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ABSTRACT 

The QSAR studies were performed on a series of thiourea, thiazolidinedione and thioparabanic 

acid derivatives of 4-aminoquinoline to find out the structural requirements of their antimalarial 

activities. The 2D-QSAR studies were performed using three methods: MLR, giving r2 = 0.7808, 

q2 = 0.6492 and pred_r2 = 0.9044; the PLS, with r2 = 0.7785, q2 = 0.6420 and pred_r2 = 0.7181; 

and PCR, giving r2 = 0.7393, q2 = 0.6222 and pred_r2 = 0.9135. The QSAR models showed that 

the LUMOEnergy, SdsCHE-index and Quadrupole1 played an important role in determining 

biological activities. The 3D-QSAR studies were performed using the stepwise variable selection 

k-nearest neighbor molecular field analysis (kNN-MFA) approach; q2 of 0.7107and pred_r2 of 

0.8521 were obtained. The results of the present study may be useful for the designing of more 

potent analogues as antimalarial agents. 
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1.   INTRODUCTION 

Malaria is estimated to kill more than 1 million people annually and possibly as 

many as 3 million, with most of the deaths among children under age six living in sub-

Saharan Africa. According to the WHO, between 300 million and 500 million clinical cases 

of malaria occur every year 
1
. Its control is globally a high priority task. Although continued 

attempts to develop a vaccine for malaria are ongoing, drugs continue to be the only 

treatment option
2
. Although effective antimalarial agents have been known for a long time, 

the alarming spread of drug resistant strains of Plasmodium falciparum, which is the most 

lethal parasite species, underscores the urgency and continuous need for the discovery of new 

therapeutics. 7-Chloro-4-aminoquinoline derivatives including chloroquine (CQ), sontoquine, 

and amodiaquine are among the most potent antimalarial drugs reported to date
3,4

, and new 

agents with improved activity against CQ resistant (CQR) strains have been introduced via 

synthetic modifications of the CQ side chain
5,6

. The search for novel drug candidates against 

specific parasitic targets is an important goal for antimalarial drug discovery
7, 8

. Among old 

and new drug targets of malaria, host heme molecule remains one of the most attractive target 

and 7-chloroquinoline compounds are very selective towards heme binding
9
. So, rather than 

identifying the new molecules for efficacy, 7-chloroquinolines having many advantages and 

efficiency are now in priority for antimalarial chemotherapy. Based on this observation, the 

antimalarial activities of some thiourea, thiazolidinedione and thioparabanic acid derivatives 

of 4-aminoquinoline have generated great interest
10

. 
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 Understanding the effect of structural features on the 

activity would help the researchers to design new molecules that 

may come up as potential new lead molecules. Quantitative 

structure activity relationship (QSAR) represents an attempt to 

correlate structural or property descriptors of compounds 

quantitatively with biological activities. This quantitative 

technology can be utilized to improve the structure of the inhibitor 

molecule and to interpret the improved structure in terms of 

favorable biological interactions
11, 12

. QSAR models lead to 

assessment of the specific effects of various types of substituents 

reducing trial experiments and investments. QSAR studies have 

provided valuable insight in the design and development of 

antimalarial agents
13-16

. 

 The present study aimed to elucidate the structural 

features of some thiourea, thiazolidinedione and thioparabanic acid 

derivatives of 4-aminoquinoline required for antimalarial activity 

and to obtain predictive two- and three-dimensional (2D and 3D) 

QSAR models, which may guide the rational synthesis of more 

active antimalarial agents. This is accomplished by combining one 

of the stochastic search methods, such as multiple regression 

(MLR), partial least squares regression (PLSR), or principle 

component regression (PCR) analysis
17-19

. The results obtained 

may contribute to further designing of novel antimalarial agents. 

 

                   

                

 

 

 

 

       

 

 

 

Figure 1. Superposition of compounds in the training and test sets using the 

template-based alignment method (a) 7-chloro-N-ethylquinolin-4-amine as common 

template (b) Stereo-view of aligned molecules in training set and test set. 

2.   MATERIALS AND METHODS 

2.1   Data Set for analysis 

 

A data set of 24 molecules was taken from the literature 

(Table 1) in which authors had reported anti-malarial activity of 

thiourea, thiazolidinedione and thioparabanic acid derivatives of 4-

aminoquinoline against CQ sensitive strain 3D7 of P. falciparum 

[10]. All the values of biological data shown in IC50 (ng/mL) were 

converted into -log IC50 (M) values for the convenience of 

computational work. 

