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Abstract. In any family settings, racing children is a big decision that 

requires serious self-reflecting and communication between couples. In African 

settings, there is usually a rift in the agreement of the number and the gender of 

children to be borne by couples; while the man prefers a male child, the wife 

may prefer a female child instead. The number of children by the couple also 

determine the kinds of education those children will eventually have later. To 

this effect, in this research work, we want to study the Man’s proposed and ac-

tual number of children; the degree of association in the man’s decision using 

Quasi symmetry and Homogeneous Agreement model; how well some factors 

(Age, Religion, Family status, Occupation, Level of education and Ethnic 

group) influence the number of children; and to know the stopping rule for child 

bearing by the man. It was observed that 16.2% of the respondents had above 

the number of children proposed when they stopped bearing children, 21.5% of 

the respondents had below the number of children proposed when they stopped 
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while 62.3% of the respondents had the exact number of children proposed when 

they eventually stopped bearing children. We observed that Age and Religion 

influence the number of children. We also observed that the probability )( p  of 

having at least one male child is 0.8019 based on the available data. The chance 

of any newly wedded couple ever having a male child at any trial follows a 

geometric distribution 3,2,1,)1981.0)(8019.0()( 1   xxf x
. Quasi symmetry 

model has a better fit for agreement measure than Homogeneous agreement 

model.  

Keywords: agreement, association, child bearing, family settings, quasi 

symmetry, homogeneous agreement, geometric distribution 

 

Introduction 

Racing children is a big decision that requires couples to do some serious 

self-reflecting and communication. However, some couples do not exactly con-

template parenthood or they have wrong idea about racing children. Some mis-

takenly assumed that having a child will fix their relationship problems and 

bring them closer. Unfortunately, this usually backfires, because the new stress-

ors that come with having baby just amplify existing issues. 

Other couples decided to have kids because they think it’s simply the 

next step after matrimony. Many couples do not give themselves permission to 

thoughtfully explore whether or not having children is right for them because of 

fear of being different disappointing others or missing out on life experiences 

that couples with children experience. Relationship satisfaction also is critical. 

A couple needs to have a healthy satisfying relationship with a clear understand-

ing of, and strategies for working with the pitfalls in their relationship. 

The number of children actually born to a couple is determined by the 

capacity to bear children, the factors that determine desired family size, and 



7 
 

couple’s ability to achieve its aims. The number of children that a couple desires 

is also the outcome of complex calculations.  

 This study is designed to measure how true the proposed and actual num-

ber of children by the man is being validated using Quasi-symmetry and Homo-

geneous Agreement model. Specific objectives are to: compare the Man’s pro-

posed and actual number of children; measure the degree of association in the 

Man’s decision using Quasi symmetry and Homogeneous Agreement model; 

measure how well some factors (age, religion, family status, occupation, level 

of education and ethnic group) influence the number of children; and construct 

a probability model for a newly wedded couple ever having a male child. 

The data for this study is a primary data in which questionnaires were 

designed to collect information from the head of the family (Man). Section A of 

the questionnaire discussed the demographical variables; Section B discussed 

the proposed and actual numbers of children while the last Section discussed 

factors influencing their decision on the proposed and actual number of children. 

A total of 500 questionnaires were administered and 303 questionnaires were 

harvested.  

 

 Methodology 

For a given 𝐼 × 𝐼 contingency table, let 𝜋𝑖𝑗be the probability of cell 𝑖, 𝑗. 

Also let R1 and R2 be row and column labels, respectively. There exist Sym-

metry if  

𝜋𝑖𝑗 = 𝜋𝑗𝑖 , 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 𝑖 ≠ 𝑗. 

Let 𝑚𝑖𝑗 be the expected value of the cell 𝑖, 𝑗, such that 

𝑚𝑖𝑗 = 𝑛𝜋𝑖𝑗  

Then symmetry model as log-linear model is 

 

log(𝑚𝑖𝑗) = 𝜇 + 𝜆𝑖 + 𝜆𝑗 + 𝜆𝑖𝑗,    𝑖, 𝑗 = 1,2, … , 𝐼                    (1) 
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where 𝜆𝑖𝑗 = 𝜆𝑗𝑖 , ∑ 𝜆𝑖 = 0, 𝑎𝑛𝑑 ∑ 𝜆𝑖𝑗
𝐼
𝑖=I = 0 𝑓𝑜𝑟 𝑗 = 1,2, … , 𝐼𝐼

𝑖=𝐼 . There are no 

superscripts on the main or marginal effect terms because they are the same for 

rows and columns, that is, 2121 RR

j

RR

i    when 𝑖 = 𝑗. In other words, the row and 

column margins are equal, that is 𝑚𝑖+ = 𝑚+𝑖 (Tanner  & Young, 1985; 

Adejumo, 2005). 

