
World of Computer Science and Information Technology Journal (WCSIT)

ISSN: 2221-0741

Vol. 7, No. 2, 10-19, 2017

10

A Practical Approach for Detecting Logical Error in

Object Oriented Environment

Ghassan Samara

Internet Technology Department

Zarqa University, Jordan.

Abstract— A programming language is a formally constructed language designed to communicate instructions to a machine,

particularly a computer. Programming languages can be used to create programs to control the behavior of a machine or to express

algorithms. Most programs that are written by programmers are often compiled correctly with no syntax or semantic errors. However,

some other errors appear after the execution of the program (logical error).

Logical Errors (LE) are errors that remain after all syntax errors have been removed. Usually, the compiler does not detect LE, so the

produced results are different from what the programmer is expecting. For this reason, discovering and fixing the logical error is very

hard and proposes a good topic for research and practice.

Some LE are resulted from the misuse of classes' objects, and in Software Development Life Cycle (SDLC), it is considered that the

software with LE is low-quality software with high maintenance cost.

In this paper, an object-oriented environment that allows the programmer to detect and discover LE to avoid it. This environment will

be called Object Behavior Environment (OBEnvironment) will enforce the correct use of objects according to their predefined

behaviors by using tools like Xceed Component (that appeal .Net windows form developers for building better applications), Alsing

Component (that provides an area to programmer that allows writing correct syntax code by C# language) and, Mind Fusion

Component (that provides an area to programmer that allows drawing State Diagrams to show object state).

Keywords- Object Oriented; Logical Errors; Object Behavior; Programming Errors.

I. INTRODUCTION

LE is one of the major problems in software testing that
appears in the last stages of the SDLC. So, a tool is needed to
improve the compilers of the Object Oriented (OO) languages,
and this could be done by detecting logical errors before the
executing the software product.

In this research, a C# compiler will be improved to detect
these errors before compilation by controlling and tracing the
object behavior of the objects in the application.

There are some weaknesses in the OO programming
languages (for example C#) that it cannot detect LE before the
execution time, for example, the misuse of objects in the
application.

So finding these errors and correcting them will consume
long time and high maintenance cost, so there should be a
mechanism or tool to avoid this kind of errors.

1.1 The Object Behavior Environment

The OBEnvironment uses source code (OO Application)
and objects behaviors definitions for detecting logical errors;
object behavior error is the errors related to the misuse of
objects in the application.

It is assumed that the code used by the programmer is free
of any syntax or semantic errors from existing files and draw
a correct behavior model (State Diagram) of each used class
according to their application.

Depending on the case type different State diagram for
same source code could be drawn.

1.2 Object-Oriented Programming

Object-oriented programming group's behavior
(operations on data) and state (data) into modular units called
objects and enables the programmer to combine objects into
structured networks to form a complete program. Moreover,
programmers can create relationships between one object and
another [1].

One of the principal advantages of object-oriented
programming techniques over procedural programming
techniques is that it enables programmers to create modules
that with no need to be changed when a new type of object is
added. A programmer can simply create a new object that
inherits many of its features from existing objects [2], this
makes object-oriented programs easier to modify and
increases reusability, modularization and software simplicity
[3].

WCSIT 7 (3), 10 -19, 2017

11

1.3 Programming Errors

Programmers do different types of errors when writing a
program; even the most experienced programmers make
mistakes. Knowing how to debug an application and to find
errors is an important part of programming, there are three
types of errors will be shown in the following:

 1.3.1 Compilation Errors

Compilation errors, also known as compiler errors. When
a syntax error occurred in the code, the compiler will detect
the error and the program and the compilation will stop. At
this point, the program will not be executed until the error is
fixed [4].

For example, forgetting a semi-colon at the end of a
statement, missing necessary punctuation, or try to use an
(End If) statement without first using an (If statement). These
errors can be detected by the compiler [4].

1.3.2 Run Time Errors

 Run-time errors are errors that occur while a program is

running. This typically occurs when the program attempts an

operation that is impossible to execute, but this kind of errors

cannot be detected until the running time.

An example of this is division by zero, or infinite loop [4].

1.3.3 Logic Errors

Logic errors are those errors that remain after all syntax
errors have been removed. Usually, the compiler doesn’t
detect logic errors, so the programmer discovers the result of
the program doesn’t match the expected result. For this reason,
finding this kind of errors is very hard.