 

2.2   2D QSAR Study 

 

 The molecular structure of all the 24 molecules were built 

using the 2D draw application of VLife MDS 3.5 software 20 and 

then the structures were converted to 3D structures for further 

analysis. All the compounds were batch optimized for the 

minimization of energies and geometry optimization using Merck 

molecular force field (MMFF) followed by considering distance-

dependent dielectric constant of 1.0, convergence criterion or root-

mean-square (RMS) gradient at 0.01 kcal/mol Å and the iteration 

limit to 10,000 21. 

 

  Most stable structure for each compound was generated 

and used for the calculation of the various physico-chemical 

descriptors (Individual, Chi, ChiV, Path count, ChiChain, 

ChiVChain, Chainpathcount, Cluster, Pathcluster, Kapa, Element 

Count, Estate number, Estate contribution, Semi-impirical and 

Polar surface area) (Table 2).  

 

 The invariable descriptors (descriptors that are constant 

for all the molecules) were removed, as they do not contribute to 

the QSAR, which resulted in total 157 descriptors was considered 

as independent variables in the present study. The values of the 

descriptors that are significant in the QSAR models are shown in 

Table 3.  

 

 The total set of compounds was divided into a training set 

(19 compounds) for generating 2D QSAR models and a test set (5 

compounds) for validating the quality of the models[22]. Selection 

of the training set and test set molecules was done on the basis of 

structural diversity and a wide range of activity such that the test-

set molecules represent a range of biological activity similar to that 

of the training set; thus, the test set is truly representative of the 

training set. Five compounds, namely, 5, 9, 14, 16, and 17 were 

used as test set while the remaining molecules as the training set. 

The unicolumn statistics of the training and test sets are reported in 

Table 4.  

 

2.3 3D QSAR Study 

 

 Molecular alignment is a crucial step in 3D-QSAR study 

to obtain meaningful results. In the present study, the molecules of 
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the dataset are aligned by template based method18 in VLife MDS 

3.5 software, where a template structure is defined and used as a 

basis for alignment of a set of molecules, and a reference molecule 

is chosen on which the other molecules of the dataset get aligned 

considering the chosen template. The template structure, i.e. 7-

chloro-N-ethylquinolin-4-amine is used for alignment by 

considering the common elements of the series as shown in Figure 

1(a). The reference molecule is chosen in such a way that it is the 

most active among the series of molecules considered. The 

compound 3 has very high antimalarial activity made it a valid lead 

molecule. Hence, compound 3 has been chosen as a reference 

molecule. The superimposition of all molecules based on 

minimizing root mean square deviation (RMSD) is shown in 

Figure 1(b). 

 

 For calculation of field descriptor values, using Tripos 

force field23, both electrostatic and steric field types, with cutoffs 

of 10.0 and 30.0 kcal/mol, respectively, were selected and charge 

type was selected as by Gasteiger and Marsili24. The dielectric 

constant was set to 1.0 considering the distance dependent 

dielectric function. Probe setting was carbon atom with charge 1.0. 

This resulted in calculation of 3366 field descriptors (1702 for 

electrostatic and 1664 for steric) for all the compounds in separate 

columns after removing descriptors having zero values or same 

values. 

 

 The sphere exclusion method22 was adopted for division 

of training and test data set comprising of 19 and 5 molecules, 

respectively, with dissimilarity value of 7.3. The test set consisted 

of seven compounds, namely, 2, 7, 9, 19 and 23. The remaining 

molecules were in the training set. The unicolumn statistics were 

the training and test sets, as reported in Table 4. 

 

2.4   Feature selection and model development 

 

 Feature selection is a key step in QSAR analysis. An 

integral aspect of any model-building exercise is the selection of an 

appropriate set of features with low complexity and good 

predictive accuracy. This process forms the basis of a technique 

known as feature selection or variable selection
25

.  