For general loglinear model with Poisson as the underlying sampling 

distribution, the log-likelihood equation is given as 

 

𝑙 (𝑝(𝑚𝑖𝑗)) = 𝑙𝑜𝑔𝐿 (𝑝(𝑚𝑖𝑗))

= ∑ 𝑛𝑖𝑗log (𝑚𝑖𝑗

𝑖𝑗

) − ∑ 𝑚𝑖𝑗

𝑖𝑗

+ [∑ log (𝑛𝑖𝑗!)

𝑖𝑗

]

−1

 

 

 

(2) 

 

By incorporating symmetry model into Eq. 2, the likelihood equations 

are  

�̂�𝑖𝑗 + �̂�𝑗𝑖 = 𝑛𝑖𝑗 + 𝑛𝑗𝑖  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑗. 

 

The Kernel of the log-likelihood is  

 

∑ 𝑛𝑖𝑗log (𝑚𝑖𝑗)

𝑖𝑗

= 𝑛++𝜇

+ ∑(𝑛𝑖+ + 𝑛+𝑖)𝜆𝑖 + ∑ {
𝑛𝑖𝑗 + 𝑛𝑗𝑖

2
} 𝜆𝑖𝑗 

𝑖𝑗

                     

𝑖

 

 

 

(3) 

 

Maximizing this equation yields the following expected cell values 
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�̂�𝑖𝑗 = {

𝑛𝑖𝑗 + 𝑛𝑗𝑖

2
  𝑖𝑓 𝑖 ≠ 𝑗,

    𝑛𝑖𝑖          𝑖𝑓 𝑖 = 𝑗,
 

 

(4) 

 

The goodness of fit statistics, Pearson’s chi-square statistic 𝜒2 as well as 

the likelihood ratio statistic 𝐺2 shall be used to test the models (Yule, 1912; 

Wilks, 1935). 

The degrees of freedom for the residual (𝑑𝑓) is obtained as (number of 

cells) minus (number of non-redundant parameters) which is mathematically 

given as 
𝐼(𝐼−1)

2
. 

The two statistics have asymptotic 𝜒2 distribution with the above de-

grees of freedom under the null hypothesis that the symmetry model fits. 

 

Quasi symmetry model (QS) 

Quasi-symmetry model was introduced by Caussinus (1965) as an ex-

tension of symmetry model. There are a number of equivalent definitions, one 

given by McCullagh (1978) is  

 

𝜋𝑖𝑗 = 𝑐
𝛼𝑖

𝛼𝑗
∅𝑖𝑗 (5) 

 

with ∅𝑖𝑗 = ∅𝑗𝑖 , ∑ ∑ ∅𝑖𝑗 = 1,  𝛼𝑖 = 1 and c a constant to make∑ ∑ 𝜋𝑖𝑗 = 1. 

Quasi-symmetry model according to McCullagh (1978) is permutation invari-

ant, such that if an arbitrary permutation is applied to both rows and columns, 

the new cell probability 𝜋𝑖𝑗
´  are given by 

 

𝜋𝑖𝑗
′ = 𝑐

∝𝑖
′

∝𝑗
′ ∅𝑖𝑗

′  
(6) 
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Where ∝′ is a permutation of the elements of𝛼 𝑎𝑛𝑑 ∅′ is obtained from ∅ by 

permuting both rows and columns. 

The loglinear form of Quasi-symmetry model is given as  

 

log(𝑚𝑖𝑗) = 𝜇 + 𝜆𝑗
𝑅2  +  𝜆𝑖𝑗

𝑅1𝑅2  + 𝜆𝑖𝑗
𝑅1𝑅2 (7) 

 

where 𝜆𝑖
𝑅1 ≠ 𝜆𝑖

𝑅2  𝑎𝑛𝑑 𝜆𝑖𝑗
𝑅1𝑅2 =  𝜆𝑗𝑖

𝑅1𝑅2  𝑓𝑜𝑟 𝑖 ≠ 𝑗. 

QS can also be written as 

 

log(𝑚𝑖𝑗) = 𝜇 + 𝜆𝑖 + 𝜆𝑗 + 𝛼𝑗 + 𝜆𝑖𝑗 (8) 

 

where ∑ 𝜆𝑖𝑖 = 0, ∑ 𝜆𝑗𝑗 = 0, ∑ 𝛼𝑖𝑖 = 0, 𝑎𝑛𝑑 ∑ 𝜆𝑖𝑗𝑗 = 0 𝑓𝑜𝑟 𝑖 = 𝑗 = 1,2, … , 𝐼. 

This model is a special case to symmetry when 𝛼𝑗 = 0 for all j. 

