Vol. 6, Issue 7, Jul 2018, 27-34
© Impact Journals

TRANSLATION OF BIPOLAR VALUED FUZZY SUBHEMIRING OF A HEMIRING

N. Selvak Kumaraen ${ }^{1}$, K. Arjunan ${ }^{2}$ \& B. Ananth ${ }^{3}$
${ }^{1}$ Associate Professor, Department of Mathematics, GRT Institute of Engineering and Technology, Tiruttani, Thiruvallur, Tamil Nadu, India
${ }^{2}$ PG and Research, Department of Mathematics, Alagappa Government Arts College, Karaikudi, Tamil Nadu, India
${ }^{3}$ Department of Mathematics, H.H.The Rajah's College, Pudukkottai, Tamil Nadu, India

Received: 05 Jun 2018
Accepted: 06 Jul 2018
Published: 16 Jul 2018

Abstract

In this paper, some definitions and new Theorems of a bipolar valued fuzzy subhemiring of a hemiring are presented. Using the definition of translation of bipolar valued fuzzy subhemiring of a hemiring, union, intersection and translation Theorems are introduced.

KEYWORDS: Bipolar Valued Fuzzy Subset, Image, Preimage, Bipolar Valued Fuzzy Subhemiring, Translation

INTRODUCTION

The concept of fuzzy sets was introduced by Zadeh [15]. Since its inception, the theory of fuzzy sets has developed in many directions and is finding applications in a wide variety of fields. In [5] Rosenfeld used this concept to develop the theory of fuzzy groups of a group. In fact, many basic properties in group theory are found to be carried over to fuzzy groups. Lee [9] introduced the notion of bipolar valued fuzzy sets. Bipolar valued fuzzy sets are an extension of fuzzy sets whose membership degree range is enlarged from the interval $[0,1]$ to $[-1,1]$. In a bipolar valued fuzzy set, the membership degree 0 means that elements are irrelevant to the corresponding property, the membership degree $(0,1]$ indicates that elements somewhat satisfy the property and the membership degree $[-1,0)$ indicates that elements somewhat satisfy the implicit counter property. Anitha.M.S., Muruganantha Prasad \& K. Arjunan[1] defined as bipolar valued fuzzy subgroups of a group. In this paper, we introduce the concept of bipolar valued fuzzy translation of bipolar valued fuzzy subhemirings of a hemiring. Using these concepts, some results are established.

1. PRELIMINARIES

1.1. Definition

A bipolar valued fuzzy set (BVFS) of X is defined as an object of the form $\mathrm{A}=\left\{\left\langle\mathrm{x}, \mathrm{A}^{+}(\mathrm{x}), \mathrm{A}^{-}(\mathrm{x})\right\rangle / \mathrm{x} \in \mathrm{X}\right\}$, where $\mathrm{A}^{+}: \mathrm{X} \rightarrow[0,1]$ and $\mathrm{A}^{-}: \mathrm{X} \rightarrow[-1,0]$. The positive membership degree $\mathrm{A}^{+}(\mathrm{x})$ denotes the satisfaction degree of an element x to the property corresponding to a bipolar valued fuzzy set A and the negative membership degree $\mathrm{A}^{-}(\mathrm{x})$ denotes the satisfaction degree of an element x to some implicit counter-property corresponding to a bipolar valued fuzzy set A .

1.2. Example

$A=\{\langle x, 0.8,-0.6\rangle,\langle y, 0.7,-0.5\rangle,\langle z, 0.9,-0.4\rangle\}$ is a bipolar valued fuzzy subset of $X=\{x, y, z\}$.

1.3. Definition

Let S be a hemiring. A bipolar valued fuzzy subset B of S is said to be a bipolar valued fuzzy subhemiring of S (BVFSHR) if the following conditions are satisfied,

- $B^{+}(x+y) \geq \min \left\{B^{+}(x), B^{+}(y)\right\}$
- $B^{+}(x y) \geq \min \left\{B^{+}(x), B^{+}(y)\right\}$
- $\mathrm{B}^{-}(\mathrm{x}+\mathrm{y}) \leq \max \left\{\mathrm{B}^{-}(\mathrm{x}), \mathrm{B}^{-}(\mathrm{y})\right\}$
- $B^{-}(x y) \leq \max \left\{\mathrm{B}^{-}(x), \mathrm{B}^{-}(y)\right\}$ for all x and y in S.

1.4. Example:

Let $S=Z_{3}=\{0,1,2\}$ be a hemiring with respect to the ordinary addition and multiplication. Then $A=\{<0,0.8$, $-0.9\rangle,\langle 1,0.6,-0.8\rangle,\langle 2,0.6,-0.8\rangle\}$ is a bipolar valued fuzzy subhemiring of S .

1.5. Definition

Let X and Y be any two sets. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be any function and let A be a bipolar valued fuzzy subset in X, V be a bipolar valued fuzzy subset in $\mathrm{f}(\mathrm{X})=\mathrm{Y}$, defined by $\mathrm{V}^{+}(\mathrm{y})=\operatorname{Sup}_{x \in f^{-1}(y)} \mathrm{A}^{+}(\mathrm{x})$ and $\mathrm{V}^{-}(\mathrm{y})=\inf _{x \in f^{-1}(y)} \mathrm{A}^{-}(\mathrm{x})$, for all x in X and y in Y. A is called a preimage of V under f and is defined as $A^{+}(x)=V^{+}(f(x)), A^{-}(x)=V^{-}(f(x))$ for all x in X and is denoted by $\mathrm{f}^{1}(\mathrm{~V})$.

