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Abstract The concept of entropy was originally introduced in Shannon [27] in the context of communication 

theory. The main measure of the uncertainty contained in random variable X is the Shannon entropy H(X)= -E(ln 

fX(x)). The concept of generalized entropy has been proposed in the literature of information theory. The 

cumulative entropy is an information measure which is alternative to the differential entropy and is connected 

with a notion of reliability theory. In this paper, the concept of weighted (generalized) entropy is discussed. The 

properties of weighted (generalized) entropy, cumulative residual entropy, weighted (generalized) residual 

entropy, weighted cumulative residual entropy, weighted (generalized) past entropy are also given. 

 

Keywords Generalized entropy, genralized residual entropy, generalized past entropy, weighted cumulative 
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1. Introduction 

We live in an era of extreme uncertainties. The markets are unstable, stock exchange has become more volatile 

than ever, marketing is experiencing difficulties in persuading new customers to buy more products or services, 

competition between corporations is fierce and yet in these conditions, managers are called to undertake more 

risks, in order to produce better results that will increase the trust of the stakeholders and attract new 

investments [25]. An important measure of uncertainty associated with a random variable X is the notion of 

entropy, introduced by Shannon [27]. If X is a non-negative random variable having an absolutely continuous 

distribution function ( )XF x  with probability density function ( )Xf x , then the Shannon’s entropy is defined as 

 
0

( ) ln ( ) ( ) ln( ( ))X XH X E f X f x f x dx


         (1) 

One of the main drawback of H(X) is that for some probability distribution it may be negative and then it is no 

longer an uncertainty measure (see Das [6]).This drawback is removed in the generalized entropy.

( ) ( )H c X H X   for some constant c. This property can be interpreted as the shift-independence of 

Shannon information. The integrand function on the right-hand-side of (1) depends on x only via ( )Xf x , thus 

making H shift-independent. Hence, H stays unchanged if, for instance, X is uniformly distributed in (a,b) or 

(a+h, b+h), whatever h ∈ R. 

However, in certain applied contexts, such as reliability or mathematical neurobiology, it is desirable to deal 

with shift-dependent information measures. Shannon’s entropy gives equal importance or weight to the 

occurrence of every event. Shannon [27] is considered to be the father of information theory and was the first 

that incorporated the term information entropy in an information systems for measuring the uncertainty 

associated with a random variable. 
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Example 1. Consider a general uniform distribution with the probability density function 

1
,0

( )

0,
X

x a
f x a

otherwise


 

 

   

Then 

0 0 0

1 1 1
( ) ( ) ln ( ) ln ln ln .

a a

X XH X f x f x dx dx a dx a
a a a



       
. 

In the area of information theory as well as engineering sciences the Shannon’s entropy and its applications is a 

very important and well known concept. Information theory includes the study of uncertainty measures and 

various practical and economical methods of coding information for transmission.  It measures the expected 

uncertainty contained in probability density function about the predictability of an outcome of X.  Study of 

duration is a subject of interest in many fields of science such as reliability, survival analysis, economics and 

business. In reliability theory and survival analysis, the additional lifetime given that the component has 

survived up to time t is called the residual life function of the component. It measures the expected uncertainty 

contained in probability density function about the predictability of an outcome of X. The properties and virtues 

of H(X) have been thoroughly investigated by Shannon [27] and Wiener [29]. The basic principle of generalized 

maximum entropy (GME) is based on Jaynes' Maximum Entropy Principle Jaynes [16] Golan, Judge and Miller 

generalized this principle for regression framework Golan, Judge & Miller [12]. With this method, Shannon's 

entropy formula was maximized under model consistency constraints and it was assumed that no prior 

information about parameters and disturbances would exist. The GME method, requiring less assumptions than 

the classical methods, has been frequently used for both linear and nonlinear estimation models Golan, Judge & 

Miller [12] and receiving increasing attention especially in the econometrics and statistics literature. Akdeniz et 

al, [1] proposed an alternative solution when the data have the problem of multicollinearity. Some constraints 

were added to the classical generalized maximum entropy approach according to the characteristics of the 

relationship among independent variables and the results were compared with OLS. 

