical abnormalities, therefore additional 
indexes are necessary in diagnosing. For example, in NHPs, 
anxiety and depression share symptoms of stereotypic 
behaviors and elevated cortisol level in response to stressor, so, 
more depression specific symptoms, such as lacking of 
responses to stimulus are needed for diagnosing. It is difficult to 
differentiate if a monkey was depressed or autistic as in both 
cases, preference of staying away from social activity and being 
alone in a corner would be shown. Certain metal disorders 
could be divided into many subtypes, e.g., depression includes 
unipolar, bipolar and atypical depression, etc, which certainly 
adds more complexity in establishing NHP animal models. 
These might explain the fact that despite being an ideal and 

irreplaceable animal model, studies on EARE induced NHP 
mental disorder models are limited.  

 
CONCLUDING REMARKS 
 
In summary, as an irreplaceable animal model, NHP EARE 
experiments were performed for over 60 years and revealed 
important insights into understanding the effects of EARE on 
development and underlying mechanisms of related physiological 
and psychological diseases. Although much has been learned 
to date, there is much more to understand about EARE impact 
on developmental trajectory. Now, with the help of emerging 
cutting edge technologies, such as new brain imaging method, 
gene modification, optogenetics, etc, future EARE studies will 
further clarify these issues and help to cure the diseases. 
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