1.6. Definition

Let $\mathrm{A}=\left\langle\mathrm{A}^{+}, \mathrm{A}^{-}\right\rangle$be a bipolar valued fuzzy subset of X and α in $\left[0,1-\sup \left\{\mathrm{A}^{+}(\mathrm{x})\right\}\right], \beta$ in $\left[-1-\inf \left\{\mathrm{A}^{-}(\mathrm{x})\right\}, 0\right]$. Then $\mathrm{T}=\left\langle\mathrm{T}^{+}, \mathrm{T}^{-}\right\rangle$is called a bipolar valued fuzzy translation of A if $\mathrm{T}^{+}(\mathrm{x})=T^{+A} \alpha_{i}(\mathrm{x})=\mathrm{A}^{+}(\mathrm{x})+\alpha, \mathrm{T}^{-}(\mathrm{x})=T_{\beta}^{-A}(\mathrm{x})=$ $A^{-}(x)+\beta$, for all x in X.

1.7 Example

Consider the set $\mathrm{X}=\{0,1,2,3,4\}$. Let $\mathrm{A}=\{(0,0.5,-0.1),(1,0.4,-0.3),(2,0.6,-0.05),(3,0.45,-0.2),(4$, $0.2,-0.5)\}$ be a bipolar valued fuzzy subset of X and $\alpha=0.1, \beta=-0.1$. Then the bipolar valued fuzzy translation of A is T $=\mathrm{T}^{\mathrm{A}}{ }_{(0.1,-0.1)}=\{(0,0.6,-0.2),(1,0.5,-0.4),(2,0.7,-0.15),(3,0.55,-0.3),(4,0.3,-0.6)\}$.

2. PROPERTIES

2.1. Theorem

If M and N are two bipolar valued fuzzy translations of bipolar valued fuzzy subhemiring A of a hemiring R , then their intersection $\mathrm{M} \cap \mathrm{N}$ is also a bipolar valued fuzzy translation of A .

Proof: Let x and y belong to R . Let $\mathrm{M}=T_{(\alpha, \beta)}^{A}=\left\{\left\langle\mathrm{x}, \mathrm{A}^{+}(\mathrm{x})+\alpha, \mathrm{A}^{-}(\mathrm{x})+\beta\right\rangle / \mathrm{x} \in \mathrm{R}\right\}$ and $\mathrm{N}=T_{(\gamma, \delta)}^{A}=\left\{\left\langle\mathrm{x}, \mathrm{A}^{+}(\mathrm{x})\right.\right.$ $\left.\left.+\gamma, \mathrm{A}^{-}(\mathrm{x})+\delta\right\rangle / \mathrm{x} \in \mathrm{R}\right\}$ be two bipolar valued fuzzy translations of bipolar valued fuzzy subhemiring $\mathrm{A}=\left\langle\mathrm{A}^{+}, \mathrm{A}^{-}\right\rangle$of R . Let $\mathrm{C}=\mathrm{M} \cap \mathrm{N}$ and $\mathrm{C}=\left\{\left\langle\mathrm{x}, \mathrm{C}^{+}(\mathrm{x}), \mathrm{C}^{-}(\mathrm{x})\right\rangle / \mathrm{x} \in \mathrm{R}\right\}$, where $\mathrm{C}^{+}(\mathrm{x})=\min \left\{\mathrm{A}^{+}(\mathrm{x})+\alpha, \mathrm{A}^{+}(\mathrm{x})+\gamma\right\}$ and $\mathrm{C}^{-}(\mathrm{x})=\max \left\{\mathrm{A}^{-}(\mathrm{x})+\right.$ $\left.\beta, \mathrm{A}^{-}(\mathrm{x})+\delta\right\}$.

Case (i): $\alpha \leq \gamma$ and $\beta \leq \delta$. Now $C^{+}(x)=\min \left\{\mathrm{M}^{+}(\mathrm{x}), \mathrm{N}^{+}(\mathrm{x})\right\}=\min \left\{\mathrm{A}^{+}(\mathrm{x})+\alpha, \mathrm{A}^{+}(\mathrm{x})+\gamma\right\}=\mathrm{A}^{+}(\mathrm{x})+\alpha=\mathrm{M}^{+}(\mathrm{x})$ for all x in R. And $\mathrm{C}^{-}(\mathrm{x})=\max \left\{\mathrm{M}^{-}(\mathrm{x}), \mathrm{N}^{-}(\mathrm{x})\right\}=\max \left\{\mathrm{A}^{-}(\mathrm{x})+\beta, \mathrm{A}^{-}(\mathrm{x})+\delta\right\}=\mathrm{A}^{-}(\mathrm{x})+\delta=\mathrm{N}^{-}(\mathrm{x})$ for all x in R . Therefore $\mathrm{C}=$ $T_{(\alpha, \delta)}^{A}=\left\{\left\langle\mathrm{x}, \mathrm{A}^{+}(\mathrm{x})+\alpha, \mathrm{A}^{-}(\mathrm{x})+\delta\right\rangle / \mathrm{x} \in \mathrm{R}\right\}$ is a bipolar valued fuzzy translation of bipolar valued fuzzy subhemiring A of R.

Case (ii): $\alpha \geq \gamma$ and $\beta \geq \delta$. $\operatorname{Now} C^{+}(x)=\min \left\{\mathrm{M}^{+}(\mathrm{x}), \mathrm{N}^{+}(\mathrm{x})\right\}=\min \left\{\mathrm{A}^{+}(\mathrm{x})+\alpha, \mathrm{A}^{+}(\mathrm{x})+\gamma\right\}=\mathrm{A}^{+}(\mathrm{x})+\gamma=\mathrm{N}^{+}(\mathrm{x})$ for all x in R. And $C^{-}(x)=\max \left\{M^{-}(x), N^{-}(x)\right\}=\max \left\{A^{-}(x)+\beta, A^{-}(x)+\delta\right\}=A^{-}(x)+\beta=M^{-}(x)$ for all x in R. Therefore $\mathrm{C}=T_{(\gamma, \beta)}^{A}=\left\{\left\langle\mathrm{x}, \mathrm{A}^{+}(\mathrm{x})+\gamma, \mathrm{A}^{-}(\mathrm{x})+\beta\right\rangle / \mathrm{x} \in \mathrm{R}\right\}$ is a bipolar valued fuzzy translation of bipolar valued fuzzy subhemiring A of R.