 

 In SW algorithm, the search procedure begins with 

developing a trial model step by step with a single independent 

variable and to each step; independent variables are added one at a 

time, examining the fit of the model. Thus, the model is repeatedly 

altered from the previous one by adding or removing a predictor 

variable in accordance with the ‘stepping criteria’ (in this case F=4 

for inclusion; F=3.99 for exclusion for the forward-backward 

selection method). The method continues until there is no more 

significant variable remaining outside the model
20

. 

 In the selected 2D QSAR equations, the cross-correlation 

limit was set at 0.5, the number of variables at 10, and the term 

selection criteria at r2. An F value was specified to evaluate the 

significance of a variable. The variance cutoff was set at 0, with 

autoscaling in which the number of random iterations was set at 10. 

 

 MLR is the standard method for multivariate data 

analysis26. It estimates the values of the regression coefficients by 

applying least squares curve fitting method. For getting reliable 

results, dataset having typically 5 times as many data points 

(molecules) as independent variables (descriptors) is required. 

 

 PLSR is a generalization of regression, which can handle 

data with strongly correlated and/or noisy or numerous X variables. 

It gives a reduced solution, which is statistically more robust than 

MLR. The linear PLSR model finds “new variables” (latent 

variables or X scores) which are linear combinations of the original 

variables. To avoid over-fitting, a strict test for the significance of 

each consecutive PLSR component is necessary and then stopping 

when the components are non-significant. Cross-validation is a 

practical and reliable method for testing this significance
27

. PLSR 

is normally used in combination with cross-validation to obtain the 

optimum number of components. 

 

 PCR analysis selects a new set of axes for the data. These 

are selected in decreasing order of variance within the data. They 

are also perpendicular to each other. The problem  noted with MLR 

was that correlated variables cause instability. So, how about 

calculating principal components, throwing away the ones which 

only appear to contribute noise (or constants), and using MLR on 

these? This process gives the modeling method known as Principal 

Components Regression. Rather than forming a single model, as 

with MLR, a model can be formed using 1, 2, ... components and a 

decision can be made as to how many components are optimal.  

k Nearest Neighbor Molecular Field Analysis (kNN MFA), 

methodology relies on a simple distance learning approach 

whereby an unknown member is classified according to the 

majority of its k-nearest neighbors in the training set. The nearness 

is measured by an appropriate distance metric (e.g., a molecular 

similarity measure calculated using field interactions of molecular 

structures). The standard kNN MFA method
28

 was implemented 

simply as follows: (i) The distances between an unknown object 

(u) and all other objects in the training set were calculated. (ii) The 

k objects were selected from the training set most similar to object 

u, according to the calculated distances; and (iii) The object u was 

classified with the group to which the majority of the k objects 

belong. An optimal k value is selected by optimization through the 

classification of a test set of samples or by Leave-One Out (LOO) 

cross-validation. 
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 Since there was a large pool of descriptors available to 

build models, stepwise (SW) variable selection methods were used 

along with kNN to find optimal subset of descriptors. kNN-MFA 

models were developed using the SW forward–backward method 

with the cross-correlation limit set to 0.5 and the term selection 

criterion as q2. F-test ‘in’ was set to 4.0, and F-test ‘out’ to 3.99. 

As some additional parameters, variance cutoff was set at 2 

kcal/mol Å, and scaling to autoscaling; additionally, kNN 

parameter setting was done within the range of 2–5 and the 

prediction method was selected as the distance-based weighted 

average
20

. 

 

2.5   Model evaluation and validation 

 

 This is done to test the internal stability and predictive 

ability of the QSAR models. Internal validation was carried out 

using ‘leave-one-out’ (q2, LOO) method. The cross-validated 

coefficient, q2, was calculated using the following equation: 

  (1) 

where yi, and ŷi are the actual and predicted activity of the ith 

molecule in the training set, respectively, and ymean is the average 

activity of all molecules in the training set.  

For external validation, activity of each molecule in the test set was 

predicted using the model generated from the training set. The 

predictive ability of the selected model was also confirmed by 

pred_r2. 

  (2) 

 

where yi, and ŷi are the actual and predicted activity of the ith  

molecule in the test set, respectively, and ymean is the average 

activity of all molecules in the training set.  

