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Abstract 

Co-registration of point clouds of partially scanned objects is the first step of the 3D modeling workflow. The 

aim of co-registration is to merge the overlapping point clouds by estimating the spatial transformation 

parameters. In computer vision and photogrammetry domain one of the most popular methods is the ICP 

(Iterative Closest Point) algorithm and its variants. There exist the 3D Least Squares (LS) matching methods as 

well (Gruen and Akca, 2005). The co-registration methods commonly use the least squares (LS) estimation 

method in which the unknown transformation parameters of the (floating) search surface is functionally related 

to the observation of the (fixed) template surface. Here, the stochastic properties of the search surfaces are 

usually omitted. This omission is expected to be minor and does not disturb the solution vector significantly. 

However, the a posteriori covariance matrix will be affected by the neglected uncertainty of the function values 

of the search surface. . This causes deterioration in the realistic precision estimates. In order to overcome this 

limitation, we propose a method where the stochastic properties of both the observations and the parameters are 

considered under an errors-in-variables (EIV) model. The experiments have been carried out using diverse 

laser scanning data sets and the results of EIV with the ICP and the conventional LS matching methods have 

been compared. 
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Introduction 

3D object modeling plays an important role for 

many applications from reverse engineering to 

creating the real-world models for virtual 

reality, architecture or deformation analysis. In 

the last decade, laser scanners had an utmost 

importance for 3D object modeling due to their 

ability of providing reliable 3D data very fast 

and directly. Since the range scanners are line-

of-sight instruments, in many cases an object 

has to be scanned from different standpoints to 

be able to cover the whole object. As a result, 

separate point clouds, which are in their own 

local co-ordinate systems uniquely, are 

obtained. In order to form a 3D model, these 

point clouds have to be merged in one co-

ordinate system. This process is called 

alignment or registration. Various methods 

were proposed and the studies in this area are 

still in progress especially in computer vision 

discipline including the most popular Iterative 

Closest Point (ICP) algorithm and its variants. 

Since the introduction of ICP by Chen and 

Medioni, (1991) and Besl and McKay, (1992), 

many variants have been introduced on the 

basic ICP concept. A detailed review of the ICP 

variants can be found at Akca, (2010) and 

Rusinkiewicz, (2001). Despite the popularity of 

the ICP, there are some disadvantageous 

aspects of it in terms of accuracy assesment of 

transformation parameters. ICP based 

algorithms generally uses closed-form solutions 

for the estimation of transformation parameters. 

The closed-form solutions cannot fully consider 

the statistical accuracy assesment of the 

estimated parameters. One another powerfull 

and adaptive method for the registration 

problem is the 3D least squares surface 

matching proposed by  Gruen and Akca, in 

(2005). The method is the extension and 

adaptation of mathematical model of Least 

Squares 2D image matching for the 3D surface 

matching problem. The transformation 

parameters of the search surfaces are estimated 

with respect to a template surface. The solution 

is achieved when the sum of the squares of the 

3D spatial (Euclidean) distances between the 
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surfaces are minimized. The parameter 

estimation is achieved using the Generalized 

Gauss-Markov model. Akca, (2010). At this 

model, the points on the template surface are 

considered as observations, contaminated by 

random errors, while the search surface points 

are assumed as error-free. 

y +e_y=t+R*x  (1) 

With the assumptions 

e_y~N(0,σ_0^2 〖P_y〗^(-1))      (2) 

where y is the template point, x is the search 

point, ey is the true error vector for template 

points, t is the translation vector, R is the 

rotation matrix, and P is the weight matrix. 