The rest of the paper is organized as follows. In Section 2 we provide some basic notions on weighted entropy, 

complemented by some examples.  Section 3 is devoted to study results for the weighted generalized entropy, 

weighted residual entropy, cumulative residual entropy and weighted past entropy. Analogously, in Section 4 we 

study the weighed generalized entropy for the discrete random variable X. Some conclusions are given in 

Section 5. 

 

2. Weighted Entropy 

The definition and initial results on weighted entropy were introduced in Belis and Guiasu [3] and Guiasu [13], 

Guiasu [14] has shown that weighted entropy has been used to balance the amount of information and the 

degree of homogeneity associated to a partition of data in classes. DiCrescenzo and Longobardi [8] have 

considered a length-biased shift-dependent information measure, related to the differential entropy. 

Definition 1. (Differential entropy) The differential entropy H(X) of a continuous random variable X with 

probability density function (pdf) ( )Xf x  is defined as 

 

( ) ( ) ln ( )X X

S

H X f x f x dx 
 

where S is the support region of the random variable. Weighted entropy, which is a generalization of classical 

entropy, has been proposed by Belis and Guiasu [3] and is defined in Eq. (2). Other measures of uncertainty as 

suitable generalizations or modifications of the classical entropy have been proposed in the recent literature such 

as the weighted entropy (Di Crescenzo and Longobardi [8], defined as 

0
( ) ( ln ( )) ( ) ln ( )X XH X E X f X xf x f x dx



    ,    (2) 

The factor x, in the integrand of Equation (2) represents a weight which linearly emphasizes the occurrence of 

the event {X=x}. This is a “length-biased” shift-dependent information measure assigning greater importance to 
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larger values of X. When the weight function depends on the length of the component, the resulting distribution 

is called length-biased weighted function [21]. 

Several applications with weighted entropy were performed in the middle eighties. Batty [2] used weighted 

entropy to discuss the spatial pattern of aggregation in cities; Nawrocki and Harding [24] used state-value 

weighted entropy as a measure of investment risk. Casquilho [5] discussed a framework combining traditional 

expected utility and weighted entropy. 

Example 2. a) X is exponential distributed with parameter 0  .  

Its probability density function is given by 

, 0
( )

0,

x

X

e x
f x

otherwise

  
 


 

A standard agreement 0 = 0 · log 0 = 0 · log ∞ is adopted. Then  

0 0
( ) ( ) ln( ( ) ln( )x x

X XH X xf x f x dx x e e dx   
 

       

 
2

0 0

2 ln
ln ( )x xxe dx x e dx  
  



 
  

      

b) If X uniformly distributed over  ,a b .  

1
,

( )

0,
X

a x b
f x b a

otherwise


 

 



 

Then 

2 21 1 ln( ) ln( )
( ) ln( )

2

b b

a a

b a b a b a
H X x dx xdx

b a b a b a b a

   
   

      

            = ln( )
2

a b
b a


  

where ( )
2

a b
E X


  

and  

 
0

1 1
( ) ( ) ln( ( )) ln ( ) ln( ) ln( ).

b

X X X
a

H X f x f x dx E f x dx b a
b a b a



       
   .  

It is interesting to note that in this case the weighted entropy can be expressed as the product of  

( ) ( ) ( )H X E X H X  . 

Remark 2.1 Notice that in general H
 can be either larger or smaller than H. For instance, if X is uniformly 

distributed over  ,a b , then it follows ln( ) ( ) ln( ) ln( )
2

a b
H b a E X b a H b a 

       when E(X) 

> 1, and H
<H when E(X) <1. 