Case (iii): $\alpha \leq \gamma$ and $\beta \geq \delta$. Clearly $\mathrm{C}=T_{(\alpha, \beta)}^{A}=\left\{\left\langle\mathrm{x}, \mathrm{A}^{+}(\mathrm{x})+\alpha, \mathrm{A}^{-}(\mathrm{x})+\beta\right\rangle / \mathrm{x} \in \mathrm{R}\right\}$ is a bipolar valued fuzzy translation of bipolar valued fuzzy subhemiring A of R.

Case (iv): $\alpha \geq \gamma$ and $\beta \leq \delta$. Clearly $\mathrm{C}=T_{(\gamma, \delta)}^{A}=\left\{\left\langle\mathrm{x}, \mathrm{A}^{+}(\mathrm{x})+\gamma, \mathrm{A}^{-}(\mathrm{x})+\delta\right\rangle / \mathrm{x} \in \mathrm{R}\right\}$ is a bipolar valued fuzzy translation of bipolar valued fuzzy subhemiring A of R. In other cases are true, so in all the cases, the intersection of any two bipolar valued fuzzy translations of bipolar valued fuzzy subhemiring A of R is a bipolar valued fuzzy translation of A.

2.2. Theorem

The intersection of a family of bipolar valued fuzzy translations of bipolar valued fuzzy subhemiring A of a hemiring R is a bipolar valued fuzzy translation of A .

Proof: Using the Theorem 2.1, we can prove easily.

2.3. Theorem

Union of any two bipolar valued fuzzy translations of bipolar valued fuzzy subhemiring A of a hemiring R is a bipolar valued fuzzy translation of A.

Proof: Let x and y belong to R . Let $\mathrm{M}=T_{(\alpha, \beta)}^{A}=\left\{\left\langle\mathrm{x}, \mathrm{A}^{+}(\mathrm{x})+\alpha, \mathrm{A}^{-}(\mathrm{x})+\beta\right\rangle / \mathrm{x} \in \mathrm{R}\right\}$ and $\mathrm{N}=T_{(\gamma, \delta)}^{A}=\left\{\left\langle\mathrm{x}, \mathrm{A}^{+}(\mathrm{x})\right.\right.$ $\left.\left.+\gamma, \mathrm{A}^{-}(\mathrm{x})+\delta\right\rangle / \mathrm{x} \in \mathrm{R}\right\}$ be two bipolar valued fuzzy translations of bipolar valued fuzzy subhemiring $\mathrm{A}=\left\langle\mathrm{A}^{+}, \mathrm{A}^{-}\right\rangle$of R . Let $\mathrm{C}=\mathrm{M} \cup \mathrm{N}$ and $\mathrm{C}=\left\{\left\langle\mathrm{x}, \mathrm{C}^{+}(\mathrm{x}), \mathrm{C}^{-}(\mathrm{x})\right\rangle / \mathrm{x} \in \mathrm{R}\right\}$, where $\mathrm{C}^{+}(\mathrm{x})=\max \left\{\mathrm{A}^{+}(\mathrm{x})+\alpha, \mathrm{A}^{+}(\mathrm{x})+\gamma\right\}$ and $\mathrm{C}^{-}(\mathrm{x})=\operatorname{Min}\left\{\mathrm{A}^{-}(\mathrm{x})+\right.$ $\left.\beta, A^{-}(x)+\delta\right\}$.

Case (i): $\alpha \leq \gamma$ and $\beta \leq \delta$. Now $C^{+}(x)=\max \left\{\mathrm{M}^{+}(\mathrm{x}), \mathrm{N}^{+}(\mathrm{x})\right\}=\max \left\{\mathrm{A}^{+}(\mathrm{x})+\alpha, \mathrm{A}^{+}(\mathrm{x})+\gamma\right\}=\mathrm{A}^{+}(\mathrm{x})+\gamma=\mathrm{N}^{+}(\mathrm{x})$ for all x and y in R. And $C^{-}(x)=\operatorname{Min}\left\{\mathrm{M}^{-}(\mathrm{x}), \mathrm{N}^{-}(\mathrm{x})\right\}=\operatorname{Min}\left\{\mathrm{A}^{-}(\mathrm{x})+\beta, \mathrm{A}^{-}(\mathrm{x})+\delta\right\}=\mathrm{A}^{-}(\mathrm{x})+\beta=\mathrm{M}^{-}(\mathrm{x})$ for all x in R .

Therefore $\mathrm{C}=T_{(\gamma, \beta)}^{A}=\left\{\left\langle\mathrm{x}, \mathrm{A}^{+}(\mathrm{x})+\gamma, \mathrm{A}^{-}(\mathrm{x})+\beta\right\rangle / \mathrm{x} \in \mathrm{R}\right\}$ is a bipolar valued fuzzy translation of bipolar valued fuzzy subhemiring A of R.

Case (ii): $\alpha \geq \gamma$ and $\beta \geq \delta$. Now $C^{+}(x)=\max \left\{\mathrm{M}^{+}(\mathrm{x}), \mathrm{N}^{+}(\mathrm{x})\right\}=\max \left\{\mathrm{A}^{+}(\mathrm{x})+\alpha, \mathrm{A}^{+}(\mathrm{x})+\gamma\right\}=\mathrm{A}^{+}(\mathrm{x})+\alpha=\mathrm{M}^{+}(\mathrm{x})$ for all x in R . And $\mathrm{C}^{-}(\mathrm{x})=\min \left\{\mathrm{M}^{-}(\mathrm{x}), \mathrm{N}^{-}(\mathrm{x})\right\}=\min \left\{\mathrm{A}^{-}(\mathrm{x})+\beta, \mathrm{A}^{-}(\mathrm{x})+\delta\right\}=\mathrm{A}^{-}(\mathrm{x})+\delta=\mathrm{N}^{-}(\mathrm{x})$ for all x in R . Therefore C $=T_{(\alpha, \delta)}^{A}=\left\{\left\langle\mathrm{x}, \mathrm{A}^{+}(\mathrm{x})+\alpha, \mathrm{A}^{-}(\mathrm{x})+\delta\right\rangle / \mathrm{x} \in \mathrm{R}\right\}$ is a bipolar valued fuzzy translation of bipolar valued fuzzy subhemiring A of R.