Here, and also in the ICP methods, the 

stochastic properties of the search surfaces are 

usually omitted. This omission is expected to 

be minor and does not disturb the solution 

vector significantly. However, the a posteriori 

covariance matrix will be affected by the 

neglected uncertainty of the function values of 

x. This causes deterioration in the realistic

precision estimates. More details on this issue 

can be found in Gruen, (1985), Maas, (2002), 

Gruen and Akca, (2005), Kraus et al., (2006), 

and Akca, (2010). These algorithms consider 

the noise as coming from one measurement 

only, but in fact both surface measurements are 

corrupted by noise. To be able to overcome this 

undesirable situation and obtain more realistic 

precision estimation values, another approach 

which takes the stochastic properties of the 

elements of design matrix into consideration 

should be applied. The problem can be solved 

by using a model which is called in the 

literature as Errors-in-Variables model or the 

total least squares (TLS). Markovsky and 

Huffel, (2007) outlines the different solution 

methods and application areas of EIV model 

very detailed. Ramos and Verriest, (1997) 

proposed to use the total least squares approach 

for the registration of m-D data. In their study, 

they use a mixed solution which is the 

combination of Least squares and Total Least 

squares methods for the registration of 2D 

medical images. However, they do not give any 

information about the precision of the 

transformation parameters. Akyılmaz, (2007) 

uses Total Least Squares method for coordinate 

transformation in Geodetic applications. Since 

the author uses a closed-form solution method 

in this study, there is not any information about 

precision of estimated parameters as well. A 

mathematical model is given by Neitzel, (2007) 

where an iterative Gauss-Helmert type of 

adjustment model with the linearized condition 

equations is adopted. However, in this method 

the size of the normal equations to be solved 

increases dramatically depending on the 

number of conjugate points, since each point 

introduces three more Lagrange multipliers into 

the normal equations. Thus, the larger the 

number of conjugate points, the greater the 

normal equations to be solved.  

For an optimal solution of the so-called EIV 

problem, we propose a modified iterative 

Gauss-Helmert type of adjustment model. In 

this model, the rotation matrix R is represented 

in terms of unit quaternions q= [q0  q1  q2  q3]. 

Moreover, the dimension of the normal 

equations to be solved is dramatically reduced 

to the number of unknown transformation 

parameters which is six for the rigid-body 

transformation problem. The mathematical 

model has been implemented in MATLAB. 

This study mainly aims at comparing the 

proposed model with LS matching method in 

terms of the precision of estimated parameters 

by using diverse laser scanning data sets.  

Errors-In-Variables Model 

The aim of co-registration process is to 

transform search surface with respect to the 

template surface by establishing the 

correspondences between two overlapping data 

sets. Assuming the existence of two 

overlapping 3D data sets Qi and Pj (i=1,…,N 

and j=1,…,M), we can find a corresponding 

point in Pj for each point in Qi by using 

different error metrics, which Qi and Pj are the 

template and search surfaces respectively. 

Once the appropriate correspondences were 

established between two point data sets the 

basic procedure is to estimate the 

transformation parameters using the 

correspondences. The geometric relationship is 

established by a six parameters 3D rigid-body 

transformation (3). 
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[

𝑋𝑖

𝑌𝑖

𝑍𝑖

] = [
𝑇𝑥
𝑇𝑦
𝑇𝑧

] + 𝑅 ∗ [

𝑥𝑗

𝑦𝑗

𝑧𝑗

]    (3) 

In the classical Gauss-Markov model, Eq. (1) 

represents the observation equation which 

assumes the template surface elements are 

observations contaminated by random the 

errors. In fact, the search surface elements are 

also erroneous and a true error vector should be 

added to these elements as well. The 

observation equations in EIV model are formed 

as 

y +e_y=t+R*(x+e_x).     (4) 

If we apply this model to 3D rigid-body 

transformation, the mathematical model is 

established as; 

𝑙 + 𝑣𝑥 = (𝐴 + 𝑣𝐴 ) ∗ β  (5) 

where vx is the n×1 residual vector of 

observations and vA is an n×m error matrix of 

the corresponding elements of design matrix. 

The elements of both vx and vA are 

independent and conforming the normal 

distributed with zero mean. Once a 

minimisation of [𝑣̃𝐴; 𝑣̃𝑥] is found, then any β

satisfying  

(A + 𝑣̃𝐴) ⋅β = l + 𝑣̃𝑥  is the solution of the

problem by Total Least Squares. 

