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Abstract In the present work, a study involving a spectral method to solve the reactive Euler and Navier-Stokes 

equations under condition of entry flow in Mars is performed. The Euler and Navier-Stokes equations, in 

conservative and finite volume contexts, employing structured spatial discretization, are studied. The Van Leer 

and the Liou and Steffen Jr. schemes are used to perform the numerical experiments. The Euler backward 

method is applied to march the schemes in time. The spectral method presented in this work employs 

collocation points and variants of Chebyshev and Legendre interpolation functions are analyzed. The “hot gas” 

hypersonic flows around a blunt body and around a double ellipse in two-dimensions are simulated. The 

convergence process is accelerated to steady state condition through a spatially variable time step procedure, 

which has proved effective gains in terms of computational acceleration (see Maciel). The reactive simulations 

involve Mars atmosphere chemical model of nine species and fifty-three reactions, based on the Kay and Netter 

field model. N, O, N2, O2, NO, CO2, C, CO, CN species are used to perform the numerical comparisons. The 

results have indicated that all Legendre variants of the spectral method predicted the stagnation temperature 

value with errors inferior to 25.00% for the inviscid case, whereas the Chebyshev variants of the spectral 

method predicted the stagnation temperature value with errors inferior to 13.00% for the viscous case.  

 

Keywords Hypersonic flow; thermochemical non-equilibrium entry flows; Euler and Navier-Stokes equations; 

Mars entry; high order accuracy; spectral method 

1. Introduction 

There are several approaches for computationally modeling fluid dynamics. These include finite difference, 

finite element, and spectral methods to name a few. Finite element and finite difference methods are frequently 

used and offer a wide range of well-known numerical schemes. These schemes can vary in terms of 

computational accuracy but are typically of lower order of accuracy. If a more accurate solution is desired, it is 

common practice to refine the mesh either globally or in a region of interest. This can often be a complicated or 

time consuming process as global mesh refinement will greatly increase the computation time while local 

refinement requires an elaborated refinement operation [1]. 

Alternatively, polynomial refinement has been used to improve the solution accuracy and has been shown to 

converge more quickly than mesh refinement in some cases [2-3]. For finite difference methods, polynomial 

refinement is performed by including neighboring node values in a higher order polynomial [4]. This can 

increase the complexity of the scheme especially near the boundaries where nodes do not exist to construct the 

higher order polynomials. Finite element methods instead increase the number of unknown values within the 

cell itself to construct a higher order solution [5]. 

A scheme with a very high formal order of accuracy will not necessarily always produce the highest resolution. 

[6] demonstrated that a spectral-like scheme with a formal fourth-order accuracy produced a much more highly 

resolved solution than schemes with higher formal orders of accuracy when comparing modified wave numbers. 
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Therefore, formal order of accuracy does not provide a comprehensive basis for selecting the best solution 

procedure. State-of-art methods such as spectral methods fall into this category. 

Spectral methods are considered a class of solution techniques using sets of known functions to solve 

differential equations [7]. Such methods are generally considered high order and capable of obtaining solutions 

with a high resolution. Unlike finite-difference and finite-element methods, spectral methods utilize an 

expansion in terms of global, rather than local, basis functions to represent the solution of a differential 

equation. When properly applied, these techniques accurately resolve phenomena on the scale of the mesh 

spacing. The order of truncation error decay with mesh refinement is also higher than which can be achieved 

with finite-difference and finite-element methods. For problems with smooth solutions, it is possible to produce 

spectral method whose truncation error goes to zero as faster than any finite power of the mesh spacing 

(exponential convergence). 

Spectral methods may be viewed as an extreme development of the class of discretization schemes known by 

the generic name of method of weighted residuals (MWR) [8]. The key elements of the MWR are the trial 

functions (also called the expansion or approximating functions) and the test functions (also known as weighted 

functions). The trial functions are used as the basis functions for a truncated series expansion of the solution 

that, when substituted into the differential equation, produces the residual. The test functions are used to enforce 

the minimization of the residual. 

