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ABSTRACT 

2-Chloroquinoline-3-carbaldehyde and its substituted products are extremely versatile 

intermediates for synthesizing a variety of compounds containing quinoline moiety, which find 

many pharmaceutical and other applications. Quantitative structure-activity relationship (QSAR) 

plays an important role in toxicity prediction. The present study deals with acute toxicity 

predictions LD50 (median lethal dose) values of (3-(2-chloroquinolin-3-yl)oxiran-2-yl)(phenyl) 

methanone and its derivatives in rat by oral exposure through QSAR  modelling  software package 

T.E.S.T. In the present study the toxicity (LD50) is evaluated using a variety of QSAR 

methodologies, such as hierarchical clustering, the Food and Drug Administration (FDA) MDL, 

nearest neighbor and a consensus model. For compounds No. 1 to 4, 7, 10 and 11 hierarchical 

clustering method does not provide the LD50 values; however, other methods have successfully 

provided the toxicity estimation for the same. The said software helps to predict the exact LD50 

values when compared to experimental data reported in the range (>2000 to >5000 mg/kg). This is 

a preliminary observation from screening of LD50 values using the said software package. 

Further study may be relevant using other software to compare the predicted data. 

Key words: QSAR analysis, Chloroquinoline, Rat, T.E.S.T., Toxicity, median lethal dose 

 
1.   INTRODUCTION 

2-Chloroquinoline-3-carbaldehyde and its substituted products are remarkably versatile 

intermediates for synthesizing a variety of compounds containing quinoline moiety, which find 

many pharmaceutical and other applications
1
. The aldehydic and the chloro functional groups in 

chloroquinoline carbaldehyde molecule serve as synthons to prepare a range of useful products 

and have been of interest to medicinal chemists in the past decades.  In keeping with this trend, the 

present authors have aimed to design eleven new compounds, namely, (3-(2-chloroquinolin-3-

yl)oxiran-2-yl) (phenyl) methanone and its derivatives (1-11)
2
. In the present study, the authors 

have described in silico toxicity estimation of these compounds in detail.             

                        

Toxicity study is the study of adverse effects of chemical and physical agents and the 

degree to which a substance can harm humans or animals. Toxicity studies can be of chronic 

toxicity and acute toxicity, which involves harmful effects on an organism through a single or 

short term exposure. Sub-chronic toxicity is defined as the ability of a toxic substance to cause 

effects for more than one year but less than the life time of exposed organism. Chronic toxicity, on 

the other hand, is the ability of the substance or mixture of substances to cause harmful effects 

over an extended period, usually upon repeated and continuous exposure. Quantitative structure–

activity relationship (QSAR) is a mathematical model that attempts to relate the structure-derived 

features (molecular descriptors) of a chemical compound to its biological or physicochemical 

activity. 
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 Therefore, this method has been established for the 

predictive and ultimately diagnostic abilities. This can be used to 

predict the biological activity, viz., IC50, LC50/LD50, EC50 etc. or 

class, viz., inhibitor versus non-inhibitor type of compounds before 

the actual bioassay. The molecular descriptors for QSAR are used 

on the basis of thermodynamic, steric and electronic parameters
3,4

. 

These parameters include partition coefficient, molecular volume, 

surface area, molecular refractivity etc. Also, the structural 

descriptors, which provide information about the various 

toxicological and pharmacokinetic aspects of the synthesized 

molecules, include E-state functions, kappa index, chi index, 

Lipinski’s five rules and Wiener index
5
. 

  

 An in silico method is also based on quantitative structure–

activity relationship (QSAR) models, which can be used to 

understand drug action, design new compounds or drugs and 

screen chemical libraries 
6,7,8,9

. The experimental measurement as 

bioassay with animals for compounds is difficult, more expensive 

and time-consuming. In order to mitigate the enormous difficulties 

associated with the animal tests,appreciable efforts have been 

expended in developing computational methods to predict 

biological activity through QSAR along with statistical modeling
10

. 

Recently, the European Chemicals Legislation, Registration, 

Evaluation and Authorization of Chemicals (REACH) have 

suggested the use of in silico method as a study for reliable 

toxicological risk assessment
11-12

. There are several recommended 

toxicity prediction softwares viz. TOPKAT (Toxicity Prediction by 

Komputer Assisted Technology)
13

, DRAGON
14

, ADMET 

(Absorption, Distribution, Metabolism, Elimination, and 

Toxicity)
15

, V‐life MDS
16

 and ADME
17

, T.E.S.T. (Toxicity 

Estimation Software Tool), PADEL
18

, MDL QSAR (Elsevier 

MDL, 2006), Molconn-z (Edusoft-LC, 2006) etc. 