Case (iii): $\alpha \leq \gamma$ and $\beta \geq \delta$. Clearly $\mathrm{C}=T_{(\gamma, \delta)}^{A}=\left\{\left\langle\mathrm{x}, \mathrm{A}^{+}(\mathrm{x})+\gamma, \mathrm{A}^{-}(\mathrm{x})+\delta\right\rangle / \mathrm{x} \in \mathrm{R}\right\}$ is a bipolar valued fuzzy translation of bipolar valued fuzzy subhemiring A of R.

Case (iv): $\alpha \geq \gamma$ and $\beta \leq \delta$. Clearly $\mathrm{C}=T_{(\alpha, \beta)}^{A}=\left\{\left\langle\mathrm{x}, \mathrm{A}^{+}(\mathrm{x})+\alpha, \mathrm{A}^{-}(\mathrm{x})+\beta\right\rangle / \mathrm{x} \in \mathrm{R}\right\}$ is a bipolar valued fuzzy translation of bipolar valued fuzzy subhemiring A of R. In other cases are true, so in all the cases, union of any two bipolar valued fuzzy translations of bipolar valued fuzzy subhemiring A of R is a bipolar valued fuzzy translation of A.

2.4. Theorem

The union of a family of bipolar valued fuzzy translations of bipolar valued fuzzy subhemiring A of a hemiring R is a bipolar valued fuzzy translation of A .

Proof: Using the Theorem 2.1, we can prove easily.

2.5. Theorem

A bipolar valued fuzzy translation of a bipolar valued fuzzy subhemiring A of a hemiring R is a bipolar valued fuzzy subhemiring of R.

Proof: Assume that $\mathrm{T}=\left\langle\mathrm{T}^{+}, \mathrm{T}^{-}\right\rangle$is a bipolar valued fuzzy translation of a bipolar valued fuzzy subhemiring $\mathrm{A}=\langle$ $\left.\mathrm{A}^{+}, \mathrm{A}^{-}\right\rangle$of a hemiring R. Let x and y in R. We have $\mathrm{T}^{+}(\mathrm{x}+\mathrm{y})=\mathrm{A}^{+}(\mathrm{x}+\mathrm{y})+\alpha \geq \min \left\{\mathrm{A}^{+}(\mathrm{x}), \mathrm{A}^{+}(\mathrm{y})\right\}+\alpha=\min \left\{\mathrm{A}^{+}(\mathrm{x})+\alpha\right.$, $\left.A^{+}(y)+\alpha\right\}=\min \left\{T^{+}(x), T^{+}(y)\right\}$. Therefore $T^{+}(x+y) \geq \min \left\{T^{+}(x), T^{+}(y)\right\}$ for all x and y in R. And $T^{+}(x y)=A^{+}(x y)+\alpha$ $\geq \min \left\{\mathrm{A}^{+}(\mathrm{x}), \mathrm{A}^{+}(\mathrm{y})\right\}+\alpha=\min \left\{\mathrm{A}^{+}(\mathrm{x})+\alpha, \mathrm{A}^{+}(\mathrm{y})+\alpha\right\}=\min \left\{\mathrm{T}^{+}(\mathrm{x}), \mathrm{T}^{+}(\mathrm{y})\right\}$. Therefore $\mathrm{T}^{+}(\mathrm{xy}) \geq \min \left\{\mathrm{T}^{+}(\mathrm{x}), \mathrm{T}^{+}(\mathrm{y})\right\}$ for all x and y in R. Also $T^{-}(x+y)=A^{-}(x+y)+\beta \leq \max \left\{A^{-}(x), A^{-}(y)\right\}+\beta=\max \left\{A^{-}(x)+\beta, A^{-}(y)+\beta\right\}=\max \left\{T^{-}(x)\right.$, $\left.T^{-}(y)\right\}$. Therefore $T^{-}(x+y) \leq \max \left\{T^{-}(x), T^{-}(y)\right\}$ for all x and y in R. And $T^{-}(x y)=A^{-}(x y)+\beta \leq \max \left\{A^{-}(x), A^{-}(y)\right\}+\beta=$ $\max \left\{\mathrm{A}^{-}(\mathrm{x})+\beta, \mathrm{A}^{-}(\mathrm{y})+\beta\right\}=\max \left\{\mathrm{T}^{-}(\mathrm{x}), \mathrm{T}^{-}(\mathrm{y})\right\}$. Therefore $\mathrm{T}^{-}(\mathrm{xy}) \leq \max \left\{\mathrm{T}^{-}(\mathrm{x}), \mathrm{T}^{-}(\mathrm{y})\right\}$ for all x and y in R. Hence T is a bipolar valued fuzzy subhemiring of R.

2.6. Theorem

Let ($\mathrm{R},+,$.) and ($\mathrm{R}^{1},+$, .) be any two hemirings and f be a homomorphism. Then the homomorphic image of a bipolar valued fuzzy translation of a bipolar valued fuzzy subhemiring A of R is also a bipolar valued fuzzy subhemiring of R'.