The proposed project will provide an easy and strong
environment that will help in detecting logical errors. These
logical errors relate to misuse of objects. The proposed
solution should be used after the implementation phase of
developing any software product.

OBEnvironment will enforce the correct use of objects
according to their defined behaviors.

To make the programming process easier, find errors that
can't be detected.

To the Detect Object Behavior an easy to use and learn
environment was created.

The Environment contains two tabs, in the first tab "liasing
package" component is used which allows writing syntax code
using c# language. In the second tab "MindFusion"
component is used. It provides a panel for the programmer to
draw State Diagram to show object state(s).

The interface used the .Net environment to produce
familiar menus and commands like file, edit, trace and so on.

The interface enables the programmer to choose tracing
object by object which can detect object behavior error only

on the selected object, or tracing all objects which can detect
all object behavior errors, and this gives more flexibility to the
programmers.

II. THE PROPOSED SYSTEM

To detect the object behavior an easy to use learning
environment was created, the proposed environment contains
two tabs, in the first tab a component called Aliasing package
was used. Which provides an area to the programmer to write
c# language code, and it cannot detect object behavior error.

In the second tab another component is used which is
called MindFusion. This component provides an area to draw
State Diagram to show object state(s).

The interface used in the proposed environment contains a
.Net interface, such as file, edit, trace and so on.

2.1 Experimental Setup

2.1.1 Programming Languages Used:

2.1.1.1 Net Environment

- The .Net Framework is a completely new application
development platform, several .Net products and various
applications from Microsoft based on the .Net Framework,
including a new version of exchange and SQL server, which
are Extensible Markup Language (XML) enabled and
integrated into the .Net platform.

- Several .Net services provided by Microsoft for use in
developing applications running under the.Net Framework
[8].

2.1.1.2 The C# language

 The C# language is disarming simplicity with only
about 80 keywords and a dozen built-in data types, but C# is
highly expressive when it comes to implementing modern
programming concepts. C# includes all the support for
structured, component-based, object-oriented programming
that one expects of a modern language built on the shoulders
of C++ and Java.

 Defining and working with classes is the heart of any
object-oriented language. Classes define new types, allowing
the programmer to extend the language to better model of the
problem being solved. C# contains keywords for declaring
new classes and their methods and properties, and for
implementing encapsulation, inheritance, and polymorphism,
the three pillars of object-oriented programming [9 and 10].

Why C# .Net?

C#. NET is robust, easy to use solution for developing
complex project. Based on C, C++ and Java, programs that
can be accessed by any one, allows communicating with
different computer language, integrated design environment,
makes programming and debugging fast and easy, rapid
application development, and produce small size projects [9]
[10].

WCSIT 7 (3), 10 -19, 2017

12

2.1.1.3 The Rational Rose Tools

The Rational Rose was employed to draw an easy to read
and understand UML diagrams. The rational rose is used for
Use Case diagrams, Class diagrams, Sequence diagrams, and
Activity diagrams.

2.2 OBEnvironment Requirement

Problem Specification

Stages to implement the OBEnvironment:

1-First Stage: Open an existing source code.

2-Second Stage: Drawing state diagram for the class or
open an existing one and modify it.

3-Third Stage: Reorganize source code in a pattern for
tracing purposes.

4-Fourth Stage: Transform of the state diagram into
specification.

5-Fifth Stage: Compare between the application and the
specification to check whether if the object were correctly
used in the application to avoid some object behavior errors.

Detailed Specification

1. Open:

The programmer may open an existing source code and
existing state diagram and edit it.

2. 2. Save:

The programmer can save the project (source code + state
diagram).

3. Exit:

The programmer can close the project at any time with or
without saving.

1. First Stage

1. Entering the project: The programmer can open an
existing source code from a file.

2. Editing source code: The OBEnvironment allows the
programmer to edit the source code. In this stage, there is a
text area in the OBEnvironment.

2. Second Stage

Drawing state diagram: The OBEnvironment provides a
graphical editor for the programmer to draw a state diagram
(states and transactions between them) for the class or open
existing one and modify it.

For example, see figure 1.

Figure 1: State diagram example.

Figure 2: State diagram example.