 

2.6   Evaluation of the quantitative models 

 

 The developed QSAR models were evaluated using the 

following statistical measures: r2 (the squared correlation 

coefficient), F test (Fischer’s value) for statistical significance, q2 

(cross-validated correlation coefficient); pred_r2, r2 for external 

test set. The regression coefficient r2 is a relative measure of fit by 

the regression equation. However, a QSAR model is considered to 

be predictive, if the following conditions are satisfied: r2 > 0.6, q2 

> 0.6 and pred_r2 > 0.5[29, 30]. The F-test reflects the ratio of the 

variance explained by the model and the variance due to the error 

in the regression. High values of the F-test indicate that the model 

is statistically significant. The low standard error of Pred_r2se, 

q2_se and r2_se shows absolute quality of fitness of the model. 

The r2, q2 and pred_r2 values were used as deciding factors in 

selecting the optimal models. 

 

3.   RESULTS AND DISCUSSION 

 

 All QSAR studies were performed in V-Life MDS 

software Version 3.520.  A series of 24 thiourea, thiazolidinedione 

and thioparabanic acid derivatives of 4-aminoquinoline tested for 

their anti-malarial activity was selected for QSAR Studies (Table 

1). Selection of molecules in the training set and test is a key and 

important feature of any QSAR model. Therefore the care was 

taken in such a way that biological activities of all compounds in 

test set lie within the maximum and minimum value range of 

biological activities of training set of compounds. A Uni-Column 

statistics for training set and test set were generated to check 

correctness of selection criteria for trainings and test set molecules 

(Table 4). 

 

 The maximum and minimum value in training and set 

were compared in a way that: 

 The maximum value of pIC50 of test set should be less 

than or     equal to maximum value of pIC50 of training 

set. 

 The minimum value of pIC50 of test set should be higher 

than or equal to minimum value of pIC50 of training set. 

 

 This observation showed that test set was interpolative 

and derived within the minimum–maximum range of training set. 

The mean and standard deviation of pIC50 values of sets of 

training and test provide insights to relative difference of mean and 

point density distribution of two sets. The mean of the test sets 

were higher than the train sets which indicates the presence of 

relatively more active molecules as compared to the inactive ones. 

To ensure a fair comparison, the same training and test sets were 

used for each model’s development. Activity distribution graph is 

shown in Figure 2.  

 

 QSAR investigations of the 4-aminoquinolines series 

resulted in several QSAR equations, considering the term selection 

criterion as r2, q2 and pred_r2. Some statistically significant 2D 

and 3D QSAR models were chosen for discussion. The 2D QSAR 

study of 24 compounds (divided into 5 test and 19 training) for 

malaria activity (Table 1) through MLR, PLSR, and PCR analysis 

coupled with SW variable selection resulted in the some statistical 

models. The inter-correlation among the selected descriptors was 

very less due to auto-scaling and cross correlation limit permitted 

was 0.5.  

Model 1 (MLR) 

pIC50 = 0.5325 (LUMOEnergy) - 0.2134 (SdsCHE-index) + 

0.0053 (Quadrupole1) + 5.0510 
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Ntraning = 19,  Ntest = 5, DF= 15, r2 = 0.7808, q2 = 0.6492, F test 

= 17.8114, r2_se = 0.2203, q2_se = 0.2787, pred_r2 = 0.6125, 

pred_r2se = 0.3038, ZScore Q^2 = 4.63378, Best Rand Q^2 = 

0.35968.  

       

 In model 1, compound 16 is an outlier, as the residual of 

observed and the predicted activity is more than twice the standard 

error of the equation. After removing the outlier compound 16, we 

obtain another QSAR model 2. 

Model 2 (MLR) 

pIC50 = 0.5325 (LUMOEnergy) - 0.2134 (SdsCHE-index) + 

0.0053 (Quadrupole1) + 5.0510 

Ntraning = 19,  Ntest = 5, DF= 15, r2 = 0.7808, q2 = 0.6492, F test 

= 17.8114, r2_se = 0.2203, q2 se = 0.2787, pred_r2 = 0.9044, 

pred_r2se = 0.1443, ZScore Q^2 = 7.65957, Best Rand Q^2 = -

0.08872. 