Proposed Modified Gauss-Helmert Model 

The generalized total least squares solution of 

the 3D-similarity transformation by 

introducing the quaternions as the 

representation of the rotation matrix*scale 

factor (S=sR) based on iteratively linearized 

Gauss-Helmert model has been presented by 

Akyilmaz, (2010, 2011). However, this model 

requires the solution of a normal matrix which 

includes the corresponding terms for 

transformation parameters as well as the 

Lagrange multipliers, thus yielding a larger 

size of system of equations to be solved at 

each iteration with the increase of the 

identical points of the transformation 

problem. Following the idea in Akyilmaz, 

(2010 and 2011), Kanatani and Niitsuma, 

(2012) has developed a new computational 

scheme for 3D-similarity transformation 

which they call Modified Iterative Gauss-

Helmert model by reducing the so-called 

Lagrange multipliers and hence the size of the 

normal matrix is dramatically reduced. In 

other words, the unknowns to be solved at 

each iteration are equal to seven, i.e. the 

number of transformation parameters. This 

kind of a reduction provides advantage, 

especially in terms of computational aspects. 

We refer to Kanatani and Niitsuma, (2012) for 

details of the mathematical model. Modified 

Gauss-Helmert model in Kanatani and 

Niitsuma, (2012) is a seven parameters 

similarity transformation. Therefore, in our 

study, we modified the model by eliminating 

the scale factor in order to apply 6 parameters 

rigid-body transformation.  For this purpose 

we normalise the quaternion by using the 

q0²+q1²+q2²+q3² = 1 equality. Then the rotation 

matrix defined by quaternions is obtained as; 

S= 

[

2q
2

2 − 2q
3

2 + 1 2𝑞1𝑞2 − 2𝑞3𝑁 2𝑞2𝑁 + 2𝑞1𝑞3

2𝑞3𝑁 + 2𝑞1𝑞2 −2𝑞1
2 − 2q

3
2 + 1 2𝑞1𝑁

2𝑞1𝑞3 − 2𝑞2𝑁 2𝑞1𝑁 + 2𝑞2𝑞3 2q
2

2 + 1

] 

(6) 

𝑁 =

√(−𝑞1
2 − 𝑞2

2 − 𝑞3
2 + 1)

(7) 

In so-called model, let ai and bi  are the 

corresponding pairs (i=1,…,M) ;  Qxx[ai]  and 

Qxx[bi] are normalized covariance matrices; 

𝑎̅𝑖and 𝑏̅𝑖  are the true positions  of  ai and bi 

respectively. The optimal estimation of the 

similarity transformation parameters R 

(rotation), T (translation) and s (scale factor) 

in the sense of Maximum Likelihood is to 

minimize the Mahalanobis distance given as 

follows. 

𝐽 =
1

2
∑ (𝑎𝑖 − 𝑎𝑖̅)

𝑇𝑄𝑥𝑥
−1[𝑎𝑖]

𝑀
𝑖=1 (𝑎𝑖 −

𝑎𝑖̅) +…..

… . +
1

2
∑(𝑏𝑖 − 𝑏𝑖̅)

𝑇
𝑄𝑥𝑥

−1[𝑏𝑖]

𝑀

𝑖=1

(𝑏𝑖 − 𝑏𝑖̅)

and 

𝑎̅𝑖 = 𝑆𝑏̅𝑖 + 𝑇

(8) 

(9) 
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Where S is the rotation matrix given in (6) 

Since the model is non-linear, it is linearized 

by the Taylor Series expansion. Finally, the 

total error vector is defined as 

𝑒𝑖 = 𝑎𝑖 − S𝑏𝑖 − T    (10) 

With the weight matrix; 

𝑊𝑖 = (𝑆𝑄𝑥𝑥[𝑎𝑖]𝑆′ + 𝑄𝑥𝑥[𝑏𝑖])−1               (11)