Proof: Let $\mathrm{V}=\left(\mathrm{V}^{+}, \mathrm{V}^{-}\right)=\mathrm{f}\left(T_{(\alpha, \beta)}^{A}\right)$, where $T_{(\alpha, \beta)}^{A}$ is a bipolar valued fuzzy translation of a bipolar valued fuzzy subhemiring $A=\left(A^{+}, A^{-}\right)$of R. We have to prove that V is a bipolar valued fuzzy subhemiring of R^{\prime}. For all $f(x)$ and $f(y)$ in R^{1}, we have $\mathrm{V}^{+}[\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})]=\mathrm{V}^{+}[\mathrm{f}(\mathrm{x}+\mathrm{y})] \geq T^{+A}{ }_{\alpha}(\mathrm{x}+\mathrm{y})=\mathrm{A}^{+}(\mathrm{x}+\mathrm{y})+\alpha \geq \min \left\{\mathrm{A}^{+}(\mathrm{x}), \mathrm{A}^{+}(\mathrm{y})\right\}+\alpha=\min \left\{\mathrm{A}^{+}(\mathrm{x})+\alpha\right.$, $\left.\mathrm{A}^{+}(\mathrm{y})+\alpha\right\}=\min \left\{T^{+A}{ }_{\alpha}(\mathrm{x}), T^{+A}{ }_{\alpha}(\mathrm{y})\right\}$
which implies that $V^{+}[f(x)+f(y)] \geq \min \left\{V^{+}(f(x)), V^{+}(f(y))\right\}$ for all $f(x)$ and $f(y)$ in R^{\prime}. And $V^{+}[f(x) f(y)]=V^{+}$ $[\mathrm{f}(\mathrm{xy})] \geq T^{+A}{ }_{\alpha}(\mathrm{xy})=\mathrm{A}^{+}(\mathrm{xy})+\alpha \geq \min \left\{\mathrm{A}^{+}(\mathrm{x}), \mathrm{A}^{+}(\mathrm{y})\right\}+\alpha=\min \left\{\mathrm{A}^{+}(\mathrm{x})+\alpha, \mathrm{A}^{+}(\mathrm{y})+\alpha\right\}=\min \left\{T^{+A}{ }_{\alpha}(\mathrm{x}), T^{+A}{ }_{\alpha}(\mathrm{y})\right\}$
which implies that $V^{+}[f(x) f(y)] \geq \min \left\{V^{+}(f(x)), V^{+}(f(y))\right\}$ for all $f(x)$ and $f(y)$ in R^{\prime}. Also $V^{-}[f(x)+f(y)]=$ $\mathrm{V}^{-}[\mathrm{f}(\mathrm{x}+\mathrm{y})] \leq T_{\beta}^{-A}(\mathrm{x}+\mathrm{y})=\mathrm{A}^{-}(\mathrm{x}+\mathrm{y})+\beta \leq \max \left\{\mathrm{A}^{-}(\mathrm{x}), \mathrm{A}^{-}(\mathrm{y})\right\}+\beta=\max \left\{\mathrm{A}^{-}(\mathrm{x})+\beta, \mathrm{A}^{-}(\mathrm{y})+\beta\right\}=\max \left\{T_{\beta}^{-A}(\mathrm{x}), T_{\beta}^{-A}(\mathrm{y})\right\}$
which implies that $V^{-}[f(x)+f(y)] \leq \max \left\{V^{-}(f(x)), V^{-}(f(y))\right\}$ for all $f(x)$ and $f(y)$ in R^{\prime}. And $V^{-}[f(x) f(y)]=$ $\mathrm{V}^{-}[\mathrm{f}(\mathrm{xy})] \leq T_{\beta}^{-A}(\mathrm{xy})=\mathrm{A}^{-}(\mathrm{xy})+\beta \leq \max \left\{\mathrm{A}^{-}(\mathrm{x}), \mathrm{A}^{-}(\mathrm{y})\right\}+\beta=\max \left\{\mathrm{A}^{-}(\mathrm{x})+\beta, \mathrm{A}^{-}(\mathrm{y})+\beta\right\}=\max \left\{T_{\beta}^{-A}(\mathrm{x}), T_{\beta}^{-A}(\mathrm{y})\right\}$ which implies that $V^{-}[f(x) f(y)] \leq \max \left\{V^{-}(f(x)), V^{-}(f(y))\right\}$ for all $f(x)$ and $f(y)$ in R^{\prime}. Therefore V is a bipolar valued fuzzy subhemiring of R^{1}.

2.7. Theorem

Let ($\mathrm{R},+,$.) and ($\mathrm{R}^{\prime},+,$.) be any two hemirings and f be a homomorphism. Then the homomorphic pre-image of bipolar valued fuzzy translation of a bipolar valued fuzzy subhemiring V of R^{\prime} is a bipolar valued fuzzy subhemiring of R.