This also treats the classification as nominal but it does not imply Mar-

ginal Homogeneity. This multiplicative form of QS model is 

 

𝜋𝑖𝑗 = 𝛼𝑖𝛽𝑗𝜏𝑖𝑗 (9) 

 

The likelihood equations for the model are 

�̂�𝑖+ =  𝑛𝑖+ 

�̂�+𝑗 =  𝑛+𝑗 

�̂�𝑖𝑗 +  �̂�𝑗𝑖 =  𝑛𝑖𝑗 + 𝑛𝑗𝑖 , 𝑓𝑜𝑟 𝑖 ≠ 𝑗 

�̂�𝑖𝑖 =  𝑛𝑖𝑖  𝑓𝑜𝑟 𝑖 = 1,2, … , 𝐼 

Given that 𝑢1 < 𝑢2 < ⋯ < 𝑢𝐼 and𝑣1 < 𝑣2 < ⋯ < 𝑣𝐼, which are the rows and 

columns scores 𝑢1and 𝑣1respectively, then the Ordinal quasi-symmetry model 

is given as  

 

log(𝑚𝑖𝑗) = 𝜇 + 𝜆𝑖 + 𝜆𝑗 + 𝛽𝑢𝑗 + 𝜆𝑖𝑗 (10) 
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Which is a special case to QS model (Eq. 7) for nominal scale data in which 

 

𝜆𝑗
𝑅1 − 𝜆𝑗

𝑅2 = 𝛽𝑢𝑗 

 

Eq. (9) indicated that QS is a cell-wise product of table of independence 

and the table of symmetry. In prospective studies, quasi-symmetry may be a 

useful model only if the response categories are on a nominal scale (Wilks, 

1935; McCullagh, 1982; Agresti, 1988; 1992; 1996; Adejumo, 2005).   

 

Homogeneous agreement model (HA) 

Homogeneous agreement model is similar to quasi independence model 

(QI), but the only difference is that, HA has a uniform agreement parameter 

𝛿𝐼(𝑖 = 𝑗) for all the categories and not separated as in QI.  

Homogeneous agreement model is given as 

 

log(𝑚𝑖𝑗) = 𝜇 + 𝜆𝑖
𝑅1 + 𝜆𝑗

𝑅2 + 𝛿𝐼(𝑖 = 𝑗) (11) 

 

For 𝐼(𝑖 = 𝑗) is an indicator function 

 

𝐼(𝑖 = 𝑗) = {
1 𝑖𝑓 𝑖 = 𝑗 
0 𝑖𝑓 𝑖 ≠ 𝑗

 
(12) 

 

and ∑ 𝜆𝑖𝑖 = 0, 𝑎𝑛𝑑 ∑ 𝜆𝑗𝑗 = 0 𝑓𝑜𝑟 𝑖 = 𝑗 = 1,2, … 𝐼. This model adds to the in-

dependence model, the parameter 𝛿 for cells along the diagonal. When 𝛿 > 0, 

more agreements regarding outcomes along the diagonal occur than would be 

expected under independence. That is for any given square table, 
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𝛿𝑖𝑗 = {
𝛿  𝑖𝑓 𝑖 = 𝑗
0  𝑖𝑓 𝑖 ≠ 𝑗

 
(13) 

 

The likelihood equations for HA are 

�̂�𝑖+ = 𝑛𝑖+ 

�̂�+𝑗 = 𝑛+𝑗 

�̂�𝑖𝑖 = 𝑛𝑖𝑖  𝑓𝑜𝑟 𝑖 = 1,2, … , 𝐼 

and �̂�𝑖𝑗  𝑓𝑜𝑟 𝑖 ≠ 𝑗 has to be obtained by iterative method. 

The residual degrees of freedom (𝑑𝑓) for HA is  (𝐼 − 2). 

HA is a special case to QS model (7) in which 𝜆𝑖𝑗
𝑅1𝑅2 = 0 𝑤ℎ𝑒𝑛 𝑖 ≠ 𝑗 

(Agresti, 1988; 1992; 1996; Adejumo, 2005; Adejumo et al., 2007; Ato et al., 

2011). 

 

Fitting of quasi symmetry (QS) and homogeneous agreement (HA) 

models 

Model fitting is the most important aspect of modern statistical analysis. 

Consequently there is a need to obtain the estimates for the parameters in the 

models. There are many methods of estimating these parameters, but we want 

to focus on the iterative methods; to be precise. Fisher scoring iterative is con-

sidered for the Quasi-symmetry (QS) and Homogeneous Agreement (HA) 

model based on generalized linear models (GLMs) techniques. 

Generalized linear model (GLM) procedure is used to fit these models. 