3. Third Stage

 Reorganize code: The OBEnvironment reorganizes
source code into a pattern to extract the objects information
for the comparison purposes.

4. Fourth Stage

Transformation: The OBEnvironment transforms the state
diagram into a specification to extract the object behavior for
comparing purposes. For example, see figure 3.

Figure 3: Transforming state diagram into specification Example.

5. Fifth Stage

Tracing: The OBEnvironment compare the specification
with the use of objects in the application to detect some logical
errors "object oriented violation".

WCSIT 7 (3), 10 -19, 2017

13

2.3 Object Behavior Environment Analysis

2.3.1 Interface Objects

The OBEnvironment involves the following interface
objects:

- Interface object “Open Project”: This interface allows the
programmer to interact with the system to open source code
form existing file and edit it.

- Interface object “Drawing”: This interface allows the
programmer to draw a state diagram for a class to help the
tracing process.

- Interface Object “Tracing “: This interface allows the
programmer to transform state diagram into specification and
use it to trace the object behavior.

- Interface Object “Showing Report “: This interface is
presented to show a report to the programmer to help in
locating the error if existed.

These interfaces are shown in the figure 4 below:

Figure 4: Interface Objects.

2.3.2 Entity Objects

 OBEnvironment involves the following entity objects:

 - Source code files: This entity object stores the
information about the project’s source code files.

-Draw: This entity object allows the programmer to store
and retrieve the information about the state diagrams.

- Transformation: This entity allows the OBEnvironment
to store and retrieve the needed specification for comparison
purposes.

- Trace: This entity saves the result of tracing the object
behavior to show it as a report to the programmer.

Figure 5 shows the four entities:

Figure 5: Entity Objects.

2.3.3 Control Objects

The OBEnvironment involves the following control
objects:

- Source Code handler: This control object handles the
programmer request to open a source code from an existing
file.

- Drawer: This control object handles the programmer
request to draw a state diagram.

- Transformer: This control object handles the
programmers request in transforming the state diagram into
specification.

- Tracer: This control object handles the programmers
request in tracing the object behavior.

 Figure 6 shows the four control objects:

Figure 6: Control Objects.

The analysis model for the OBEnvironment is depicted in
the figure 7:

Figure 7: Analysis model for OBEnvironment.

2.4 Subsystems

Identify each subsystem individually:

2.4.1 Source code files

This subsystem starts when a programmer open a source
code. The subsystem is shown in the figure 8:

WCSIT 7 (3), 10 -19, 2017

14

Figure 8: Source code files subsystem.

2.4.2 Draw

This subsystem starts when a programmer draws a state
diagram. This subsystem is shown in the figure 9:

Figure 9: Draw subsystem.

2.4.3 Transformation

This subsystem starts when a programmer wants to
transform the state diagram into specification. The subsystem
is shown in the figure 10:

Figure 10: Transformation subsystem.

2.4.4 Tracing

 This subsystem starts when a programmer traces the
object behavior.

The subsystem is shown in the figure 11:

Figure 11: Tracing subsystem.

2.5 Object Behavior Environment Design

In the design model, we will adapt and refine the analysis
model; the adaptation will be made to the current
implementation environment.

2.5.1 Interaction diagrams

The system is ready to describe how the different objects
are interacting with each other in the Use-cases. We will draw
an interaction diagrams (Sequence diagrams) for the main use
cases.

 The sequence diagram that describes the flow of events
for "Open Project" use case is shown in figure 12.

Figure 12: sequence diagram for open project use case.

 The sequence diagram that describes the flow of events for

"Draw" use case is shown in figure 13.

Figure 13: sequence diagram for draw use case.

 The sequence diagram that describes the flow of events for

"Transformation" use case is shown in the figure 14.

WCSIT 7 (3), 10 -19, 2017

15

Figure 14: sequence diagram for Transformation use case.

The sequence diagram that describes the flow of events for
the whole project is shown in the figure 15.

Figure 15: sequence diagram for whole project.

2.5.2 Object Behavior "Activity Diagram"

 The object behavior is described to provide a simplified
description to increase the understanding of the block.

- Object behavior for the whole project is shown in figure
16:

Figure 16: Object behavior for the whole Project.