Example 3 Suppose X and Y  denote random variables with  density functions 

1
( ) ,0 4

8
Xf x x x  

 

1
( ) (4 ),0 4

8
Yg y y y   

 
respectively. By simple calculations, we have 
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4 4

0 0

1
( ) ( ) ln ( ) ln ln 2

8 8 2
X X

x x
H X f x f x dx dx      

 

4 4

0 0

1 1 1
( ) ( ) ln ( ) (4 ) ln (4 ) ln 2

8 8 2
Y YH Y g y g y dy y y dy        

 

Their Shannon entropies are identical. Therefore, the expected uncertainties for ( )Xf x  and ( )Yg y on the 

predictability of the outcomes of the X and Y are identical. But, we have  

4 4

0 0

1 1 8 8
( ) ( ) ln ( ) ln ln 2

8 8 3 9
X XH X xf x f x dx x x xdx       

 

4 4

0 0

1 1 4 10
( ) ( ) ln ( ) (4 ) ln (4 ) ln 2

8 8 3 9
Y YH Y yg y g y dy y y y dy         

 

then ( ) ( )H X H Y  . Hence, even though ( ) ( )H X H Y , the expected weighted uncertainty contain in 

of the ( )Xf x  on the predictability of the outcome of X is larger than that of ( )Yg y  on the predictability of the 

outcome of Y. 

 

3. Weighted (Generalized) Entropy 

Definition 2. Survival function: ( ) ( ) ( ) 1 ( )X XS t F t P X t F t      

If X is an absolutely continuous non-negative random variable with probability density function (.)Xf  and 

survival function (.)XF , then the probability function of weighted random variable X 
 associated to the 

random variable X with weight function w(x)  is defined by 

( )
( ) ( ),0

( ( ))
X

w x
f x f x x

E w X

      

where  ( )w x  is positive for all value of 0x   and 0 ( ( ))E w X  .The random variable X 
 arises in the 

study of lifetime analysis. On particular choices of weight function w(x) we have different weighted models.  

For example, when w(x)=x, resulting distribution is called length biased distribution and the associated 

probability density function of length biased random variable X 
is defined as 

( ) ( )
( )

X

x
f x f x

E X

          (3) 

and the survival function is 

 

 
( )

( ) ( )
( )

X

E X X x
F x F x

E X

 
  [6, 18]      (4) 

Survival functions are most often used in reliability and related fields. The survival function is the probability 

that the variate takes a value greater than t. 

We can see that by replacing the original distribution in (1) by the weighted distribution with respect to that 

original distribution, the corresponding equation becomes   

0
( ) ( ) ln ( )H X f x f x dx  



        (5) 

On substituting the values of weighted functions in Eq. (3), we get 
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0 0

(ln ln ( )) ( )
( ) ( ) ln ( )

( ) ( )

X X
X

x f x xf x
H X xf x dx E X dx

E X E X


 

     

 
0 0

1 1 ( ) ln ( )
( ) ln ( ) ln ( )

( ) ( ) ( )
X X X

E X E X
xf x xdx xf x f x dx

E X E X E X

 

      

 
0

( ) ln ( ) ( ln ) 1
( ) ln ( )

( ) ( ) ( )
X X

E X E X E X X
xf x f x dx

E X E X E X



     

( )H X
 = 1 2

0
( ) ln ( )X Xc c xf x f x dx



  ,      

where 1 2

( ln ) ( ) ln ( ) 1
,

( ) ( ) ( )

E X X E X E X
c c

E X E X E X
    . Eqn. (5) is the definition of weighted entropy 

[3]. Now, the weighted generalized entropy is given by  

1
0

1
( ) 1 ( )

1
H X f x dx

  



  
     

 
0

1 1
1 ( )

1 ( ( ))
Xx f x

E X

 



 
  

  
       (6) 

and 

2
0

1 1
( ) ln( ( ) ,

1 ( ( ))
XH X x f x dx

E X

  



 
  

  
     (7) 

We note that as 1   in (6) or (7), they reduce to (5). 1 ( )H X


 and 2 ( )H X


 are called first kind 

weighted entropy of order   and second kind weighted entropy of order   respectively.  

The following example shows that, although two distributions have same generalized entropies, they 

have different weighted generalized entropies. 

