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Abstract In this study we follow a new framework for the theory that offers us, other than traditional, a new 

angle to observe and investigate some relations between finite sets, F-lattice L and their elements.  

The theory is based on the Fuzzy Linear Spaces (FLS)  DNS , . In this case, to operate on these spaces the 

necessary preliminaries, concepts and operations in lattices relative to FLS are introduced. Some definitions, 

such that k-fuzzy point, k-fuzzy line are given. Then we correspond these definitions to the definitions in usually 

linear spaces. We investigate some combinatorics properties of FLS. In some examples in the case where 

L

. 

We see some differences. In general, taking an ordered lattice    ,,...,,, nn aaaL   we observe how some 

combinatorics formulas and properties are changed. In FLS the dimension concept is a set. We produce some 

general formulas by using some trivial examples. Furthermore, we generalize de Bruijn-Erdös Theorem in [2]. 
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Introduction 

k-point, k-line forLinear Spaces, d-dimensional Linear Spaces  were studied by some authors like Batten [5] and 

Barwick [6]. Here, we give a very short proof  to well-known the theorem of de Bruijn and Erdös [4,5]

. And 

also, we have been collected all them from the above papers and from [1,2].  

In this paper, we extended the Theorem de Bruijn and Erdös. For this we have to give. 

 

Definition 1. Let  DNS ,  be a FLS and NX  .The set 
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is called closure of X and denoted by X . 

 

In any  DNS , FLS, Ø,Ø     xx   and SS  . 

                                                           
 :L  Number  elements of  L. 
 De Bruijn and Erdös (1948). Sometimes called the de Bruijn-Erdös and Hanani theorem because of Hanani 
(1955). 
 De Bruijn and Erdös (1948). Sometimes called the de Bruijn-Erdös and Hanani theorem because of Hanani 
(1955). 
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If BX   then we say that X generates B. 

Example 2. Let  DNS , FLS, where  zyxN ,,  and         ,,,,,,,,  dddD . 

For  yxX , , dX  , which is only one line.  

 

If    ,,aL  ,        ,,,,,, aaaadX   is not one line. 

 

Definition 3.  Let  DNS ,  be a FLS. Then any point Nx  is called k-fuzzy point if   


xdi

k

Ddi i,

. 

 x  is 0-fuzzy point for  1,0L . But  x  is 1-fuzzy point for nLn , . 

Definition 4.  Let  DNS ,  be a FLS. Then a line Dd  is called k-fuzzy line if    


i

k

Nxi

xd
i,

. 

Lemma 5. Let  DNS ,  be a FLS and any line  Dd  be a k-fuzzy line. Then the number of  k-fuzzy line 

is   .
k

n   

Proof.  There are k points kxx ,...,  on each k-fuzzy line and   txd j   where  ,,..., naat   and 

kj ,..., . Then the number of  k-fuzzy line is   .
k

n   

Lemma 6. Let  DNS ,  be a FLS and any point  Nx  be a k-fuzzy point. Then the number of  k-fuzzy 

points is  



k

j

v jn


  where   Nxxdxv jj  , . 

Proof. If there are jv  points on each line jd  from Lemma 5 the number of such line jd  just   jv
n  , where 

kj ,..., . And furthermore since x is a k-fuzzy point then the total number of k-fuzzy points is  



k

j

v jn




. 
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Theorem (de Bruijn-Erdös) [5]. Let S be any finite linear space with  vNDb  , . Then 

i. ,vb   

ii. If  vb  , any two lines have point in common. In case (2) either one line has v  points and all others 

have two points, or every line has k  points and every point is on  k  lines, k . 

If  any point of S has  k-fuzzy point then the following proposition will give: 

Proposition 7. Let  DNS ,  be a FLS such that mS  , any point Nx  isk-fuzzy point, and 

  Nxxdxv jj  , . Then 
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Proof. mS    by [2]. 
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We now extend the Theorem of de Bruijn-Erdös: 

Theorem (Hasan KELEŞ). Let  DNS ,  be any finite FLS such that with    vNDb , . Then 

vb  and any two lines have a point in common. Furthermore, either just one of the lines in D is a  v -

fuzzy line and others are 2-fuzzy lines, or every line is a  k -fuzzy line and every point is   




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j
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-fuzzy point, k . 

Proof. The inequality vb   is obvious. The case where L  it is the theorem de Bruijn Erdös’. It is clear 

that b>v. The fact that any two lines have a point in common is obtained from the definition of FLS. If one of 

the lines in D is  v -fuzzy line then   

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i

v

i
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 for 

Dddd  ','  from the definition of FLS. Therefore lines 'd  are 2-fuzzy lines. 

If one of the lines in D is not a  v -fuzzy line then the other are not 2-fuzzy lines. Therefore all of them are 

 k -fuzzy lines where k . So   

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i
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. Line d has points  k . Therefore any point Nxi   
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