- Object behaviour for creating or opening project is shown
in figure 17:

Open

OBEnvironment

Write Source

Code

Draw State

Diagrame

Trace

Compare

FMS

Compare

between using

object in main

method and

array of states

diagram

If exist conflict

state

Show Message that

contain Error ReportShow Message that

contain There is NO error

 Error Report:

objectname ,object's

function name,and

currunt position

yesNo

WCSIT 7 (3), 10 -19, 2017

16

Figure 17: Object behaviour for creating or opening project.

- Object behaviour for Drawing is shown in figure 18:

Figure 18: Object behaviour for drawing.

- Object behaviour for Tracing is shown in figure 19:

Figure 19: Object behavior for Tracing.

The interfaces objects that are implemented in the
OBEnvironment.

 2.6 Testing Model

Testing is an activity that aims to investigate the
correctness of the system being developed. The testing model
includes the following:

• Verification: Checks if the system is built correctly.

• Validation: Checks if the system being built is the right
one.

This process is achieved using different levels of testing:

• Unit Testing: Where one unit is tested at a time, in the
proposed system the unit is a class.

• Integration Testing: Where we check if the units work
together correctly.

• System Testing: Where we check if the whole system
performs its intended task as required in the requirements
document. [11].

Figure 20 shows the system GUI.

Figure 20: Base Interface.

2.6.1 Unit Testing

Since we are using an Object-Oriented Approach, in other
words, Classes then we are concerned with several types of
unit testing. Such as:

2.6.1.1 Specification Testing (Black Box Testing)

The purpose of this type of testing is to test whether the
internal building was done successfully. It would be better if
all the possible combinations of parameters, variables, and
paths in the call are covered, but this is almost always
impossible since there are an enormous number of test cases.
[11].

2.6.1.2 Structural Testing (White Box Testing)

The purpose of structural testing is to test the internal
structure is correct.

Structural testing is sometimes called program based
testing, white box testing or glass box testing; this means that
the programmer uses his knowledge of how the unit is
implemented when it is tested. [11].

In the proposed system, an example will be taken to
demonstrate the available test paths that may be tested in one

WCSIT 7 (3), 10 -19, 2017

17

single class to ensure that all class have been tested
individually:

*Class Reorganize_Code: The OBEnvironment
reorganize the source code into a standard form for our
purposes to help in getting information about the objects. The
programmer cannot trace the object behaviour unless the
OBEnvironment reorganizes the code, so this is a base class
for our system.

To test the OBEnvironment class, Expresso Software (ref)
was used to test it step by step. Expresso Software helped to
check if the class returns the right value.

This class contains many methods that were tested
individually, it arranges the source code (class and the
application that uses) and used to get class, main block with it
is index, data type of the variables from the main block, to
check if the line is a Function or not, and so on.

*Class function & object: These two classes contain many
methods that were tested to return important data from the
source code. For example, class Function returns the function
name, type from the signature; parameters passed to the
method. Class object is used to set or get the number of
methods used by the object in the main block, to store data of
the methods used by the object in the main, return the name,
the line of method with the specified ID function. Then those
two classes are used to prepare data for tracing process.

*Class MainInformation & ClassInformation: as
mentioned before those two classes were used to store and
return a specific data for the Trace class. The Transformation
and MainInformation class were created to store all variables,
all objects name, and all object’s functions defined in the Main
Block.

*Class Information is used to store all attributes, and all
the functions defined in the Class Block, and Get attribute
value of existing name, or Return attribute name. This class
were tested many times to make sure that it returns the right
values.

 *Class Transformation: This is one of the most
important classes in the proposed system because was used to
transform the state diagram into specification. This class
tested many different diagrams using jagged array to store
object in source code.

*Trace class: This class use the specification to trace the
object behaviour, this class is initiated by the programmer
which orders the OBEnvironment to trace the Object
Behaviour. The OBEnvironment compares the specification
with the use of the object in the application, then shows the
information about the Objects Behaviour that resulted from
the tracing (logical error if existed).

The trace to the Object Behaviour, to check if the condition
is true or not, the action of each transition were applied, and
compare all object or compare one object that the programmer
chose this met.

*Class OBEnvironment: This class contains the interfaces
objects that are implemented in the OBEnvironment: Open

Project, Drawing, and Trace. Any button in this environment
has been tested many times to work in a correct way.