 

 The statistically best significant model (Model 2) with a 

coefficient of determination (r2) = 0.7808 was considered, as the 

model showed an internal predictive power (q2 = 0.6492) of 64% 

and a predictivity for the external test set (pred_r2 = 0.9044) of 

about 90%. The low standard error of r2_se=0.2203 demonstrates 

accuracy of the model. In this QSAR equation, the positive 

contribution of LUMOEnergy and Quadrupole1 on the biological 

activity indicates that the increase in LUMOEnergy and 

Quadrupole1 of molecule lead to better antimalarial activity. The 

negative coefficient of SdsCHE-index (Electrotopological state 

indices for number of –CH group connected with one double and 

one single bond) shows that increase in SdsCHE-index is 

detrimental for the activity. It suggests that the presence of allyl 

group at the R position is detrimental to activity. 

 

 The descriptors selected for modeling inhibitory activity 

of the 4-aminoquinoline derivatives are summarized in Table 2 and 

the correlation matrix between the physico-chemical parameters 

and the biological activity is presented in Table 5. The plots of 

calculated vs. observed values of pIC50 are shown in Figure 3.  

The contribution charts for all the significant models are presented 

in Figure 4, which gives the percentage contribution of the 

descriptors used in deriving the model. The predicted (LOO) 

activities of the compounds by the above model is shown in Table 

6. The same data set subjected to the PLSR method resulted in r2 

of 0.7785 and an internal predictive power of 64%, with an 

external predictivity of 72% (Model 3).  

Model 3 (PLS) 

pIC50 = 0.6501 (LUMOEnergy) -0.2304 (SdsCHE-index) -0.0077 

(Quadrupole3) + 5.3044  

Ntraning = 19,  Ntest = 5, Optimum Components = 2, DF= 16, r2 = 

0.7785, q2 = 0.6420, F test = 28.1128, r2_se = 0.2145, q2_se = 

0.2726, pred_r2 = 0.5773, pred_r2se = 0.3173, ZScore Q^2 = 

3.42538, Best Rand Q^2 = 0.22586. 

In model 3, compound 16 is an outlier, as the residual of observed 

and the predicted activity is more than twice the standard error of 

the equation. After removing the outlier compound 16, we obtain 

another QSAR model 4 with a coefficient of determination (r2) = 

0.7785 was considered, as the model showed an internal predictive 

power (q2 = 0.6420) of 64% and a predictivity for the external test 

set (pred_r2 = 0.7181) of about 71%. 

Model 4 (PLSR) 

pIC50 = 0.6501 (LUMOEnergy) -0.2304 (SdsCHE-index) -0.0077 

(Quadrupole3) + 5.3044  

Ntraning = 19,  Ntest = 5, Optimum Components = 2, DF= 16, r2 = 

0.7785, q2 = 0.6420, F test = 28.1128, r2_se = 0.2145, q2_se = 

0.2726, pred_r2 = 0.7181, pred_r2se = 0.2477, ZScore Q^2 = 

3.42538, Best Rand Q^2 = 0.22586. 

 

 It is apparent from the model 4 that the descriptor 

LUMOEnergy plays a pivotal role in determining activity. The 

descriptors LUMOEnergy contributed positively in the 

mathematical representation of the model and is favored to 

biologic activity in the aforementioned model. The descriptors 

SdsCHE-index and Quadrupole3 indicate a negative contribution 

to the antimalarial activity.  

 

 To improve the external predictivity of the model, PCR 

analysis with the same data set was performed, which resulted in r2 

of 0.7393 and an internal predictive power of 62%, with the good 

external predictivity of 91%. The overall statistical significance 

level was found to exceed 99.9% (Model 5). The q2 was 0.6222, 

which shows the good internal prediction power of this model. 

Another parameter for predictivity of test set compound is high 

pred_r2=0.9135 and low pred_r2se=0.1435, which is showing 

good external predictive power of the model. 

Model 5 (PCR) 

pIC50 = 0.3252 (kappa3) - 0.1610 (SdsCHE-index) + 0.0051 

(Quadrupole1) + 0.0985 (ZcompDipole) + 2.4672  

Ntraning = 19,  Ntest = 5, Optimum Components = 3, DF= 15, r2 = 

0.7393, q2 = 0.6222, F test = 20.1821, r2_se = 0.2403, q2_se = 

0.2893, pred_r2 = 0.9135, pred_r2se = 0.1435, ZScore Q^2 = 

6.56807, Best Rand Q^2 = 0.09818. 