Poisson sampling is mostly assumed when fitting GLM to categorical data 

with 𝐼 > 2. The log likelihood function is 

 

𝑙(𝜃, ∅) = ∑ (𝑦𝑖𝑏(𝜃𝑖) − 𝑐(𝜃𝑖)(𝑦𝑖𝑏(𝜃𝑖) − 𝑐(𝜃𝑖) + 𝑑(𝑦𝑖, ∅))

𝑛

𝑖=1

+ 𝑑(𝑦𝑖, ∅))                                                               

 

(14) 
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where 𝜃 subsumes all the 𝜃𝑖. It could also be written as a function of 𝛽 and ∅ 

because (given the 𝑥𝑖), 𝛽 determines all the 𝜃𝑖. The main approach of maximiz-

ing 𝛽 is by maximizing Eq. (14). The fact that 𝐺(𝜇𝑖) = 𝑥𝑖𝛽 suggests a crude 

approximation estimate: regress 𝐺(𝑦𝑖) on 𝑥𝑖, perhaps modifying  𝑦𝑖 to avoid vi-

olating range restrictions (such as taking log (0)), and accounting for the differ-

ing variances of the observations (Adejumo, 2005; Adejumo et al., 2007). 

Fisher scoring iteration is the widely used technique for maximizing the GLM 

likelihood over 𝛽. The basic step is 

 

𝛽(𝑘+1) = 𝛽𝑘 − (𝐸 (
𝜕2𝑙

𝜕𝛽𝜕𝛽′
))−1

𝜕𝑙

𝜕𝛽
 

(15) 

 

which can also be written as, 

 

𝛽(𝑘+1) = 𝛽𝑘 + (−𝐸 (𝑙′′(𝛽(𝑘))))−1𝑙′(𝛽(𝑘))   (16) 

 

where𝑙 is the loglikelihood function for the entire sample 𝑦1, … , 𝑦𝑁 and the ex-

pectations are taken with 𝛽 = 𝛽(𝑘). This is the same as Newton step, except that 

Hessian of 𝑙 is replaced by its expectation. Fisher scoring simplifies to 

 

𝛽(𝑘+1) = (𝑋′𝑊𝑋)−1𝑋−1𝑊𝑍 (17) 

 

where W is a diagonal matrix with 

 

𝑊𝑖𝑖 = (𝐺′(𝜇𝑖)
2𝑏′′(𝜃𝑖))−1 (18) 

and 

 

𝑍𝑖 = (𝑌𝑖 − 𝜇𝑖)𝐺′(𝜇𝑖) + 𝑥𝑖𝛽 (19) 
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Both equations (18) and (19) use 𝛽 = 𝛽(𝑘) and then derive values of 𝜃𝑖
(𝑘)

 

and𝜇𝑖
(𝑘)

. The iteration (17) is known as “iteration reweighted least squares”, or 

IRLS. The weights 𝑊𝑖𝑖 have the usual interpretation as reciprocal of variances: 

𝑏′′(𝜃𝑖) is proportional to the variance of 𝑌𝑖 and the 𝐺′′(𝜇) factor in 𝑍𝑖 is squared 

in𝑊𝑖𝑖. Fisher scoring may also be written as 

 

𝛽(𝑘+1) = 𝛽(𝑘) + (𝑋′𝑊𝑋)−1𝑋′𝑊𝑍∗ (20) 

 

where 

𝑍𝑖
∗ = (𝑌𝑖 − 𝜇𝑖)𝐺′(𝜇𝑖). 

Due to the fact that testing symmetry model is an important preliminary analysis 

for other analyzes which require symmetric table, some of these models take 

their baseline model as symmetry model, 

 

log(𝑚𝑖𝑗) = 𝜇 + 𝜆𝑖 + 𝜆𝑗 + 𝜆𝑖𝑗 ,    𝑖, 𝑗 = 1,2, … , 𝐼 

 

where 𝜆𝑖𝑗 = 𝜆𝑗𝑖 , ∑ 𝜆𝑖
𝐼
𝑖=1 = 0, 𝑎𝑛𝑑 ∑ 𝜆𝑖𝑗

𝐼
𝑖=𝐼 = 0 𝑓𝑜𝑟 𝑗 = 1,2, … , 𝐼 and 𝜆𝑖 = 𝜆𝑗 

when 𝑖 = 𝑗. We need to describe the structure of variables involved in the mod-

ification of this model to obtain their estimates as stated in the model. To this 

effect, we need to create a variable that takes on a unique value for each diagonal 

cell and a unique value of each pair of cells. 

 In the case of quasi-symmetry model where 21 R

i

R

i   , but 2121 RR

ji

RR

ij  

for ji  the quasi-symmetry model has the variables 
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where
1 is the intercept. All these variables are treated as nominal variables 

(Adejumo, et al., 2007). 

 For Homogeneous Agreement model (HA) which adds to the independ-

ence model, the homogeneous indicator variable that represents the cells in 

which the rater agree, 𝛿𝐼(𝑖𝑗) is defined as 

𝛿𝐼(𝑖 = 𝑗) = {
𝛿 𝑖𝑓 𝑖 = 𝑗
0 𝑖𝑓 𝑖 ≠ 𝑗

 

and can be represented as a matrix of dummies variables, which is equivalent 

with the identity matrix. 