 

 According to USEPA
5
, T.E.S.T. software is a simple QSAR 

model to calculate the toxicity of chemicals using a simple linear 

function of molecular descriptors, which is as follows: 

 

Toxicity = ax1 + bx2 + c 

Where, x1 and x2 are the independent descriptor variables and a, b, 

and c are fitted parameters. The T.E.S.T (Toxicity Estimation 

Software Tool) software provides multiple prediction 

methodologies, which has greater confidence in the predicted 

toxicities (as assuming the predicted toxicities are closely similar 

from different methods). In addition some researchers may have 

more confidence in particular QSAR approaches based on value 

added experience. 

 

 In the present study an attempt has been made to predict 

acute toxicity of (3-(2-chloroquinolin-3-yl)oxiran-2-yl) (phenyl) 

methanone and  its ten derivatives (1-11) in the rat oral exposure 

for LD50 values using QSAR modeling software package. The 

comparisons were made between existing LD50 values obtained 

from different experimental and predicted LD50 values using 

T.E.S.T. software for the said compounds. The compounds 1-11 

were evaluated for their toxicity using an in silico QSAR model. 

Since these predictions may be advantageous with respect to time 

and cost. Therefore by using Toxicity Estimation Software Tool 

(T.E.S.T.) version 4.2, a highly reliable QSAR model was applied 

for the present study. 

 

2.   MATERIALS AND METHODS 

2.1   Drug and chemicals used 

             In this analysis, we investigate using the lethal dose that 

kills fifty percent of a test population (the LD50) for determining 

the relative toxicity of a number of substances. In general, the 

smaller the LD50 value, the more toxic the chemical, and the larger 

the LD50 value, the lower the toxicity. When systemic toxicity and 

other specific toxicity data are unavailable for the chemical(s) of 

interest, during emergency responses, computed LD50 values may 

be employed to determine the relative toxicity of a series of 

chemicals. In the present study, a group of 11 new chemical 

entities ((3-(2-chloroquinolin-3-yl)oxiran-2-yl)(phenyl) methanone 

and its derivatives (1-11) as tabulated in Table 1 and 2, have been 

evaluated using three available rat oral QSAR LD50 models by 

using the said software. The present study was conducted to 

evaluate the toxicity (LD50). T.E.S.T. estimates toxicity using a 

variety of QSAR methodologies, such as hierarchical clustering, 

the Food and Drug Administration (FDA) MDL, nearest 

neighborand a consensus model. The required descriptors are 

calculated without requiring any external programs. The structure 

of a chemical can be simply entered through the use of multiple 

tools including a chemical sketcher window, a text file containing 

SMILES notations, or importing it from a database of structures. 

After entering the structure, a chemical’s toxicity can be estimated 

using one of several advanced methodologies. T.E.S.T. version 4.0 

contains LD50 values from 7,420 chemicals. 
 

             The data reliability is tested by plotting a graph between 

experimental and predicted values of similar compounds 

(compounds whose similarity coefficient with test compound is 

greater than 0.5). The confidence on the predicted value is high, if 

the plot between predicted and experimental values of similar 

compounds gives an ideal line. 

 

 It was reported that T.E.S.T. software package estimates 

toxicity using a variety of QSAR methodologies
19

, such as 

hierarchical clustering, the Food and Drug Administration (FDA) 

MDL, nearest neighbor and a consensus model. These methods are 

simply the average of the predicted toxicities from other QSAR 

methodologies, considering the applicability domain in each 
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method
20

. Generally molecular descriptors are physical 

characteristics of the structure of chemicals viz. the molecular 

weight or the number of benzene rings of a chemical. The overall 

pool of descriptors in the software (T.E.S.T.) contains 797 two-

dimensional descriptors. The descriptors include the classes of 

descriptors viz. E-state values and E-state counts, constitutional 

descriptors, topological descriptors, walk and path counts, 

connectivity, information content, 2Dautocorrelation, Burden 

eigenvalue, molecular property (such as the octanol-water partition 

coefficient), kappa, hydrogen bond acceptor/donor counts, 

molecular distance edge, and molecular fragment counts. 