The choice of the trial functions is what distinguishes the spectral methods from the element and finite 

difference methods. The trial functions for spectral methods are infinitely differentiable global functions 

(Typically, they are tensor products of the eigenfunctions of singular Sturm-Liouville problems). In the case of 

finite element methods, the domain is divided into small elements and a trial function is specified in each 

element. The trial functions are thus local in character and well suited for handling complex geometries. The 

finite difference trial functions are likewise local. 

The choice of test function distinguishes between Galerkin and collocation approaches. In the Galerkin 

approach, the test functions are the same as the trial functions, whereas in the collocation approach the test 

functions are translated Dirac delta functions. In other words, the Galerkin approach is equivalent to a least-

square approximation, whereas the collocation approach requires the differential equations to be solved exactly 

at the collocation points. 

The collocation approach is the simplest of the MWR and appears to have been first used by [9] in his study of 

electronic energy bands in metals. A few years later, [10] applied this method to the problem of torsion in square 

prism. [11] developed it as a general method for solving ordinary differential equations. They used a variety of 

trials functions and an arbitrary distribution of collocation points. The work of [12] established for the first time 

that a proper choice of the trial functions and the distribution of collocation points are crucial to the accuracy of 

the solution. Perhaps he should be credited with laying down the foundation of the orthogonal collocation 

method. 

Spectral methods have been used on one-dimensional, compressible flow problems with piecewise linear 

solutions by [13-14]. These reports demonstrated that spectral methods, when combined with appropriate 

filtering techniques, can capture one-dimensional shock waves in otherwise featureless flows. A different sort of 

demonstration was provided by [15]. They exhibited spectral solutions of compressible flows with nontrivial 

structures in the smooth regions. 

There has been significant interest in recent years in a mission to Mars. One such proposal is the MARSNET 

assessment study [16] concerning the potential contribution of ESA (European Space Agency) to a Mars 

Network mission in cooperation with NASA. NASA is currently studying a network mission MESUR (Mars 

Environmental Survey), involving the placement of up twenty small scientific stations on the surface of Mars. 

The objective of the proposed ESA activities is the provision of three of these stations to perform a variety of 

scientific experiments. The intended entry scenario is an unguided ballistic entry at a typical velocity of 6 km/s 

using a blunt sphere/cone configuration in which deceleration is provided predominantly by hypersonic aero-

braking. It is important that the mass of the vehicle structure and thermal protection system (TPS) be minimized 

such that the payload delivered to the surface may be maximized. 
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The trajectory for a ballistic Martian entry takes the vehicle through regions where thermochemical non-

equilibrium effects in the surrounding shock layer may be significant. For typical entry velocities (> 5 km/s) the 

temperature in the shock layer will be sufficiently high for dissociation of the free stream species to occur. The 

energy removed through such reactions may be released at the vehicle surface via recombination leading to 

significantly enhanced heat transfer rates. In order to design the TPS for minimum mass the heat transfer rate 

needs to be accurately predicted. This requires that any catalytic properties of the TPS material are accounted 

for in the heat transfer rate calculation since these will determine the extent of wall recombination. 

As aforementioned, missions to other planets remain an objective for the ESA, and such missions generally 

involve the entry of a space vehicle into the atmospheres of those planets. In the context of such entry, 

aerothermodynamics is one of the critical technologies. While the thermochemical behavior of air under re-entry 

conditions has been studied extensively, and is to some degree understood, the same is not true for entries into 

other atmospheres. The atmospheres of Mars and Venus, for example, contain significant amounts of carbon 

dioxide. In particular, the Mars atmosphere is a mixture of approximately 96% CO2 and 4% N2, with pressures 

much lower than the Earth’s atmosphere, so for any entry into the Martian atmosphere the non-equilibrium 

behavior of CO2 is likely to be of importance for a typical blunt body entry vehicle. This includes not just the 

influence of thermochemistry on the fore-body heat-shield flowfield, but also the influence on the shoulder 

expansion, base flow, and base heating environment. 