 





























1000

0

0

0

100

010

001

)(









 jiI  
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In this case )( jiI  is uniform for all the diagonal cells (Agresti, 

1988; 1996; Adejumo, 2005; Adejumo et al., 2007). 

 

Multinomial logistic regression 

Like ordinary regression, logistic regression extends to models with 

multiple explanatory variables. For instance, the model for 𝜋(𝑥) = 𝑃(𝑌 = 1) at 

values 𝑋 = (𝑥1, … , 𝑥𝑝) of p predictor is 𝑙𝑜𝑔𝑖𝑡[𝜋(𝑥)] = 𝛼 + 𝛽1𝑥1 + 𝛽2𝑥2 +

⋯ + 𝛽𝑝𝑥𝑝 

The alternative formula, directly specifying𝜋(𝑥), is 

 

𝜋(𝑥) =
exp (𝛼 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝)

1 + exp (𝛼 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝)
 

(21) 

 

The parameter 𝛽𝑖 refers to the effect of 𝑥𝑖 on the log odds that Y=1, controlling 

the other𝑥𝑗 (Agresti, 1996; Adejumo, 2002). 

The mechanics of ML estimation and model fitting for logistic regres-

sion are special cases of the GLM fitting. With n subjects, one treats the n binary 

responses as independent. Let 𝑥𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑝)  denote setting 𝑖 of values of p 

explanatory variables 𝑖 = 1, … , 𝑁. When explanatory variables are continuous, 

a different setting may occur for each subject, in which case N=n. The logistic 

regression model (21), regarding ∝ as a regression parameter with unit coeffi-

cient, is 

 

𝜋(𝑥𝑖) =
exp (∑ 𝛽𝑗

𝑝
𝑗=1 𝑥𝑖𝑗)

1 + exp (∑ 𝛽𝑗
𝑝
𝑗=1 𝑥𝑖𝑗)

 
(22) 

 

When more than one observation occurs at a fixed 𝑥𝑖 value, it is suffi-

cient to record the number of observations 𝑛𝑖 and the number of successes. We 

then let 𝑦𝑖 refer to this success count rather than to an individual binary response. 
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Then {𝑌1, … , 𝑌𝑁} are independent binomials with 𝐸(𝑌𝑖) = 𝑛𝑖𝜋(𝑥𝑖), where 𝑛1 +

⋯ + 𝑛𝑁 = 𝑛. Their joint probability mass function is proportional to the product 

of N binomial functions, 

∏ 𝜋

𝑁

𝑖=1

(𝑥𝑖)
𝑦𝑖[1 − 𝜋(𝑥𝑖)]𝑛1−𝑦𝑖 

= {∏ 𝑒𝑥𝑝

𝑁

𝑖=1

[log (
𝜋(𝑥𝑖)

1 − 𝜋(𝑥𝑖)
)𝑦𝑖]} {∏[1 − 𝜋(𝑥𝑖)]𝑛𝑖

𝑁

𝑖=1

} 

= {𝑒𝑥𝑝 [∑ yi

i

log
𝜋(𝑥𝑖)

1 − 𝜋(𝑥𝑖)
]} {∏[1 − 𝜋(𝑥𝑖)]𝑛𝑖

𝑁

𝑖=1

} 

 

For model (Eq. 22), the 𝑖𝑡ℎ logit is ∑ 𝛽𝑗𝑥𝑖𝑗𝑗 , so the exponential term in 

the last expression equals 𝑒𝑥𝑝[∑ 𝑦𝑖𝑖 (∑ 𝛽𝑗𝑥𝑖𝑗)𝑗 ] = 𝑒𝑥𝑝[∑ (∑ 𝑦𝑖𝑥𝑖𝑗)𝛽𝑗𝑖𝑗 ]. Also, 

since[1 − 𝜋(𝑥𝑖)] = [1 + exp (∑ 𝛽𝑗𝑗 𝑥𝑖𝑗)]−1 , the log likelihood equals 

 

𝐿(𝛽) = ∑(𝑦𝑖𝑥𝑖𝑗)𝛽𝑗 − ∑ 𝑛𝑖𝑙𝑜𝑔 [1 + 𝑒𝑥𝑝 (∑ 𝛽𝑗𝑥𝑖𝑗

𝑗

)]

𝑖

   

𝑖

 

 

 

(23) 

This depends on the binomial counts only through the sufficient statistics 

{∑ 𝑦𝑖𝑥𝑖𝑗 , 𝑗 = 1, … , 𝑝𝑖 }.  