After modifications, Eq. 7 can be expressed in 

the following form: 

𝐽 =
1

2
∑ (𝑀

1 𝑒𝑖′𝑊𝑖𝑒𝑖)    (12) 

Differentiating (6) with respect to qi, i = 1, 2, 

3 

𝜕𝑆

𝜕𝑞𝑖
= 2𝑄𝑖    (13) 

We define a 3x3 Ui matrix as follows 

𝑈𝑖 = [𝑄1𝑏𝑖  𝑄2𝑏𝑖  𝑄3𝑏𝑖 ]    (14) 

After these definitions, parameters are 

estimated by the solution of following 6-D 

linear equation.   

(
∑ 𝑈𝑖

𝑇𝑀
1 𝑊𝑖𝑈𝑖 ∑ 𝑈𝑖

𝑇𝑀
1 𝑊𝑖

∑ 𝑊𝑖𝑈𝑖
𝑀
1 ∑ 𝑊𝑖

𝑀
1

) (
∆𝑞
∆𝑇

) =

(
∑ 𝑈𝑖

𝑇𝑀
1 𝑊𝑖𝑒𝑖

∑ 𝑊𝑖𝑒𝑖
𝑀
1

)          (15) 

Since so-called model is non-linear, initial 

approximations of q and T are updated and 

iteration is repeated until it converges.  

Stochastic Model 

The studies on calibration of laser scanners 

(Lichti 2007) and laser scanner accuracy show 

that there are many factors affecting on the 

individual point precision of terrestrial laser 

scanners like instrument’s range and angular 

accuracy, geometric factors (e.g. edge effect 

and incidence angle), atmospheric conditions 

(humidity, temperature etc.) and radiometric 

effects (surface reflectivity etc.). In our 

implementation, we define a covariance 

matrix for each individual point by using the 

range and angular accuracy of the scanner and 

incidence angle. Since the Cartesian 

coordinates are derived quantities, we can 

transform back them into the spherical 

coordinates (ρ=range, θ=horizontal angle and 

φ=vertical angle) basically by using the 

equations  

2 2 2

2 2

i i i i

i
i

i

i
i

i

i i i i

x y z

y
arctan( )

x

z
arctan( )

x y

r [ ]







  

  






  (16) 

(3.7) 

Thus we can write the Cartesian coordinates 

of a point  

in terms of spherical coorinates as (17); 

   

   

 

 θi φi

  φi θi

φi

Px i* cos * cos

Pi Py i* cos * sin

Pz i* sin







 


 
  

(3.8) 

The 3 × 3 covariance matrix of point    is 

obtained from propagating the precision of the 

original spherical observables, which are 

typically provided by the manufacturer 

(Grant). The variances of these spherical 

observables are i i iP   
respectively. 

Precision values of spherical coordinates 

provided by the vendor are (18); 

2

2

2

i

i

i

P

r 









 
 

 


  


(3.9) 

The second factor effecting on the point 

precision is incidence angle 𝛼, which is 

defined as the angle between the laser beam 

and local surface normal on related point. 

Simply it could be explained as the 

orientation of the local surface with respect to 

the scanner position. (Soudarissanane et al., 

2011) explain that the incidence angle and 

range accuracy are inversely proportional. So, 

 (17) 

 (18) 

(20) 

30



Aydar & Altan / IJEGEO 2(2), 27-38(2015)

we update our range measurement accuracy 

by dividing the range variance by cosine of 

the incidence angle. By replacing the first 

element in (19) with  
2

iP

cos( )





 
 
 

we obtain a new precision variance matrix for 

point i newr , r
. If we apply the error 

propagation rule, we obtain the covariance 

matrix for point iP
 from (20); 

T

xx newQ F r F        (20) (3.10) 

Where F is the Jacobian matrix of iP
with 

respect to i i 
 and i respectively (21).

cos( )cos( ) - cos( )sin( ) - cos( )sin( )

cos( )sin( ) cos( )cos( ) - sin( )sin( )

 sin( ) 0 cos( )