 

 The positive coefficient of kappa3 shows that increase in 

kappa3 is favored for the antimalarial activity. The next most 

important descriptors which influence the activity variation are 

ZcompDipole and Quadrupole1and are directly proportional to the 

activity. 

 

 The statistical significance of these models was further 

supported by the ‘fitness plot’ obtained for each model; this is a 

plot of observed vs. predicted activity of training- and test-set 

compounds and provides an idea about how well the model was 

trained and how well it predicts the activity of the external test set 
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(Figure 3). The closeness of observed to predicted activity reported 

in Table 6 also adds to this fact.  

 

 For a better understanding of the QSAR models of such 4-

aminoquinoline compounds, an attempt to generate a 3D-QSAR 

model on MFA for the same set of compounds has also been made. 

For 3D QSAR, kNN–MFA of 4-aminoquinoline derivatives having 

inhibitory activities against 3D7 was performed. The SW variable 

selection method resulted in several statistically significant models, 

of which the corresponding best model 6 is reported herein (Table 

6). The model selection criterion is the value of q2, the internal 

predictive ability of the model, and that of pred_r2, the ability of 

the model to predict the activity of external test set.  

Model 6 (kNN MFA) 

S_1398 (-0.0024    -0.0023), S_56 (-0.0024    -0.0024) 

Ntraning = 19,  Ntest = 5, q2 = 0.7107, q2_se = 0.2376, pred_r2 = 

0.8521, pred_r2se = 0.1689 

 

 For antimalarial activity against 3D7, model 6 was found 

to be statistically most significant, especially with respect to the 

internal predictive ability (q2 = 0.7107) of the model. As the cross-

validated correlation coefficient (q2) is used as a measure of 

reliability of prediction, the correlation coefficient suggests that 

our model is reliable and accurate. The value of pred_r2 was 

obtained for the test set and gave better results, with a value of 

0.8521, which means 85% predictive power for the external test 

set.  

 

 The kNN-MFA contour plots (Figure 5), which showed 

the relative position and ranges of the corresponding important 

electrostatic/steric fields in the model, provided guidelines for new 

molecule design. The range is based on the variation of the field 

values at the chosen points using the most active molecule and its 

nearest neighbor set. The plot of observed versus predicted 

activities for the training and test sets of compounds are 

represented in Figure 3.  

 

 The steric descriptor with positive or negative coefficients 

shows a region where bulky substituent is favored or disfavored, 

respectively. Electrostatic field descriptors with positive 

coefficients represent regions where electropositive (electron-

withdrawing) groups are favorable, whereas negative coefficient 

indicates that electronegative (electron-rich or electron-donating) 

groups are favorable in this region
31

.  

 

 It is observed that electrostatic descriptors like S_1398 

with negative coefficient indicates that less bulky groups are 

favorable on this site and presence of bulky groups decrease the 

antimalarial activity of these compounds. Most of the compounds 

(like 2-9 etc) with higher activity having less bulky substitution 

(thiourea group) at the side chain of 7-chloro, 4-aminoquinoline 

ring strongly support the above comment. 

 

 

 

 

 

Figure 2. Activity distribution graph 
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Figure 5. Contribution plot for steric and electrostatic interactions  

4.   CONCLUSION 

 The present work reveals how the antimalarial activities 

of various side chain modified 7-chloro, 4-aminoquinolines may be 

treated statistically to uncover the molecular characteristics which 

are essential for high activity. 2D- and 3D-QSAR studies have 

been carried out on a series of 4-aminoquinoline derivatives with 

antimalarial activity against 3D7. The best 2D QSAR model 2 

resulted in r2 = 0.7808, q2 = 0.6492 and pred_r2 = 0.9044 by SW-

MLR confirms a positive contribution of the positive contribution 

of LUMOEnergy and Quadrupole1 to the antimalarial activity. 