The likelihood equations result from setting 
𝛿𝐿(𝛽)

𝛿𝛽
= 0. Since  

 

𝛿𝐿(𝛽)

𝛿𝛽𝑗
= ∑ 𝑦𝑖𝑥𝑖𝑗 − ∑ 𝑛𝑖𝑥𝑖𝑗

𝑒𝑥𝑝(∑ 𝛽𝑘𝑥𝑖𝑘𝑘 )

1 + 𝑒𝑥𝑝(∑ 𝛽𝑘𝑥𝑖𝑘𝑘 )
,

𝑖𝑖

 

 

the likelihood equations are 
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∑ 𝑦𝑖𝑥𝑖𝑗 − ∑ 𝑛𝑖�̂�𝑖𝑥𝑖𝑗 = 0,   𝑗 = 1, … , 𝑝 

𝑖𝑖

 
(24) 

 

where �̂�𝑖 = 𝑒𝑥𝑝(∑ �̂�𝑘𝑥𝑖𝑘𝑘 )/[1 + 𝑒𝑥𝑝(∑ �̂�𝑘𝑥𝑖𝑘𝑘 )] is the ML estimate of 𝜋(𝑥𝑖). 

We observed these equations as a special case of those for binomial GLMs (but 

there 𝑦𝑖is the proportion of success). The equations are nonlinear and require 

iterative solution (Adejumo, 2002) 

Let X denotes the 𝑁 × 𝑝 matrix of values of {𝑥𝑖𝑗}. The likelihood equa-

tions (24) have form  

 

𝑋′ = 𝑋′�̂� (25) 

 

where�̂�𝑖 = 𝑛𝑖�̂�𝑖. This equation illustrates a fundamental result: for GLMs with 

canonical link, the likelihood equations equate the sufficient statistics to the es-

timates of their expected values. 

The ML estimators �̂� have a large sample normal distribution with co-

variances matrix equal to the inverse of the information matrix. The observed 

information matrix has elements 

 

−
𝛿2𝐿(𝛽)

𝛿𝛽𝑎𝛿𝛽𝑏
= ∑

𝑥𝑖𝑎𝑥𝑖𝑏𝑛𝑖exp (∑ 𝛽𝑗𝑥𝑖𝑗)𝑗

[1 + exp (∑ 𝛽𝑗𝑗 𝑥𝑖𝑗)]2

𝑖

= ∑ 𝑥𝑖𝑎𝑥𝑖𝑏𝑛𝑖𝜋𝑖(1 − 𝜋𝑖)

𝑖

 
(26) 

 

This is not a function of{𝑦𝑖}, so that observed and expected information 

are identical. This happens for all GLMs that use canonical links. The estimated 

covariance matrix is the inverse of the matrix having elements (26), substituting 

�̂�. This has form 

 

𝑐𝑜�̂�(�̂�) = {𝑋′𝑑𝑖𝑎𝑔[𝑛𝑖�̂�𝑖(1 − �̂�𝑖)]𝑋}−1 (27) 
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where 𝑑𝑖𝑎𝑔[𝑛𝑖�̂�𝑖(1 − �̂�𝑖)] denotes the 𝑁 × 𝑁 diagonal matrix having 

[𝑛𝑖�̂�𝑖(1 − �̂�𝑖)] on the main diagonal. This is the special case of the GLM co-

variance matrix with estimated diagonal weight matrix �̂� having ele-

ments�̂�𝑖[𝑛𝑖�̂�𝑖(1 − �̂�𝑖)]. The square roots of the main diagonal elements of Eq. 

(27) are estimated standard errors of �̂�. (Adejumo et al.,2007) 

 

Newton-Raphson method applied to logistic regression 

 

Let   
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Here, )(t  approximation t for ̂ , is obtained from 
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(28) 

 

We use )(tu and )(tH with formula 
)(1)()()1( )( tttt uH    to obtain 

the next value
)1( t , which in this context is 

 

   )()1( )(1)()()()1( tt

i

t

ii

tt yXXndiagX  


 
(29) 

 

where
)()( t

ii

t

i n   . This is used to obtain )1( t , and so forth (Haberman, 1988; 

Adejumo, 2002; 2005). 
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Results and discussion 

Table 1. Proposed and actual number of children  

 Actual number of children (B) 

Proposed num-

ber of children 

(A) 

No 

child  

1 

child 

2 chil-

dren 

3 chil-

dren  

4 chil-

dren  

≥ 5 

children 

Total  

No child  17 1 7 2 4 4 35 

1 child 0 1 2 0 1 1 5 

2 children 0 3 24 9 1 1 38 

3 children  3 0 7 46 8 2 66 

4 children 3 1 1 18 59 6 88 

≥ 5 children 3 0 3 9 14 42 71 

Total  26 6 44 84 87 56 303 

 

It was observed from Table 1 that, 16.17% of the respondents had above 

the number of children proposed before marriage when they eventually got mar-

ried, 21.45% of the respondents had below the number of children proposed 

before marriage when they got married while 62.37% of the respondents had the 

exact number of children they proposed before marriage when they got married. 