Proof: Let $\mathrm{T}=T_{(\alpha, \beta)}^{V}=\mathrm{f}(\mathrm{A})$, where $T_{(\alpha, \beta)}^{V}$ is a bipolar valued fuzzy translation of bipolar valued fuzzy subhemiring $V=\left(\mathrm{V}^{+}, \mathrm{V}^{-}\right)$of R^{\prime}. We have to prove that $\mathrm{A}=\left(\mathrm{A}^{+}, \mathrm{A}^{-}\right)$is a bipolar valued fuzzy subhemiring of R . Let x and y in R. Then $\mathrm{A}^{+}(\mathrm{x}+\mathrm{y})=T_{\alpha}^{+V}(\mathrm{f}(\mathrm{x}+\mathrm{y}))=T_{\alpha}^{+V}(\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y}))=\mathrm{V}^{+}[\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})]+\alpha \geq \min \left\{\mathrm{V}^{+}(\mathrm{f}(\mathrm{x})), \mathrm{V}^{+}(\mathrm{f}(\mathrm{y}))\right\}+\alpha=$ $\min \left\{\mathrm{V}^{+}(\mathrm{f}(\mathrm{x}))+\alpha, \mathrm{V}^{+}(\mathrm{f}(\mathrm{y}))+\alpha\right\}=\min \left\{T_{\alpha}^{+V}(\mathrm{f}(\mathrm{x})), T_{\alpha}^{+V}(\mathrm{f}(\mathrm{y}))\right\}=\min \left\{\mathrm{A}^{+}(\mathrm{x}), \mathrm{A}^{+}(\mathrm{y})\right\}$ which implies that $\mathrm{A}^{+}(\mathrm{x}+\mathrm{y}) \geq$ $\min \left\{\mathrm{A}^{+}(\mathrm{x}), \mathrm{A}^{+}(\mathrm{y})\right\}$ for all x, y in R . And $\mathrm{A}^{+}(\mathrm{xy})=T_{\alpha}^{+V}(\mathrm{f}(\mathrm{xy}))=T_{\alpha}^{+V}(\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y}))=\mathrm{V}^{+}[\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})]+\alpha \geq \min \left\{\mathrm{V}^{+}(\mathrm{f}(\mathrm{x}))\right.$, $\left.\mathrm{V}^{+}(\mathrm{f}(\mathrm{y}))\right\}+\alpha=\min \left\{\mathrm{V}^{+}(\mathrm{f}(\mathrm{x}))+\alpha, \mathrm{V}^{+}(\mathrm{f}(\mathrm{y}))+\alpha\right\}=\min \left\{T_{\alpha}^{+V}(\mathrm{f}(\mathrm{x})), T_{\alpha}^{+V}(\mathrm{f}(\mathrm{y}))\right\}=\min \left\{\mathrm{A}^{+}(\mathrm{x}), \mathrm{A}^{+}(\mathrm{y})\right\}$ which implies that $\mathrm{A}^{+}(\mathrm{xy}) \geq \operatorname{Min}\left\{\mathrm{A}^{+}(\mathrm{x}), \mathrm{A}^{+}(\mathrm{y})\right\}$ for all x and y in R. Also $\mathrm{A}^{-}(\mathrm{x}+\mathrm{y})=T_{\beta}^{-V}(\mathrm{f}(\mathrm{x}+\mathrm{y}))=T_{\beta}^{-V}(\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y}))=\mathrm{V}^{-}[$ $\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})]+\beta \leq \max \left\{\mathrm{V}^{-}(\mathrm{f}(\mathrm{x})), \mathrm{V}^{-}(\mathrm{f}(\mathrm{y}))\right\}+\beta=\max \left\{\mathrm{V}^{-}(\mathrm{f}(\mathrm{x}))+\beta, \mathrm{V}^{-}(\mathrm{f}(\mathrm{y}))+\beta\right\}=\max \left\{T_{\beta}^{-V}(\mathrm{f}(\mathrm{x})), T_{\beta}^{-V}(\mathrm{f}(\mathrm{y}))\right\}=\max$ $\left\{\mathrm{A}^{-}(\mathrm{x}), \mathrm{A}^{-}(\mathrm{y})\right\}$ which implies $\mathrm{A}^{-}(\mathrm{x}+\mathrm{y}) \leq \max \left\{\mathrm{A}^{-}(\mathrm{x}), \mathrm{A}^{-}(\mathrm{y})\right\}$ for all x and y in R. And $\mathrm{A}^{-}(\mathrm{xy})=T_{\beta}^{-V}(\mathrm{f}(\mathrm{xy}))=T_{\beta}^{-V}($ $f(x) f(y))=V^{-}[f(x) f(y)]+\beta \leq \max \left\{V^{-}(f(x)), V^{-}(f(y))\right\}+\beta=\max \left\{V^{-}(f(x))+\beta, V^{-}(f(y))+\beta\right\}=\max \left\{T_{\beta}^{-V}(f(x))\right.$, $\left.T_{\beta}^{-V}(\mathrm{f}(\mathrm{y}))\right\}=\max \left\{\mathrm{A}^{-}(\mathrm{x}), \mathrm{A}^{-}(\mathrm{y})\right\}$ which implies $\mathrm{A}^{-}(\mathrm{xy}) \leq \max \left\{\mathrm{A}^{-}(\mathrm{x}), \mathrm{A}^{-}(\mathrm{y})\right\}$ for all x and y in R . Therefore A is a bipolar valued fuzzy subhemiring of R .

2.8. Theorem

Let ($\mathrm{R},+,$.$\left.) and (\mathrm{R}^{\prime},+,.\right)$ be any two hemirings and f be a anti-homomorphism. Then the anti-homomorphic image of a bipolar valued fuzzy translation of a bipolar valued fuzzy subhemiring A of R is also a bipolar valued fuzzy subhemiring of R^{1}.