F

       

       

  

 
 


 
  

(3.11) 

Correspondence Search 

Correspondence search is the most critical 

part of all registration algorithms. The succes 

of a registration method depends on how 

correct correspondences were established 

between two data sets. False matches cause to 

uncorrect results. In order to prevent false 

matches, different type of constraints can be 

introduced. In our implementation, the 

correspondence search is guided by using two 

well-known error metrics. The first one is the 

point-to-point search which was introduced 

by Besl and McKay (1992) in their original 

ICP paper. According to this method, each 

available point in template surface is matched 

with the closest point in search surface. Then, 

the sum of the squared distances between the 

points in each correspondence pair is 

minimized. This procedure is very complex in 

terms of computational aspects and takes the 

most of the computation time. The procedure 

has been accelerated by using a kd-tree 

searcher in our implementation. The second 

error metric is the point-to-plane algorithm 

which was introduced by Chen and Medioni 

(1991). In point-to-plane error metric, the sum 

of the squared distances between each point in 

template data and the tangent plane at its 

corresponding destination point in search data 

is minimized. Due to the large search area and 

heavy mathematical computations like plane 

parameters, surface normal and Euclidian 

distance calculation, point-to-plane error 

metric is much slower than point-to-point 

version. On the other hand, the researchers 

have observed significantly better 

convergence rates with point-to-plane 

(Rusinkiewicz, 2001). One solution for 

accelerating the point-to-plane version is to 

limit the search area of the candidate point at

the search surface. Based on the advantageous 

parts of these two versions, both of them were 

used together in this study in order to benefit 

from the advantageous parts of them. The 

point-to-plane search was accelerated 

significantly by using a kd-tree nearest 

neighbor searcher. The coarse match point is 

found by the point-to-point search;

consequently the procedure is followed by the 

point-to-plane search where the fine matching 

point is found. The fine matching point is 

searched inside the 6 neighboring triangles 

which are fictitiously formed around the 

coarse matching point. The fine matching 

point should lie inside of one of those six 

triangles, and should have the minimum 

spatial distance to the corresponding template 

point. Any point satisfying the both 

conditions are labeled as the fine matching 

point. 

Experimental Results 

All experiments were carried out by using a 

self-developed programme in MATLAB 

Computing Language environment.  

For the simplicity we name this programme as 

TLS3D throughout this section. We also 

coded the classical Least Squares in 

MATLAB as well which we call LS shortly. 

Our purpose is to investigate the results of 

proposed MGH model for the registration 

problem and make comparisons between the 

results obtained by LS. 

We conducted several tests by using diverse 

laser scanning data acquired by different 

 (19) 

 (21) 
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devices which have alternate working 

principles, accuracy specifications and noise 

characteristics. Besides, we used some 

synthetic data in order to control the results of 

programmes.    

In all experiments, initial approximations 

were provided beforehand by the help of 

external software (Leica cyclone, LS3D 

[Akca]) since we did not create a Graphical 

User Interface (GUI) for selecting some 

control points on both data. The developed 

software can handle the rotational differences 

about three axes up to 20˚, but it is not that 

much capable about the translation vector.  

The experiments in TLS3D can be classified 

into three in terms of the introduced initial 

covariance matrix. The first group of tests are 

conducted by using the same covariance 

matrices and isotropic noise for all sets. The 

second tests are carried out by using different 

covariance matrices for template and search 

surfaces with isotropic noise and the final 

group of tests are with different covariance 

matrices with anisotropic noise as explained 

in stochastic model chapter. 

Weary Heracles Statue 

The first experiment is the registration of two 

partial surfaces which is a part of “Weary 

Heracles” statue. The data has been scanned 

by Breuckmann optoTOP-HE coded 

structured light system. Original data set 

comprises approximately 250000 points 

individually with 0.5 mm point spacing. In 

this test we resampled the data set and 

decreased the number of points since our 

implementation produces the results very 

slowly with this kind of an intense data. 