 

Example 4. Let X and Y be random variables with density functions 

2
,0 2

( ) 6

0,
X

t
t

f t

otherwise


 

 



 

and 

1 (2 ) / 6,0 2
( )

0,
Y

t t
f t

otherwise

   
 


 

Take 2  . Then we have 

2
2 2

1 1
0 0

1 1 2 13
( ) 1 ( ) ( ) 1 ( )

1 2 1 6 27
X

t
H X f x dx H X dt 



              
   

and 

2
2 2

1 1
0 0

1 1 2 13
( ) 1 ( ) ( ) 1 (1 )

1 2 1 6 27
Y

t
H Y f y dy H Y dt 



               
   
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Thus we can see that 
1 1

13
( ) ( )

27
H X H Y   , where 1 ( )H X

 and 1 ( )H Y
 are the first kind generalized 

entropies of X and Y. The first kind weighted generalized entropies of the random variables X and Y are given by  

1
0 0

1 1 1
( ) 1 ( ) 1 ( )

1 1 ( ( ))
xH X f x dx x f x dx

E X

    

 

            
   

   =
2

2 2

2 0

1 1 2 256
1 ( )

2 1 ( ( )) 6 1000

x
x dx

E X

 
  

  
  

and 

 1
0

1 1
( ) 1 ( )

1 ( ( ))
YH Y y f y dy

E Y

  



 
   

  
  

   =  
2

2 2

2 0

1 1 2 31
1 (1 )

2 1 ( ( )) 6 160

y
y dy

E Y

 
   

  
  

where 
2 2

0 0

2 10
( ) ( )

6 9
X

x
E X xf x dx x dx


     and 

2

0

2 8
( ) (1 )

6 9

y
E Y dy


   , 

respectively. Therefore,
1 1

256 31
( ) ( ) .

1000 160
H X H Y

      

Again, the second kind generalized entropies of the random variables X and Y are given by 

2
2 2

2 2
0 0

1 1 2 27
( ) ln ( ) ( ) ln ( ) ln

1 1 2 6 14
X

t
H X f x dx H X dt 



 
   

    

 

2
2

2

2
0 0

1 2 4 27
( ) ln 1 ln ( ) ln

1 6 6 14

t t
H Y dt dt



   
       

  . 

Then, we have 
2 2

27
( ) ( ) ln

14
H X H Y   .But, second kind weighted generalized entropies of order   are 

2
0

1 1
( ) ln( ( ) )

1 ( ( ))
XH X x f x dx

E X

  



 
  

  
  

   =  
2

2 2

2 0

1 1 1 125
ln (2 ) ln

(1 2) (10 / 9) 36 93
x x dx

 
  

  
  

and 

2
0

1 1
( ) ln( ( )

1 ( ( ))
YH Y y f y dy

E Y

  



 
  

  
  

  =
2

2 2

2 0

1 1 1 5
ln (4 ) ln

(1 2) (8 / 9) 36 3
y y dy

 
  

  
  

2

125
( ) ln

93
H X

   and 
2

5
( ) ln

3
H Y

   are not equal. Hence, even though 1 1

13
( ) ( )

27
H X H Y    and 

2 2

27
( ) ( ) ln

14
H X H Y   , the weighted generalized entropy about the predictability of X by the density 

function ( )Xf t  is smaller than the predictability of Y by the density function ( ).Yf t  
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3.1. Weighted Residual Entropy 

In recent years, the role of Shannon entropy as a measure of uncertainty in residual lifetime distributions has 

been studied by many researchers [4, 10-11].  

When a unit studied that survived up to an age t, the Shannon’s entropy is not suitable for measuring the 

uncertainty. So the notion of residual and past uncertainty has been introduced. 

Let X be an absolutely continuous nonnegative random variable having distribution function 

( ) ( )XF x P X x  and the survival function  ( ) ( ) 1 ( )XF x P X x P X x     .In reliability theory, X 

represents the random lifetime of an item or system with survival function (.)XF . 