Among various combinations, SW-based kNN method provides the 

best results (model 6) in 3D QSAR study with q2 = 0.7107 and 

pred_r2 = 0.8521. These results should prove to be an essential 

guide for the future work. 
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Figure 4. Contribution charts of the statistically significant models 

obtained through 2D QSAR analysis 

 

Figure 3. Graphs of observed vs. predicted activity of models 2, 4, 5 

and 6. 
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                                    Table1. Structure and antimalarial activity of 4-aminoquinoline derivatives 

 

 

 

 

Compound n R IC50 (ng/mL) pIC50 (M) 

2
b
 0 Phenyl 9.22 4.588 

3 0 Butyl 6.07 4.744 

4 0 Allyl 26.11 4.089 

5
a
 1 o-chlorophenyl 20.51 4.281 

6 1 Phenyl 10.01 4.569 

7
b
 1 Butyl 11.82 4.473 

8 0 Allyl 42.02 3.901 

9
a,b

 0 o-chlorophenyl 10.16 4.601 

10 0 Phenyl 29.49 4.144 

11 1 Butyl 17.44 4.351 

12 1 Allyl 32.44 4.063 

13 1 o-chlorophenyl 12.11 4.566 

14
a
 0 Phenyl 11.05 4.585 

15 0 Butyl 11.03 4.565 

16
a
 0 Allyl 111.61 3.542 

17
a
 1 o-chlorophenyl 17.48 4.42 

18 1 Phenyl 119.10 3.538 

19
b
 1 Butyl 33.08 4.072 

20 0 Allyl 104.09 3.556 

21 0 o-chlorophenyl 199.31 3.349 

22 0 Phenyl 150.55 3.451 

23
b
 1 Butyl 69.70 3.764 

24 1 Allyl 54.85 3.851 

25 1 o-chlorophenyl 39.71 4.063 

                                                                           a
Indicates the compounds considered in the test set for 2D QSAR study. 

                                                                         b
Indicates the compounds considered in the test set for 3D QSAR study. 
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                          Table 2. List of selected 2D descriptors used in the present QSAR study 

Descriptor Defination 

LUMOEnergy This descriptor signifies energy of highest unoccupied molecular orbital. 

Quadrupole1 This descriptor signifies magnitude of first tensor of quadrupole moments. 

SdsCHE-index Electrotopological state indices for number of –CH group connected with one 

double and one single bond. 

kappa3 This descriptor signifies third kappa shape index: (n-1) (n-3)2 / p32 for odd n, 

and (n-3) (n-2)2 / p32 for even n 

ZcompDipole This descriptor signifies the z component of the dipole moment (external 

coordinates). 

 

                                               Table 4. Unicolumn statistics of the training and test sets for antimalarial activity 

Data Set Average (Mean) Max Min StdDev Sum 

2D 

Training  4.0893 4.7443 3.3492 0.4296 77.6966 

Test  4.2856 4.6009 3.5421 0.4358 21.4282 

3D 

Training  4.0856          4.7443          3.3492           0.4417           77.6268         

Test  4.2996           4.6009          3.7641          0.3681          21.4979         

 

                                           Table 5. Correlation matrix between descriptors present in the 2D QSAR models 2 

  pIC50 LUMO Energy SdsCHE-index Quadrupole1 

pIC50 1    

LUMOEnergy 0.706 1   

SdsCHE-index -0.4 0.091 1  

Quadrupole1 0.412 0.358 0.181 1 
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                                  Table 3. Selected 2D and 3D descriptors of side chain modified 4-aminoquinoline derivatives 