R codes were written for the special loglinear models which are the 

Quasi-symmetry and Homogeneous Agreement models. Loglinear models have 

been used to model agreement in terms of components, such as chance agree-

ment and beyond chance agreement by displaying patterns of agreement among 

raters.1)  

 

Quasi symmetry model analysis 

Table 2. Parameter estimates under quasi-symmetry model 

 

Coefficients Estimate 

Value 

Std. Error z value Pr(>|z|) 

Intercept  

λ2 

λ3 

λ4 

λ5 

3.75395 

1.02942 

1.17514 

1.26821 

0.61339 

0.51041 

0.80193 

0.52496 

0.48848 

0.47304 

7.355 

1.284 

2.239 

2.596 

1.297 

1.91E-13*** 

0.199251 

0.025187* 

0.009425** 

0.194734 
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λ6 

λ56 

λ46 

λ36 

λ26 

λ16 

λ55 

λ45 

λ35 

λ25 

λ15 

λ14 

λ34 

λ24 

λ14 

λ33 

λ23 

λ13 

λ22 

λ12 

λ11 

-0.01628 

-1.79868 

-2.86861 

-3.80806 

-5.08454 

-2.49308 

-0.28980 

-2.18246 

-4.68714 

-4.59683 

-2.85419 

-1.19351 

-2.89726 

-23.20836 

-3.66062 

-1.75103 

-3.94259 

-3.25226 

-4.78337 

-5.08880 

-0.92073 

0.48653 

0.36277 

0.46718 

0.64633 

1.16408 

0.47625 

0.42016 

0.44042 

0.82448 

0.89814 

0.53564 

0.46297 

0.49990 

4034.64021 

0.60549 

0.55691 

0.71428 

0.59982 

1.27626 

1.18625 

0.56511 

-0.033 

-4.958 

-6.140 

-5.892 

-4.368 

-5.235 

-0.690 

-4.955 

-5.682 

-5.118 

-5.329 

-2.578 

-5.796 

-0.006 

-6.046 

-3.144 

-5.520 

-5.422 

-3.748 

-4.290 

-1.629 

0.973314 

7.12E-07*** 

8.24E-10*** 

3.82E-09*** 

1.25E-05*** 

1.65E-07*** 

0.490368 

7.22E-07*** 

1.31E-08*** 

3.09E-07*** 

9.90E-08*** 

0.009938** 

6.80E-09*** 

0.995410 

1.49E-09*** 

0.001666** 

3.40E-08*** 

5.89E-08*** 

0.00178*** 

1.79E-05*** 

0.103247 

Goodness of fit statistics (df=10, iteration=16) 

𝐺2 11.914 𝜒2 11.07335 AIC= 168.66 
Signif.codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

Fig. 1. Fitted quasi symmetry model against residual 
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` Homogeneous agreement model analysis 

 

Table 3. Parameter estimates under homogeneous agreement model 

Coefficients Estimate 

Value 

Std. Error z value Pr(>|z|) 

Intercept  

λa2 

λa3 

λa4 

λa5 

λa6 

λB2 

λB3 

λB4 

λB5 

λB6 

δ 

0.74403 

-0.95763 

0.61232 

1.14273 

0.95360 

0.49209 

-1.69272 

-0.18521 

0.06045 

0.46520 

0.49969 

1.95122 

0.22243 

0.46946 

0.27662 

0.25456 

0.25439 

0.26884 

0.49033 

0.26371 

0.24361 

0.23079 

0.23404 

0.12586 

3.345 

-2.040 

2.214 

4.489 

3.749 

1.830 

-3.452 

-0.702 

0.248 

2.016 

2.135 

15.503 

0.000823*** 

0.041364* 

0.026857* 

7.16E-06*** 

0.000178*** 

0.067186. 

0.000556*** 

0.482475 

0.804026 

0.043829* 

0.032751* 

<2E-16*** 

Goodness of fit statistics (df=24, iteration=5) 

𝐺2 52.324 𝜒2 48.07545 AIC = 181.07 
Signif.codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Fig. 2. Fitted homogeneous agreement model against residual 
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From the results in Tables 2 and 3, and Figures 1 and 2, based on the 

estimates of goodness of fit as well as graphical illustration of the residual, quasi 

symmetry model has the better fits for agreement measure than Homogeneous 

agreement model. Based on the two Figures, (residual versus expected cell 

counts), we observed that the fitted points are clustered around (close to) zero, 

it means the model is good. Also using the Akaike's Information Criterion (AIC) 

quasi symmetry model (QS) has its AIC to be 168.66, while Homogeneous 

Agreement model has its AIC to be 181.07, so the model with least AIC is better 

model that fits for agreement of the Man’s proposed and actual number of chil-

dren. 

 

Table 4. Kappa symmetric measures 

 Value Std. Error Approx. T Sig. 

Kappa  .520 .035 17.829 <.0001 

 

The estimate for kappa statistic shows the strength of agreement. From 

Table 4, the kappa value which is 0.520 indicates that there is a strong agreement 

in the proposed and actual number of children by the man.  