 
( )

( )
( )

X

X

f x
x

F x
  : the hazard function, or failure rate, of X; 

( )
( )

( )

X

X

f x
x

F x
  :the reversed hazard rate function of X;  

The residual lifetime Xt =[X − t|X > t], t> 0, describes the time length between the failure time X and the 

inspection time t, given that time t the system is still active [17]. 

Suppose X denotes the lifetime of a component/system or of a living organism and  ( ) ( )f t F t  denotes the 

lifetime density function [22]. If a component is known to have survived to age t then Shannon entropy is no 

longer useful to measure the uncertainty of remaining lifetime of the component. 

Ebrahimi [10] defined the entropy for residual lifetime Xt= (X −t | X > t)   as a dynamic form of uncertainty 

called the residual entropy at time t and defined as 

 
( ) ( )

( ; ) ( , ) ln( )
( ) ( )

X X

t
X X

f x f x
H X t H f t dx

F t F t



        (8) 

  =
1

ln ( ) ( ) ln ( )
( )

X X X
t

X

F t f x f x dx
F t



    

1
1 ( ) ln( ( ))

( )
X X

t
X

f x x dx
F t




     

 
1

1 ( ) ln ( ) lnF (x)
( )

X X X
t

X

f x f x dx
F t



  
 

1 1
1 ( ) ln ( ) ( ) ln ( )

( ) ( )
X X X X

t t
X X

f x f x dxdx f x F x dx
F t F t

 

   
 

1
1 ( ) ln ( )

( )
X X

t
X

f x f x dx A
F t



  
 

where 

 
0

( )

1 1
( ) ln ( ) ln ln ( ) 1,

( ) ( ) X
X X X

t F t
X X

A f x F x dx wdw F t
F t F t

 
      

( ) 1 ( )X Xw F x F x   ,  ( ) 1XF   and
( )

( )
( )

X
X

X

f x
x

F x
  is the hazard function, or failure rate, of X;

( )Xf x  is the probability density function; ( )XF t  be the survival function of the random variable X. Ebrahimi 
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[10] showed that ( , )H X t  uniquely determines the distribution function ( )XF t .Obviously H(X;0)=H(X). It is 

well known from (8) that units which exhibitless uncertainty in life times are more reliable and hence measure 

(8) has much relevance in characterizing, ordering and classifying life distributions according to its behavior. 

Nanda and Paul [22] have introduced generalized residual entropy and they redefined (9) and (10) for a unit 

surviving up to age t as 

1

( )1
; ) 1 ( )

1 ( )

X

t
X

f x
H X t dx

F x

 



 
  

  


      (9) 

and 

2

( )1
( ; ) ln ( )

1 ( )

X

t
X

f x
H X t dx

F t

 






 

            (10) 

respectively. As 1    in (9) or in (10), then they tends to (8). 

Di Crescenzo and Longobardi [8] have introduced the concept of weighted residual entropy at time t of a 

random lifetime X can be defined as 

( ) ( )
( , ) ln

( ) ( )t

f x f x
H X t dx

F t F t

 


 



        (11) 

We note that H(X) is the differential entropy of the residual lifetime of X at time t , i.e., X X t    . We now 

make use of (2) to define weighted entropy for residual lifetime that is the weighted version of entropy (8). 

( ) ( )
( , ) ln

( ) ( )

X X

t
X X

f x f x
H X t x dx

F t F t




  .      (12) 

Example 5. For an exponential distribution with parameter λ > 0, the weighted residual entropy is given by  

( ) ( )
( , ) ln ln

( ) ( )

x x

t tt t

f x f x e e
H X t x dx x dx

F t F t e e

 


 

  
 

 
      

     = (ln )t x t x

t t
e xe x dx te xe dx       

 
      

     =
2( ln ) ( )t x t x

t t
e t xe dx e x e dx      

 
     , 

* *( ln )t te t A e B       

Since, we have 

* 1
: ( )x t

t
A xe dx t e 




     

and 

* 2 2 2
: ( ) 2x

t
B x e dx t t 




     

then we obtain 

21 2 2 1
( , ) ( ln )( ) ( 2 ) ( ) lnt t tH X t e t t e e t t t t      

   