Compd 
LUMOE

nergy 

SdsCHE-

index 

Quadrup

ole1 

Quadru

pole3 
kappa3 

ZcompDi

pole 
S_56 S_1398 

2 -1.095 0 15.95 5.816 5.762 0.092 -0.0024 -0.0023 

3 -1.029 0 16.71 5.054 6.504 -0.12 -0.0023 -0.0022 

4 -0.954 1.873 11.877 1.496 5.606 0.317 -0.0024 -0.002 

5 -1.174 0 -13.107 5.497 5.736 0.434 -0.0024 -0.0024 

6 -1.043 0 17.26 -5.068 6.282 0.135 -0.0024 -0.0023 

7 -1.029 0 15.722 6.811 6.65 -0.56 -0.0024 -0.0021 

8 -1.03 1.881 14.865 5.419 6.204 -0.73 -0.0024 -0.0016 

9 -1.108 0 9.8883 -6.07 6.261 0.051 -0.0024 -0.0024 

10 -1.533 0 19.056 1.207 5.202 0.874 -0.0025 -0.0016 

11 -1.445 0 -23.424 19.33 5.299 -0.6 -0.0025 -0.0029 

12 -1.488 1.678 20.715 5.255 4.838 0.628 -0.0024 -0.0015 

13 -1.578 0 22.847 -2.54 5.258 1.618 -0.0025 -0.0016 

14 -1.489 0 26.988 12.71 5.627 0.812 -0.0025 -0.0016 

15 -1.422 0 22.456 3.469 5.758 -1.18 -0.0025 -0.0016 

16 -1.441 1.686 32.383 -3.902 5.299 -4.13 -0.0028 -0.0036 

17 -1.538 0 12.019 1.174 5.689 -2 -0.0025 -0.0017 

18 -2.356 0 -49.728 38.68 4.542 -2.56 -0.0025 -0.0064 

19 -2.282 0 17.358 -23.99 4.716 0.156 -0.0024 -0.0019 

20 -2.27 1.644 17.858 -26.74 4.296 0.367 -0.0024 -0.0018 

21 -2.333 0 -10.288 7.402 4.621 -1.98 -0.0025 -0.0043 

22 -2.304 0 -22.475 8.898 4.924 -1.89 -0.0025 -0.0018 

23 -2.24 0 -19.545 5.5 5.136 -1.6 -0.0025 -0.0019 

24 -2.128 1.652 -10.435 3.256 4.716 -1.35 -0.0025 -0.0018 

25 -2.255 0 45.263 -18.81 5.01 -4.22 -0.0027 -0.0033 
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Table 6. Comparative Observed and Predicted Activities (LOO) of side chain modified 4-aminoquinolines by 2D and 3D QSAR Models. 

 

 

 

 

              

 

                                                     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                   * Outlier
 

Comp 
pIC50 

(M) 

2D QSAR 3D QSAR 

MLR 

(2) 

*
Res. 

PLSR 

(4) 

*
Res. 

PCR 

(6) 

*
Res. 

kNN-

MFA 

(7) 

*
Res. 

2 4.588 4.553 0.035 4.548 0.04 4.431 0.156 4.657 -0.069 

3 4.744 4.557 0.188 4.581 0.164 4.656 0.213 4.425 0.32 

4 4.089 4.206 -0.12 4.241 -0.15 4.08 0.009 3.704 0.386 

5 4.281 4.356 -0.08 4.499 -0.22 4.308 -0.028 4.657 -0.376 

6 4.569 4.592 -0.02 4.665 -0.1 4.617 -0.048 4.512 0.056 

7 4.473 4.586 -0.11 4.583 -0.11 4.655 -0.227 4.417 0.056 

8 3.901 4.18 -0.28 4.159 -0.26 4.186 -0.285 4.103 -0.202 

9 4.601 4.514 0.087 4.631 -0.03 4.559 0.042 4.425 0.176 

10 4.144 4.336 -0.19 4.299 -0.15 4.342 -0.198 4.314 -0.17 

11 4.351 4.157 0.193 4.216 0.135 4.011 0.339 4.172 0.179 

12 4.063 4.011 0.052 3.91 0.153 3.938 0.125 4.023 0.04 

13 4.566 4.332 0.234 4.298 0.268 4.453 0.113 4.364 0.201 

14 4.585 4.401 0.184 4.238 0.347 4.515 0.07 4.565 0.02 

15 4.565 4.413 0.152 4.353 0.212 4.338 0.227 4.502 0.063 

16
*
 3.542 - - - - 3.642 -0.135 3.706 -0.164 

17 4.42 4.296 0.124 4.296 0.124 4.182 0.238 4.575 -0.155 

18 3.538 3.532 0.005 3.474 0.064 3.438 0.1 3.446 0.092 

19 4.072 3.928 0.144 4.006 0.066 4.105 -0.032 3.823 0.25 

20 3.556 3.586 -0.03 3.657 -0.1 3.727 -0.17 3.651 -0.094 

21 3.349 3.754 -0.4 3.73 -0.38 3.722 -0.373 3.803 -0.453 

22 3.451 3.705 -0.25 3.738 -0.29 3.768 -0.317 3.704 -0.253 

23 3.764 3.754 0.01 3.805 -0.04 3.88 -0.116 3.651 0.114 

24 3.851 3.425 0.426 3.45 0.401 3.549 0.333 3.504 0.347 

25 4.063 4.09 -0.03 3.983 0.08 3.912 0.151 3.946 0.117 
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