2.6.2 Integration Testing

It decides whether the components of the system are
working together properly, this includes testing of blocks,
service packages, use cases, subsystems, and the entire
system. All the previous classes were tested together several
times.

It should be noted that testing is a time-consuming phase
of development [11].

2.6.3 System Testing

This process is divided into the following sections:

• Operation Tests.

• Full-Scale Tests.

• Tests of user documentation.

These activities were performed all along with the
development of the system [12].

III. CONCLUSION & FUTURE WORK

3.1. Conclusion

Logical errors are an important topic for research that
concerns many software engineers and software companies
because of the high maintenance costs, effort and time. A lot
of the research papers were written about this topic but there
weren’t any products produced that deals with the logical
errors problem. So, this paper produced an environment that
deals with some logical errors that are resulted from the
misuse of the objects in the application.

This paper managed to develop an environment that can
detect the logical errors that are related to the misuse of the
objects in the application this is done by tracing the behaviour
of the objects and compare them to some state diagrams of the
object class. Here it is assumed that the state chart is the
correct object behaviour despite that it might be wrong.

3.2. Future Work

The proposed system can be improved to produce a new
environment that can deal with all kinds of logical errors for
OO applications. This would lead to reduce the maintenance
cost and increase the software quality.

Create and develop an Object Behaviour Environment that
can deal with a dynamic data entry and can take guard
conditions from any type and support any object-oriented
language.

ACKNOWLEDGMENT

This research is funded by the Deanship of Research and
Graduate Studies in Zarqa University /Jordan.

WCSIT 7 (3), 10 -19, 2017

18

REFERENCES

[1] http://objc.toodarkpark.net/oop.html. Visited on 2/2/2017

[2]
http://www.webopedia.com/TERM/O/object_oriented_programming_
OOP.html. Visited on 2/2/2017

[3] D. Clark, An Introduction to Object-Oriented Programming with Visual
Basic .NET, Apress, 1st edition 2002.

[4]http://www.daniweb.com/forums/thread2019.html. Visited on 2/2/2017

[5] http:/book/Detection of Logical Coupling Based on Product Release
History.htm.

[6] http:/book/Modeling the Effect of Technology Trends on the Soft Error
Rate of Combinational Logic.htm.

[7] http://www.computerhope.com.htm. Visited on 2/2/2017

[8] Deitel, Microsoft, Programming with C#, Prentice Hall, 2 edition 2005.

[9] G. Christian, Beginning C# 2008: From Novice to Professional, Apress,
2nd edition 2008.

[10] T. Andrew, Pro C# 2008 and the.NET 3.5 Platform, Apress, 4th
edition2008.

[11] B. Bernd & Allen H. Dutiot , Object-Oriented Software Engineering,
Prentice Hall USA , 2end 2004.

APPENDIX

GUI for the proposed system is shown in the following
figures.

Create or add project by several methods including:

1) Click the File menu and choose New Project, this allows
the programmer to enter a new project in the screen above.

2) Click the File menu and choose Open Project, this
allows the programmer to open previously saved project in the
screen above.

Create or add source code by several methods including:

1) Click the File menu and choose new source code, this
allows the programmer to enter new project in the screen
above

2) Click the File menu and choose open project, this allow
you to enter new source code in the screen above

3) Click the source code tab appear in the screen above

Create or add state chart diagram by several methods
including

1) Click the File menu and choose new statechart diagram
this allows the programmer to enter new project in the screen
above

2) Click the File menu and choose open project this allows
the programmer to enter open previously state statechart
diagram in the screen above

You can trace object by object by several methods
including

1) Click the list of trace and choose trace object by object
as described in the screen below

2) Click the trace object by object button in tool bar appear
in the screen below

Here the programmer can choose the object to trace.

Figure 21: Open source code.

Figure 22: Open state chart diagram.

Figure 23: Trace interface object.

http://objc.toodarkpark.net/oop.html
http://www.webopedia.com/TERM/O/object_oriented_programming_OOP.html
http://www.webopedia.com/TERM/O/object_oriented_programming_OOP.html
http://www.daniweb.com/forums/thread2019.html
http://www.computerhope.com.htm/

WCSIT 7 (3), 10 -19, 2017

19

Figure 24: chose object to trace.

Figure 25: show error message.

Figure 26: show where error placed.