            

3.2. Cumulative Residual Entropy: A new measure of information 

In this section, we give a brief review and to provide some results, including simple examples of applications to 

related notions of information theory. 
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The Shannon entropy has certain disadvantages. For example,it may take any value on the extended real line, it 

requires the knowledge of density function for non-discrete random variables, the discrete Shannon entropy dose 

not converge to its continuous analogous, and in order to estimate the Shannon entropy for a continuous density, 

one has to obtain the density estimation, which is not a trivial task.Recently, Rao et al. [26] introduced an 

alternative measure of uncertainty called cumulative residual entropy (CRE) which is based on the survival 

(reliability) function ( ) 1 ( )X XF x F x   instead of the pdffX(x)used in the classical Shannon’s entropy (1) 

[28]. 

As an alternative measure of uncertainty, Rao et al. [26] proposed the cumulative residual entropy (CRE) of X 

defined by  

0
( ) ( ) ln ( )X XX F x F x dx



          (13) 

where ( ) 1 ( )X XF x F x    is survival function. (X) measures the uncertainty contained in the survival 

function of X. The basic idea in their definition was to replace the density function by the survival function in 

Shannon’s definition. CRE is more general than the Shannon entropy and possesses more general mathematical 

properties than the Shannon entropy. This measure is always non-negative and its definition is valid for both 

continuous and discrete cases. 

Example 6. (CRE of the Uniform distribution) Consider a general uniform distribution with the probability 

density function 

1
,0

( )

0,
X

x a
f x a

otherwise


 

 



 

Then its CRE is computed as follows 

0 0

1
( ) ( ) ln ( ) (1 ) ln(1 ) .

4

a a

X X

x x
X F x F x dx dx a

a a
          

where 
0

1
( ) ( )

x x
F x P X x dt

a a
     and ( ) 1 ( ) 1X X

x
F x F x

a
    . 

Example 7. (CRE of the exponential distribution) The exponential distribution with mean 
1


has the probability 

density function ( ) , 0x

Xf x e x    

Correspondingly, the CRE of the exponential distribution is 

0 0 0

1
( ) ( ) ln ( ) lnx x xX F x F x dx e e dx xe dx   



  
           

where  

0
( ) 1 , ( ) 1 ( ) .

x
t x x

X X XF x e dt e F x F x e            

CRE has many interesting applications in different branches of sciences such as reliability theory, survival 

analysis, computer vision, image processing and etc [30]. 

Misagh et al. [20] and Mirali et al, [19] defined the notions of weighted cumulative residual entropy (WCRE) 

and weighted cumulative entropy (WCE). 

Definition 3. (Weighted cumulative residual entropy) Let X be nonnegative continuous random variable 

having survival function ( )XF t . We define the weighted cumulative residual entropy (WCRE) of X by  

0
( ) ( ) ln ( )X XX xF x F x dx



        (14) 
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Now we evaluate WCRE of uniform distribution. 

Example 8.Let X be uniformly distributed on [0, a], a > 0, then 

0
( ) (1 ) ln(1 )

a x x
X x dx

a a

     
( 0)(5 4.0) 5 5

. ( ). .
4.9 4 9 9

a a a a a
X

 
   

If 
5

1( 1)
9

a
  , then         ( ) ( ( ))X X    and if 5 9a   then ( ) ( )X X  . 

 

3.3. (Weighted) Past Entropy 

In some practical situations, uncertainty is related to past life time rather than future. As an example, one can be 

find past uncertainty of a unit that failed at time t.   

Di Crescenzo and Longobardi [7] have introduced past entropy over (0,t). Since it is reasonable top resume that 

in many realistic situations uncertainty is not necessarily related to the future but can also refer to the past. They 

have also shown the necessity of past entropy and its relation with the residual entropy. If X denotes the lifetime 

of an item or of a living organism, then past entropy (or uncertainty of lifetime distribution) of an item is 

defined as 

0

( ) ( )
( ; ) ln( )

( ) ( )

t
X X

X X

f x f x
H X t dx

F t F t
        (15) 

Note that (15) can be rewritten as  

 
0

1
( , ) ( ) ( ) ln( ( ) .