Following important methods were described in instruction manual 

for the present software
5
: 

 

2.2   Hierarchical clustering method 

 

In T.E.S.T., the hierarchical clustering method utilizes a 

variation of the Ward’s Minimum Variance Clustering Method to 

contribute a series of clusters from the initial training set as per 

Romesburg
21

. According to Ruiz et al. 
22

, the change in variance 

caused by combining clusters j and k is in equation given below:  

 
where nj is the number of chemicals in cluster j, Cj,i is the centroid 

(or average value) for descriptor i for cluster j, and d is the number 

of descriptors (~800)
19

. It was noted that the predicted value for a 

given test chemical is calculated using the equally weighted 

average of the model predictions from the closest cluster from each 

step in the hierarchical clustering. 

 

2.3   FDA MDL QSAR Method 

 

In T.E.S.T., the FDA MDL method is based on the 

work of Contrera et al.
23

. In this method, it was noted that 

predictions for each test chemical are made using a unique 

cluster (constructed at runtime). It contains structurally similar 

chemicals selected from the overall training set. It is different 

from the Hierarchical method, where the predictions are made 

using one or more clusters, which are constructed a priori using 

Ward’s method. For individual test chemical, a cluster is 

constructed using the 30 most similar chemicals from the 

training set as defined by the cosine similarity coefficient, SCi,k, 

which is calculated using the equation given below, as per 

USEPA (2012): 
 

 
 

where Xij is the value of the j-th normalized descriptor for 

chemical i (normalized with respect to all of the chemicals in the 

original training set) and Xkj is the value of the j-th descriptor for 

chemical k. The entire pool of approximately 800 descriptors is 

always used to calculate the similarity coefficient in equation (2). 

A multiple linear regression model is then built for the new cluster 

using a genetic algorithm-based method, and the toxicity can be 

easily predicted 
21

. 

 

2.4   Nearest Neighbor Method 

 

  In T.E.S.T. (USEPA, 2012), the nearest neighbor method 

is a simplification of the variable selection of kNN approach. It 

was observed in the nearest neighbor method, the toxicity is simply 

predicted as the average of the toxicity of the three most similar 

chemicals from the training set. The similarity is defined in terms 

of the cosine similarity coefficient (Equation 2). 

 

2.5   Consensus Method 

 

In the consensus method of T.E.S.T., the predicted 

toxicity is simply the average of the predicted toxicities from the 

above mentioned QSAR methodologies considering the 

applicability domain of individual method
24

. It was suggested, if 

only a single QSAR methodology can make a prediction, then the 

predicted value is unreliable and unable to use. This method 

typically provides the highest prediction accuracy by the 

predictions from the other above mentioned methods. In addition 

this method provides the highest prediction coverage because 

several methods with slightly different applicability domains are 

used to make a prediction
22. 

 

2.6   Statistical external validation 
 

In T.E.S.T., the predictive ability of each of the QSAR 

methodologies was evaluated using statistical external validation as 

per Gramatica and Pilutti
25

. According to Golbraikh et al.
26

, a 

QSAR model is acceptable on predictive power if the following 

equations are satisfied: 

  

 

  

 

 

 

where q2 is ‘the leave one out’ correlation coefficient for 

the training set, R2 is correlation coefficient between the observed 

and predicted toxicities for the test set, Ro2 is correlation 

coefficient between the observed and predicted toxicities for the 

test set with the Y-intercept set to zero (where the regression line is 

given by Y=kX). The prediction accuracy was evaluated in terms 
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of equations (4) and (5). In addition, the accuracy will be evaluated 

in terms of the RMSE (root mean square error), and the MAE 

(mean absolute error) for the test set. It has been demonstrated that 

q2 (the leave one out correlation coefficient for the training set) is 

not correlated with R2 for the test set. 

 
 

2.7   Applicability domains 

 

A concept of the applicability domain (AD) was created 

and used to avoid such an incorrect extrapolation of activity 

predictions in T.E.S.T. According to Ruiz et al. (2012), the QSAR 

model can predict the potential toxicity of any chemical but the 

predictive confidence may vary. Generally each model is processed 

using a training set of chemicals, which cover only a small fraction 

of the entire chemical world and it was observed that its prediction 

capability is restricted to its AD, called as its descriptor space. As a 

result of this, only a certain fraction of chemicals of an external 

data set can be reasonably predicted. So it is promising to 

determine the chemical of interest falls within or outside the AD of 

a particular model. In context, varying degrees of uncertainties 

could be validated with such a prediction. For model ADs, features 

and limitations need to be understood thoroughly for the 

appropriate interpretation of predictive results. 