Proof: Let $\mathrm{V}=\left(\mathrm{V}^{+}, \mathrm{V}^{-}\right)=\mathrm{f}\left(T_{(\alpha, \beta)}^{A}\right)$, where $T_{(\alpha, \beta)}^{A}$ is a bipolar valued fuzzy translation of a bipolar valued fuzzy subhemiring $A=\left(A^{+}, A^{-}\right)$of R. We have to prove that V is a bipolar valued fuzzy subhemiring of R^{\prime}. For all $f(x)$ and $f(y)$ in R^{\prime}, we have $\mathrm{V}^{+}[\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})]=\mathrm{V}^{+}[\mathrm{f}(\mathrm{y}+\mathrm{x})] \geq T^{+A}{ }_{\alpha}(\mathrm{y}+\mathrm{x})=\mathrm{A}^{+}(\mathrm{y}+\mathrm{x})+\alpha \geq \min \left\{\mathrm{A}^{+}(\mathrm{y}), \mathrm{A}^{+}(\mathrm{x})\right\}+\alpha=\min \left\{\mathrm{A}^{+}(\mathrm{x})+\alpha\right.$, $\left.\mathrm{A}^{+}(\mathrm{y})+\alpha\right\}=\min \left\{T^{+A}{ }_{\alpha}(\mathrm{x}), T^{+A}{ }_{\alpha}(\mathrm{y})\right\}$ which implies that $\mathrm{V}^{+}[\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})] \geq \min \left\{\mathrm{V}^{+}(\mathrm{f}(\mathrm{x})), \mathrm{V}^{+}(\mathrm{f}(\mathrm{y}))\right\}$ for all $\mathrm{f}(\mathrm{x})$ and $\mathrm{f}(\mathrm{y})$ in R^{\prime}. And $\mathrm{V}^{+}[\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})]=\mathrm{V}^{+}[\mathrm{f}(\mathrm{yx})] \geq T_{\alpha}^{+A}(\mathrm{yx})=\mathrm{A}^{+}(\mathrm{yx})+\alpha \geq \min \left\{\mathrm{A}^{+}(\mathrm{y}), \mathrm{A}^{+}(\mathrm{x})\right\}+\alpha=\min \left\{\mathrm{A}^{+}(\mathrm{x})+\alpha, \mathrm{A}^{+}(\mathrm{y})+\alpha\right\}$ $=\min \left\{T_{\alpha}^{+A}(\mathrm{x}), T_{\alpha}^{+A}(\mathrm{y})\right\}$ which implies that $\mathrm{V}^{+}[\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})] \geq \min \left\{\mathrm{V}^{+}(\mathrm{f}(\mathrm{x})), \mathrm{V}^{+}(\mathrm{f}(\mathrm{y}))\right\}$ for all $\mathrm{f}(\mathrm{x})$ and $\mathrm{f}(\mathrm{y})$ in R^{1}. Also $\mathrm{V}^{-}[\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})]=\mathrm{V}^{-}[\mathrm{f}(\mathrm{y}+\mathrm{x})] \leq T_{\beta}^{-A}(\mathrm{y}+\mathrm{x})=\mathrm{A}^{-}(\mathrm{y}+\mathrm{x})+\beta \leq \max \left\{\mathrm{A}^{-}(\mathrm{y}), \mathrm{A}^{-}(\mathrm{x})\right\}+\beta=\max \left\{\mathrm{A}^{-}(\mathrm{x})+\beta, \mathrm{A}^{-}(\mathrm{y})+\beta\right\}=$ $\max \left\{T_{\beta}^{-A}(\mathrm{x}), T_{\beta}^{-A}(\mathrm{y})\right\}$ which implies that $\mathrm{V}^{-}[\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})] \leq \max \left\{\mathrm{V}^{-}(\mathrm{f}(\mathrm{x})), \mathrm{V}^{-}(\mathrm{f}(\mathrm{y}))\right\}$ for all $\mathrm{f}(\mathrm{x})$ and $\mathrm{f}(\mathrm{y})$ in R^{\prime}. And $\mathrm{V}^{-}[\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})]=\mathrm{V}^{-}[\mathrm{f}(\mathrm{yx})] \leq T_{\beta}^{-A}(\mathrm{yx})=\mathrm{A}^{-}(\mathrm{yx})+\beta \leq \max \left\{\mathrm{A}^{-}(\mathrm{x}), \mathrm{A}^{-}(\mathrm{y})\right\}+\beta=\max \left\{\mathrm{A}^{-}(\mathrm{x})+\beta, \mathrm{A}^{-}(\mathrm{y})+\beta\right\}=\max$ $\left\{T_{\beta}^{-A}(\mathrm{x}), T_{\beta}^{-A}(\mathrm{y})\right\}$ which implies that $\mathrm{V}^{-}[\mathrm{f}(\mathrm{x}) \mathrm{f}(\mathrm{y})] \leq \max \left\{\mathrm{V}^{-}(\mathrm{f}(\mathrm{x})), \mathrm{V}^{-}(\mathrm{f}(\mathrm{y}))\right\}$ for all $\mathrm{f}(\mathrm{x})$ and $\mathrm{f}(\mathrm{y})$ in R^{\prime}. Therefore V is a bipolar valued fuzzy subhemiring of R^{1}.

2.9. Theorem

Let ($\mathrm{R},+,$.) and ($\mathrm{R}^{\prime},+,$.) be any two hemirings and f be an anti-homomorphism. Then the anti-homomorphic pre-image of bipolar valued fuzzy translation of a bipolar valued fuzzy subhemiring V of R^{\prime} is a bipolar valued fuzzy subhemiring of R.