Resampled data consist of approximately 

50000 points with 1 mm point spacing. The 

matching process was carried out by using 

both LS and TLS3D with homogeneous and 

isotropic noise conditions. The obtained 

results are given in Table (1). Figure 1 shows 

the 3D comparison of two methods by using 

the 3D compare module of Geomagic Studio 

(Raindrop Geomagic, Inc.) software. Patterns 

of the residuals show similarity for both 

methods.

(a) (b) 

Figure 1. (a) is the template and (b) is the search surface. 
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  Table 1. Numerical results of ‘Weary Heracles’ data 

Surface patch 

The second experiment is the matching of two 

surface patches (Fig. 3). The data is acquired by 

an IMAGER 5003 terrestrial laser scanner 

(ZoellerFröchlich). The average point spacing  

is 1 cm. Obtained numerical results for two 

different registrations are given in Table (2). In 

this experiment also, although the theoretical 

precisions changes slightly, differences are minor 

and insufficient for a decision making for the 

comparison purpose of two methods.

(a)      (b) 

Figure 2. (a) is the template and (b) is the search surface. 

(a) (b) 

Figure 3. (a) is the registration with TLS ans (b) shows the residuals. 

Model  No. of 

      Matched 𝜎0 𝜎𝑇𝑥
𝜎𝑇𝑦

𝜎𝑇𝑧
𝜎𝜔 𝜎 𝜑 𝜎 𝜅

 Points (mm)   (mm)  (mm)  (mm)  (grad)  (grad)  (grad)

TLS_isotropic 36941  0.0292  0.00034  0.00040  0.00028  0.000006  0.000006  0.000004 

LS  36856  0.0408  0.00033  0.00040  0.00028  0.000006  0.000006  0.000004 
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Table 2. Numerical results of ‘surface patch’ data 

Model     No. of 

 Matched 𝜎0 𝜎𝑇𝑥
𝜎𝑇𝑦

𝜎𝑇𝑧
𝜎𝜔

𝜎𝜑 𝜎𝜅

 Points  (mm)  (mm)  (mm)  (mm)  (deg)  (deg) 

(deg) 

TLS_isotropic  458   0.024763 0.002887  0.002883  0.004862  0.000244    0.000244 

0.0001810 

LS   544  0.035112 0.002510  0.002511  0.004239  0.000211  0.000210 

0.000154 

Pyramid 

The third experiment is the registration of two 

scans of a small pyramid shape object. The half 

of the pyramid was scanned by Leica C10 

scanner from close range. The average point 

spacing is 4 mm. This data set can be 

considered as difficult for point to plane search 

because the object is consist of three planar 

surfaces which means it does not contain 

sufficient surface characteristics in terms of  the 

orientation of the surface normal.  

Moreover, the worst initial approximations 

(~18˚ rotation about z axis) among the all tests 

were introduced for this data. In this 

experiment, we used a-priori covariance 

matrices for both data sets calculated as 

explained in stochastic model section. 

Registration process is successful. The results of 

the test are given in Table (3). Results of the test 

show that we obtain more realistic a-posteriori 

precision values for estimated parameters.

Figure 4. Template and search data. 
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Figure 5. Registration result. 

Table 3. Numerical results of ‘pyramid’ data 

Mod

el 

No. of 

Matche

d 

Points 

𝜎0

(m) 
𝜎𝑇𝑥

(m) 

𝜎𝑇𝑦

(m) 

𝜎𝑇𝑧

(m) 

𝜎𝜔

(m) 
𝜎𝜑

(m) 

𝜎𝜅

(m) 

TLS 
4960 0.14443

7 

0.00004

5 

0.00024

1 

0.00024

7 

0.00008

6 

0.00012

4 

0.00011

9 

Wave data 

The fourth experiment is the registration process 

by using synthetic data. The data is called ‘wave 

data’ and is highly used by many researchers in 

order to test their registration algorithms (Salvi 

et. al. 2007, Rusinkiewitz 2001, Grant 2012). 