( )

t

X X X

X

H X t F t f x f x dx
F t

        (16) 

where ( )XF t  be the distribution function of the random variable X.Given that at time t an item has been found 

to be failing, ( , )H X t  measure the uncertainty about its past life. 

 Nanda and Paul [23] have studied some properties and applications of past entropy. Gupta and Nanda [15] have 

defined generalized past entropies by  

1
0

( )1
( ; ) 1 ( )

1 ( )

t
X

X

f x
H X t dx

F x

 



 
  

  


      (17) 

and 

2
0

( )1
( ; ) ln ( )

1 ( )

t
X

X

f x
H X t dx

F t

 




 
       (18) 

respectively.  

Motivated by the salient features of (13), Di Crescenzo and Longobardi [9] proposed a dual concept of CRE 

called cumulative past entropy (CPE) defined as  

0
( ) ( ) ln ( )X XX F x F x dx



 
                  (19)  

which measures information concerning past lifetime. 

Example 9 If X is uniformly distributed in  0,a , then 

0 0
( ) ( ) ln ( ) ln ( )

4

a

X X

x x a
X F x F x dx dx X

a a
 



       

due to Example 6. 

Di Crescenzo and Longobardi [8] have defined weighted past entropy.The weighted past entropy at time t of a 

random lifetime X is defined as 
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0

( ) ( )
( , ) ln( )

( ) ( )

t
X X

X X

f x f x
H X t dx

F t F t

 


 
  .      (20) 

We note that H(X) is the differential entropy of the past lifetime of X at time t, i.e., X X t      . We now 

make use of (2) to define weighted entropy for past lifetime that is the weighted version of entropy (15). 

0

( ) ( )
( , ) ln( )

( ) ( )

t
X X

X X

f x f x
H X t x dx

F t F t

         (21) 

Example 10.  If X is uniformly distributed on (0,b). The weighted past entropy is  

0 0

1

( ) ( ) 1 1
( , ) ln( ) ln( )

( ) ( ) ( ) ( )

t t
X X

X X X X

f x f x bH X t x dx x dx
F t F t F t b F t

       

  
0 0

ln ( ) ln1 1
ln ln ( )

( ) ( )

t t
X

X

X X

F t b
x b F t dx xdx

F t b bF t


       

 

2ln ln
1

ln
2 2

t
b

tb t t
t

b
b



 

. 

Example11. The weighted past entropy of an exponentially distributed random variable with parameter λ > 0 is 

given by 

 

0

( ) ( )
( , ) ln( )

( ) ( )

t
X X

X X

f x f x
H X t x dx

F t F t
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0 0

ln ( )1
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X X X
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xf x f x dx xf x dx
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 

2

0 0

2

2

ln ( ) ln 1
( )
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( )1 1 1 2 1
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1 2 2 1 1 1
2 ( ln
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x xX
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t tX

X

t
t t t t t

t

F t
xe dx x e dx

F t F t

F t
t e t t e

F t

e
e te t e e te

e

 

 


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
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 


    
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    

 

 


    




 

   
         

   

  
            

 

 

 

4. Conclusions 

This paper gives a formula for the differential entropy (Shannon’s entropy) as a measure of uncertainty supplied 

by a probabilistic experiment depending both on the probabilities of events and on qualitative weights of 

possible. The concept of weighted generalized entropy has been discussed and some new examples are given. In 

literature of information measures, generalized entropy is a famous concept which always give a nonnegative 

uncertainty measure. The several results on the first and second kind of generalized entropies have been 

discussed. But in many survival studies for modeling statistical data information about lifetime is available. 

Weighted residual entropy, cumulative residual entropy, weighted cumulative residual entropy, and weighted 

past entropy is also discussed. 
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