The third objective of this study will measure the effect of the independ-

ent variables (Age, Religion, Family status, Occupation, Level of education and 

Ethnic group) on the dependent variable (Actual number of children by the 

Man). 

 

Table 5. Multinomial logistic regression; model fitting information 

Model  Model fitting criteria Likelihood Ratio Tests 

-2 Log Likelihood  Chi-

square 

DF Sig. 

Intercept 

Final  

550.864 

521.914 

 

28.949 

 

12 

 

.004 
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In the analysis from Table 5, the probability of the model chi-square 

(28.949) was 0.004, less than the level of significance of 0.05. This indicates the 

existence of a relationship between the independent variables (Age, Religion, 

Family status, Occupation, Level of education and Ethnic group) and the de-

pendent variable (Actual number of children by the Man), the null hypothesis 

that there was no difference between the model without independent variables 

and the model with independent variables was rejected. 

 

Table 6. Multinomial logistic regression; likelihood ratio tests 

Effect  Model Fitting Crite-

ria 

Likelihood Ratio Tests 

-2 Log Likelihood 

of reduced model 

Chi-square DF Sig. 

Intercept 

Age 

Family back-

ground 

Educational status 

Religion 

Ethnic group 

Occupation  

527.832 

536.694 

523.393 

523.901 

529.493 

523.871 

523.230 

5.918 

14.779 

1.479 

1.987 

7.579 

1.956 

1.315 

2 

2 

2 

2 

2 

2 

2 

.052 

.001 

.477 

.370 

.023 

.376 

.518 

 

Table 6 shows the relative effects of the independent variables (explan-

atory variables) to the dependent variable (response variable). It could be de-

duced that while Age and Religion were significant, Family background, Edu-

cational status, Ethnic group and Occupation were not significant. 

 

Table 7. Parameter estimates of the multinomial logistic regression 

 
Actual number of children B Std. Error Wald DF Sig. Exp(B) 
Less than 

3 children 
Intercept 

Age 

Family background 

Education status 

Religion 

Ethnic group 

.148 

.062 

-.240 

.071 

.173 

-.299 

.971 

.164 

.337 

.138 

.310 

.277 

.023 

.145 

.508 

.267 

.311 

1.165 

1 

1 

1 

1 

1 

1 

.879 

.703 

.476 

.605 

.577 

.280 

 

1.064 

.786 

1.074 

1.189 

.742 
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Occupation  -.067 .084 .639 1 .424 .935 
Greater 

than 3 

children  

Intercept 

Age 

Family background 

Education status 

Religion 

Ethnic group 

Occupation  

-1.654 

.472 

.131 

-.096 

.676 

.031 

.020 

.853 

.143 

.290 

.119 

.268 

.213 

.072 

3.756 

10.860 

.206 

.656 

6.356 

.021 

.077 

1 

1 

1 

1 

1 

1 

1 

.053 

.001 

.650 

.418 

.012 

.884 

.781 

 

1.603 

1.141 

.908 

1.966 

1.032 

1.020 

 

The reference category is: mumber of child equals three 

From Table 7, the independent variables age and religion are significant 

in distinguishing between men whose actual number of children is greater than 

3 and those whose actual number of children equals three. 

For each unit increase in age, the odds of a man having more than 3 

children increases by 60.3% (1.603-1), for each unit increase in religion, the 

odds of a man having more than 3 children increases by 96.6% (1.966-1). 

The fourth objective of this study measures a probability model for a 

newly wedded couple ever having a baby boy. From the data, the probability

)( p  of having at least one male child is 0.8019. The chance of a newly wedded 

couple ever having a male child at any trial follows a Geometric Probability 

Distribution. 

3,2,1,)1981.0)(8019.0()( 1   xxf x
 

 

Table 8. Various probabilities of having a male child 

x  1)1981.0)(8019.0()(  xxf  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0.8019 

0.1589 

0.03146 

0.006234 

0.001234 

0.0002446 

0.00004846 

0.00000960 

0.00000190 

0.000000376 
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From Table 8, it could be deduced that as the number of trial increases, 

the probability of having at least a male child decreases reason being that repro-

duction power by the man reduces on the average as age increases and hence 

makes the couples sexual intimacy to lack luster. 

 

Conclusion 

Based on the research so far, 16.17% of the respondents had above the 

number of children proposed, 21.45% of the respondents had below and 62.37% 

had exact number of children they proposed before marriage. We observe that 

Quasi symmetry is better than the Homogeneous Agreement model in describ-

ing the pattern of Association that exists between the proposed and actual num-

ber of children by the man. 

We also observed that the estimate of the probability of having at least 

one boy is 0.8019 based on the data collected and that age and religion of the 

man influenced the actual number of children in such family. 

 

NOTES 

1. http://www.gbif.org/resource/81287 
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