 
 

3.   RESULTS & DISCUSSION 

 
 

The toxicity data of ((3-(2-chloroquinolin-3-yl)oxiran-2-

yl)(phenyl) methanone and its derivatives (1-11) is computed by 

four methods, namely, consensus method, hierarchical clustering, 

the Food and Drug Administration (FDA) method and nearest 

neighbor method and are given in Table 4. For compound no. 1 to 

4, 7, 10 and 11 hierarchical clustering method does not provide the 

LD50 values; however, other methods have successfully provided 

the toxicity estimation of the same.  

 

Based on these findings the order of toxicity according to 

consensus method was found in following manner, wherein the 

compound no. 4 is found to be the most toxic and compound no. 1 

is found to be the safest among all and the lead compound.   

 

4 >5>11>10>7>6>8>9>3>2>1 

 

Hierarchical method is not found reliable for the given 

series as only four compounds namely 5, 6, 8 and 9 values only 

available. However, among these the order of toxicity was found in 

following manner, wherein the compound no. 6 is found to be the 

most toxic  and compound no. 8 is found to be the safest among all 

and the lead compound. 

6>5>9 >8 

 

The order of toxicity according to FDA method was found 

to be in the following manner, wherein the compound no. 7 is 

found to be the most toxic and compound no. 9 is found to be the 

safest among all and the lead compound. 

 

7>5>4>3>10>11>2>1>6 >8>9 

 

According to nearest neighbor method, the order of 

toxicity was found to be in following manner, wherein the 

compound no. 8 is found to be the most toxic and compound no. 1 

is found to be the safest among all and the lead compound. 

 

8>11>4>5>6>10>9>2>7>3>1 

 

Based on these findings, compound no. 1 and 9 are found 

to be the lead compounds, subject to suitability of other 

parameters, while compounds no. 4, 6, 7 and 8 are found to be the 

most toxic and further study is recommended for these compounds. 

The prediction value for Mean Absolute Error (MAE) for different 

compounds studied for their toxicity and the other similar 

compounds are provided in Fig. 1-4 respectively. Though the mean 

absolute error value falls within the acceptable corridor for the all 

seven graphs, it exceeds the acceptable range for compound no. 1, 

8 and 9. 

 

Researchers nowadays rely a lot on QSAR models for 

Toxicity predictions, since they reduce the time consumed, the cost 

incurred and also eliminate the problem of animal testing. These 

models are highly reliable and are used widely. Rat oral QSAR 

LD50 models were made for ((3-(2-chloroquinolin-3-yl)oxiran-2-

yl)(phenyl) methadone and its derivatives (1-11). The toxicity 

levels were found in the range of 246.05 mg/kg to 4956.14 mg/kg 

having the highest similarity coefficient of 0.88. These LD50 values 

of the compounds are assigned to various toxic levels according to 

standard toxicity scale. The reliability of the data is solely based on 

user confidence. The current findings serve as a base for 

researchers to further investigate the properties of these new 

compounds 

 

4.   CONCLUSION  

The study concludes that some of ((3-(2-chloroquinolin-3-

yl)oxiran-2-yl)(phenyl) methanone and its derivatives (1-11) are 

found to be toxic, some are moderately toxic and while few others 

are relatively less toxic. However, further studies on the same are 

recommended. The study also helped to found the lead compound 

among the test compounds based on their relative toxicity level. 
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Table 1. General structure for compounds 1–11  

 

 

  

 

 

 

 

 

 

 

 

Table 2. IUPAC names of test compounds 1–11. 

Compound Chemical Name 

1 (3-(2-Chloroquinolin-3-yl)oxiran-2-yl)(phenyl)methanone 

2 (3-(2-Chloro-6-methylquinolin-3-yl)oxiran-2-yl)(phenyl)methanone 

3 (3-(2-Chloro-6-methoxyquinolin-3-yl)oxiran-2-yl)(phenyl)methanone 

4 (3-(2-Chloroquinolin-3-yl)oxirane-2-yl)(2,4-dichlorophenyl)methanone 

5 (3-(2-Chloro-6-methylquinolin-3-yl)oxirane-2-yl)(2,4-dichlorophenyl)methanone 

6 (3-(2-Chloro-6-methoxyquinolin-3-yl)oxirane-2-yl)(2,4-dichlorophenyl)methanone 

7 (3-(2-Chloroquinolin-3-yl)oxirane-2-yl)(p-tolyl)methanone 

8 (3-(2-Chloro-6-methylquinolin-3-yl)oxirane-2-yl)(p-tolyl)methanone 

9 (3-(2-Chloro-6-methoxyquinolin-3-yl)oxirane-2-yl)(p-tolyl)methanone 

10 (3-(2,6-Dichloroquinolin-3-yl)(2,4-dichlorophenyl)oxirane-2-yl)methanone 

11 (3-(2,6-Dichloroquinolin-3-yl)oxirane-2-yl)(p-tolyl)methanone 
 

   Table 3. Structures of test compounds 1–11 by SMILES notation & Molecular formula. 