The data was downloaded from the MATLAB 

registration toolbox by Salvi et al. (2007). 

Transformation was simulated by applying 

rotation and transformation to data. Then we 

created anisotropic independent Gaussian noise 

by using the covariance definition given in 

stochastic model chapter. Obtained noises were 

added to both template and search  

surfaces. The registration process was carried 

out for three times. In first run, we used TLS3D 

without introducing the pre-defined covariance 

matrices as input. In second run, we use LS and 

for the third run we use again TLS3D by 

introducing the covariance matrices as input. 

Registration is successful for all runs. 

Numerical results of the tests are given in Table 

(4). Results are quite similar and consistent with 

the other experiments. Results do not change in 

significant level for LS and TLS3D without 

using a-priori covariance definition. But at the 

last run, the effects of the introduced anisotropic 

and non-homogeneous covariance matrices are 

observed. The obtained a-posteriori covariance 

matrices are smaller than the other two runs. 
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Figure 6. Template and search data.  Figure 7. Template and transformed surface. 

Table 4. Numerical results of ‘wave’ data 

Model No. of 

Matched 

Points 

𝜎0

(mm) 
𝜎𝑇𝑥

(mm) 

𝜎𝑇𝑦

(mm) 

𝜎𝑇𝑧

(mm) 

𝜎𝜔

(mm) 

𝜎𝜑

(mm) 

𝜎𝜅

(mm) 

TLS_isotropic 3635 0.006377 0.000151 0.000151 0.000150 0.000101 0.000101 0.000076 

LS 3907 0.008996 0.000145 0.000145 0.000144 0.000047 0.000047 0.000035 

TLS 3634 5.014204 0.000326 0.000343 0.000152 0.000047 0.000034 0.000071 

Conclusion and Discussion 

The motivation of this study is to investigate 

the error behaviours of parameter estimation 

of rigid-body transformation by applying EIV 

model which considers the both data sets are 

characterized as erroneous. The ommission of 

the stochastic properties of design matrix in 

the conventional Gauss-Markov model results 

in optimistic precision estimates. On the other 

hand, another assumption in almost all 

registration algorithms is the homogeneous 

and isotropic noise for both data sets. In fact 

this assumption is incorrect and unrealistic for 

3-D data acquired by 3-D sensing such as 

stereovision and laser/ultrasonic range finders, 

because the accuracy is usually different 

between the depth direction and the direction 

orthogonal to it, resulting in an 

inhomogeneous and anisotropic noise 

distribution depending on the position, 

orientation, and type of the sensor [Kanatani]. 

Besides, data sets acquired with different 

sensors or data sets acquired in different times 

also have inhomogeneous and anisotropic 

noise level. In the case of a registration  

process (data fusion, change detection 

monitoring etc.) of this kind of data, the 

stochastic properties should be taken into 

consideration for an optimal, realistic solution.   

By taking the stochastic properties of the 

elements of the design matrix into account, it is 

possible to have more realistic precision 

estimates of unknowns with the proposed model.  

An implementation has been made in MATLAB 

computing language for the comparison of two 

mathematical models. We used anisotropic and 

non-homogeneous noise model as explained in 

stocahastic model chapter in our application for 

the template and search surfaces.  

The experimental tests show that the proposed 

method provides the more realistic values but the 

magnitude of the difference is minor. The final 

sigma naught value is a statistically derived 

quantity and shows the amount of observation 

residuals. This value does not give any 

information about the accuracy, but we use sigma 

naught in 0  i iiq 
in order to calculate  the a- 
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posteriori sigma_i values of individual 

parameters. This situation indicates that the 

obtained a-posteriori covariance matrix in 

TLS3D is much smaller than the matrix in 

LS.  On the other hand, results show that the 

TLS and LS methods do not differ in solution 

vector. In the view of these results, it is hard 

to state that TLS3D produces more correct 

results, but it would not be incorrect to say 

that it produces more reliable and realistic 

estimation values.   
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