Proof: Let $\mathrm{T}=T_{(\alpha, \beta)}^{V}=\mathrm{f}(\mathrm{A})$, where $T_{(\alpha, \beta)}^{V}$ is a bipolar valued fuzzy translation of bipolar valued fuzzy subhemiring $V=\left(V^{+}, V^{-}\right)$of R^{\prime}. We have to prove that $A=\left(A^{+}, A^{-}\right)$is a bipolar valued fuzzy subhemiring of R. Let x and y in R. Then $A^{+}(x+y)=T_{\alpha}^{+V}(f(x+y))=T_{\alpha}^{+V}(f(y)+f(x))=V^{+}[f(y)+f(x)]+\alpha \geq \min \left\{V^{+}(f(y)), V^{+}(f(x))\right\}+\alpha=\min$ $\left\{\mathrm{V}^{+}(\mathrm{f}(\mathrm{x}))+\alpha, \mathrm{V}^{+}(\mathrm{f}(\mathrm{y}))+\alpha\right\}=\min \left\{T_{\alpha}^{+V}(\mathrm{f}(\mathrm{x})), T_{\alpha}^{+V}(\mathrm{f}(\mathrm{y}))\right\}=\min \left\{\mathrm{A}^{+}(\mathrm{x}), \mathrm{A}^{+}(\mathrm{y})\right\}$ which implies that $\mathrm{A}^{+}(\mathrm{x}+\mathrm{y}) \geq \min$ $\left\{\mathrm{A}^{+}(\mathrm{x}), \mathrm{A}^{+}(\mathrm{y})\right\}$ for all x, y in R. And $\mathrm{A}^{+}(\mathrm{xy})=T_{\alpha}^{+V}(\mathrm{f}(\mathrm{xy}))=T_{\alpha}^{+V}(\mathrm{f}(\mathrm{y}) \mathrm{f}(\mathrm{x}))=\mathrm{V}^{+}[\mathrm{f}(\mathrm{y}) \mathrm{f}(\mathrm{x})]+\alpha \geq \min \left\{\mathrm{V}^{+}(\mathrm{f}(\mathrm{y})), \mathrm{V}^{+}(\right.$ $\mathrm{f}(\mathrm{x}))\}+\alpha=\min \left\{\mathrm{V}^{+}(\mathrm{f}(\mathrm{x}))+\alpha, \mathrm{V}^{+}(\mathrm{f}(\mathrm{y}))+\alpha\right\}=\min \left\{T_{\alpha}^{+V}(\mathrm{f}(\mathrm{x})), T_{\alpha}^{+V}(\mathrm{f}(\mathrm{y}))\right\}=\min \left\{\mathrm{A}^{+}(\mathrm{x}), \mathrm{A}^{+}(\mathrm{y})\right\}$ which implies that $\mathrm{A}^{+}(\mathrm{xy}) \geq \min \left\{\mathrm{A}^{+}(\mathrm{x}), \mathrm{A}^{+}(\mathrm{y})\right\}$ for all x and y in R . Also $\mathrm{A}^{-}(\mathrm{x}+\mathrm{y})=T_{\beta}^{-V}(\mathrm{f}(\mathrm{x}+\mathrm{y}))=T_{\beta}^{-V}(\mathrm{f}(\mathrm{y})+\mathrm{f}(\mathrm{x}))=\mathrm{V}^{-}[$ $\mathrm{f}(\mathrm{y})+\mathrm{f}(\mathrm{x})]+\beta \leq \max \left\{\mathrm{V}^{-}(\mathrm{f}(\mathrm{y})), \mathrm{V}^{-}(\mathrm{f}(\mathrm{x}))\right\}+\beta=\max \left\{\mathrm{V}^{-}(\mathrm{f}(\mathrm{x}))+\beta, \mathrm{V}^{-}(\mathrm{f}(\mathrm{y}))+\beta\right\}=\max \left\{T_{\beta}^{-V}(\mathrm{f}(\mathrm{x})), T_{\beta}^{-V}(\mathrm{f}(\mathrm{y}))\right\}$ $=\max \left\{\mathrm{A}^{-}(\mathrm{x}), \mathrm{A}^{-}(\mathrm{y})\right\}$ which implies $\mathrm{A}^{-}(\mathrm{x}+\mathrm{y}) \leq \max \left\{\mathrm{A}^{-}(\mathrm{x}), \mathrm{A}^{-}(\mathrm{y})\right\}$ for all x and y in R . And $\mathrm{A}^{-}(\mathrm{xy})=T_{\beta}^{-V}(\mathrm{f}(\mathrm{xy}))=$ $T_{\beta}^{-V}(f(y) f(x))=V^{-}[f(y) f(x)]+\beta \leq \max \left\{V^{-}(f(y)), V^{-}(f(x))\right\}+\beta=\max \left\{V^{-}(f(x))+\beta, V^{-}(f(y))+\beta\right\}=\max \left\{T_{\beta}^{-V}(\right.$
$\left.\mathrm{f}(\mathrm{x})), T_{\beta}^{-V}(\mathrm{f}(\mathrm{y}))\right\}=\max \left\{\mathrm{A}^{-}(\mathrm{x}), \mathrm{A}^{-}(\mathrm{y})\right\}$ which implies $\mathrm{A}^{-}(\mathrm{xy}) \leq \max \left\{\mathrm{A}^{-}(\mathrm{x}), \mathrm{A}^{-}(\mathrm{y})\right\}$ for all x and y in R . Therefore A is a bipolar valued fuzzy subhemiring of R.

REFERENCES

1. Anitha.M.S., Muruganantha Prasad \& K.Arjunan, Notes on Bipolar-valued fuzzy subgroups of a group, Bulletin of Society for Mathematical Services and Standards, Vol. 2 No. 3 (2013), pp. 52-59.
2. Anitha.M.S, K.L.Muruganantha Prasad \& K.Arjunan, Homomorphism and anti-homomorphism of Bipolar valued fuzzy subgroups of a group, International Journal of Mathematical Archive-4(12), 2013, 1-4.
3. Anthony.J.M and H.Sherwood, fuzzy groups Redefined, Journal of mathematical analysis and applications, 69(1979), 124 -130.
4. Arsham Borumand Saeid, Bipolar-valued fuzzy BCK/BCI-algebras, World Applied Sciences Journal 7 (11) (2009), 1404-1411.
5. Azriel Rosenfeld, fuzzy groups, Journal of mathematical analysis and applications 35(1971), 512-517.
6. F.P.Choudhury, A.B.Chakraborty and S.S.Khare, A note on fuzzy subgroups and fuzzy homomorphism, Journal of mathematical analysis and applications, 131(1988), 537-553.
7. W.L.Gau and D.J. Buehrer, Vague sets, IEEE Transactons on Systems, Man and Cybernetics, 23(1993), 610-614.
8. Kyoung Ja Lee, Bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-algebras, Bull. Malays.Math. Sci. Soc. (2) 32(3) (2009), 361-373.
9. K.M.Lee, Bipolar-valued fuzzy sets and their operations. Proc. Int. Conf. on Intelligent Technologies, Bangkok, Thailand, (2000), 307-312.
10. K.M.Lee, Comparison of interval-valued fuzzy sets, intuitionistic fuzzy sets and bipolarvalued fuzzy sets. J. fuzzy Logic Intelligent Systems, 14 (2) (2004), 125-129.
11. Mustafa Akgul, some properties of fuzzy groups, Journal of mathematical analysis and applications, 133(1988), 93-100.
12. Samit Kumar Majumder, Bipolar valued fuzzy sets in Γ-semigroups, Mathematica Aeterna, Vol. 2, no. 3(2012), 203-213.
13. Shanmugapriya.V and Arjunan.K., Some translators in bipolar valued fuzzy subsemiring of a semiring, Bulletin of Mathematics and Statistic Research, Vol.4, Iss.4, 2016, 118- 123.
14. Young Bae Jun and Seok Zun Song, Subalgebras and closed ideals of BCH-algebras based on bipolar-valued fuzzy sets, Scientiae Mathematicae Japonicae Online, (2008), 427-437.
15. L.A.Zadeh, fuzzy sets, Inform. And Control, 8(1965), 338-353.