Compound 

No 

SMILES Notation  Molecular 

Formula 

1 O=C(C2OC2C4=C(Cl)N=C3C=CC=CC3=C4)C1=CC=CC=C1 C18H12ClNO2 

2 O=C(C2OC2C4=C(Cl)N=C3C=CC(C)=CC3=C4)C1=CC=CC=C1 C19H14ClNO2 

3 O=C(C2OC2C4=C(Cl)N=C3C=CC(OC)=CC3=C4)C1=CC=CC=C1 C19H14ClNO3 

4 O=C(C2OC2C4=C(Cl)N=C3C=CC=CC3=C4)C1=CC=C(Cl)C=C1Cl C18H10Cl3NO2 

5 O=C(C2OC2C4=C(Cl)N=C3C=CC(C)=CC3=C4)C1=CC=C(Cl)C=C1Cl C19H12Cl3NO2 

6 O=C(C2OC2C4=C(Cl)N=C3C=CC(OC)=CC3=C4)C1=CC=C(Cl)C=C1Cl C19H12Cl3NO3 

7 O=C(C2OC2C4=C(Cl)N=C3C=CC=CC3=C4)C1=CC=C(C)C=C1 C19H14ClNO2 

8 O=C(C2OC2C4=C(Cl)N=C3C=CC(C)=CC3=C4)C1=CC=C(C)C=C1 C20H16ClNO2 

9 O=C(C2OC2C4=C(Cl)N=C3C=CC(OC)=CC3=C4)C1=CC=C(C)C=C1 C20H16ClNO3 

10 O=C(C4=CC=C(Cl)C=C4Cl)C1OC1C3=C(Cl)N=C2C=CC(Cl)=CC2=C3 C18H9Cl4NO2 

11 O=C(C2OC2C4=C(Cl)N=C3C=CC(Cl)=CC3=C4)C1=CC=C(C)C=C1 C18H13Cl2NO2 

 

N

R

Cl

O

O

R1

R2  

Compound R R1 R2 

1 H H H 

2 CH3 H H 

3 OCH3 H H 

4 H Cl Cl 

5 CH3 Cl Cl 

6 OCH3 Cl Cl 

7 H CH3 H 

8 CH3 CH3 H 

9 OCH3 CH3 H 

10 Cl Cl Cl 

11 Cl CH3 Cl 
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   Table 4. Batch predictions of oral rat LD50 values (mg/kg) by four different methods. 

Compound  No Conseusus method Hierarchical method FDA method Nearest neighbor 

method 

1 2971.37 N/A 3033.12 2910.89 

2 2702.85 N/A 2644.73 2762.25 

3 2276.49 N/A 1787.80 2898.75 

4 655.29 N/A 1477.90 290.55 

5 731.40 1199.28 1082.74 301.32 

6 1009.28 1046.79 3131.86 313.60 

7 970.49 N/A 340.98 2762.25 

8 1073.89 1346.43 3738.36 246.05 

9 1698.44 1137.34 4956.14 869.19 

10 782.37 N/A 1931.02 316.98 

11 739.24 N/A 1987.99 274.89 

 

 

 
 

 

Test set chemicals 
MAE

* 

Entire set 0.43 

Similarity coefficient ≥ 

0.5 
0.66 

 

 

                     Fig 1. Prediction of MAE for the test chemical (C18H12ClNO2) and the most similar chemicals. 
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Test set chemicals MAE* 

Entire set 0.46 

Similarity coefficient ≥ 0.5 0.88 

 

 

 

Fig 2. Prediction of MAE for the test chemical (C20H16ClNO2) and the most similar chemicals. 

 

 

 

 

 

 

 

Test set chemials MAE* 

Entire set 0.7 

Similarity coefficient ≥ 0.5 0.73 
 

 

Fig 3. Prediction of MAE for the test chemical (C20H16ClNO3) and the most similar chemicals. 
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Test set chemicals MAE* 

Entire set 0.48 

Similarity coefficient ≥ 0.5 0.7 
 

 
 

Fig 4. Prediction of MAE for the test chemical (C18H12ClNO2) and the most similar chemicals 
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