In the present work, a study involving a spectral method to solve the reactive Euler and Navier-Stokes equations 

under condition of entry flow in Mars is performed. The Euler and Navier-Stokes equations, in conservative and 

finite volume contexts, employing structured spatial discretization, are studied. The [17-18] schemes are used to 

perform the numerical experiments. The Euler backward integration method is applied to march the schemes in 

time. The spectral method presented in this work employs collocation points and variants of Chebyshev and 

Legendre interpolation functions are analyzed. The “hot gas” hypersonic flows around a blunt body, and around 

a double ellipse in two-dimensions, are simulated. The convergence process is accelerated to steady state 

condition through a spatially variable time step procedure, which has proved effective gains in terms of 

computational acceleration [19-20]. The reactive simulations involve Mars atmosphere chemical model of nine 

species and fifty-three reactions, based on the [21] model. N, O, N2, O2, NO, CO2, C, CO, CN species are used 

to perform the numerical comparisons. The results have indicated that all Legendre variants of the spectral 

method predicted the stagnation temperature value with errors inferior to 25.00% for the inviscid case, whereas 

the Chebyshev variants of the spectral method predicted the stagnation temperature value with errors inferior to 

13.00% for the viscous case. 

 

2. Spectral Method 

Two classes of techniques for spectral discretization are referred to as tau and collocation methods [22]. The 

latter technique is used here. In this scheme, the approximation series is determined by satisfying the differential 

equation exactly at a set of distinct collocation points. The locations of these points in the domain are linked to 

the choice of basis function. In this study, arbitrary collocation points are implemented. The collocation method 

is used here since enforcement of boundary conditions and evaluations of nonlinear terms are straightforward. 

Additionally, some accuracy advantage is seen in the collocation method over the tau method for a number of 

problems [22]. The series expansion for a function Q(x) may be represented as 





N

0n
nnN

)x(BQ̂)x(Q ,                                      (1)
 

whereBn(x) are the basis functions and N is the total number of nodes employed in the interpolation process (it 

is also the order of accuracy of the spectral method). The coefficients 
n

Q̂  are often termed the spectrum of 

QN(x). One common technique used to evaluate the spectrum is to consider Eq. (1) as an interpolation series 

representing Q(x). The interpolation “nodes” of such series are the collocation points of the method.  For a 

scheme based on Chebyshev collocation, the basis functions are: 

)x(P)x(xP2)x(T)x(B
2n1nnn 

 , 2n  ,         (2) 

with: P0(x) = 1 and P1(x) = x. The Chebyshev-Gauss-Lobatto standard collocation points are 
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
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
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l
,          l = 0, 1, …, N.                                 (3) 

The Chebyshev collocation points result from a simple change of variables, which relates the Chebyshev 

interpolation series to a Fourier cosine series [22]. To evaluate the 
n

Q̂ , the inverse relation is required. This is 





N

0l
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Q)x(BwĉQ̂ ,          n = 0, 1, …, N,          (4) 

With wl being a normalized weighting function and 
n

ĉ a constant. These variables assume the following 

expressions to a Chebyshev interpolation: 
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Legendre collocation is based on using Legendre polynomials as the basis function in Eq. (1), e.g., 

     n)x(P1n)x(xP1n2)x(B
2n1nn 

 ,          2n  ,    (6) 

where: P0(x) = 1 and P1(x) = x. Interpolation via Legendre series cannot easily be related to trigonometric 

interpolation, so there is no simple expression to evaluate the 
n

Q̂ coefficients. Appeal must be made to the 

theory of numerical quadrature to form an approximation to the integrals which result from analytic Legendre 

interpolation [23]. Considering Eq. (4), the normalized weights and constant of the Legendre-Gauss-Lobatto 

collocation points are 
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In this work, it was assumed that the Legendre-Gauss-Lobatto collocation points are the same as the Chebyshev-

Gauss-Lobatto ones. It was also adopted the following collocation points and normalized weights for the 

Chebyshev-Gauss-Radau interpolation, based on the work of [24]: 
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For the Legendre-Gauss-Radau interpolation, also based in [24], the collocation points are defined by Eq. (8) 

and the normalized weights are described by: 
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           (10) 

The same calculation to the vector of conserved variables Q is applied to the vector of flux C, to be defined in 

section 4. 

Hence, we have two collocation point options and two normalized weight functions to be considered by the 

Chebyshev and the Legendre methods, namely: Chebyshev-Gauss-Radau, Chebyshev-Gauss-Lobatto, Legendre-

Gauss-Radau and Legendre-Gauss-Lobatto. 

 

3. Reactive Euler and Navier-Stokes Equations in 2D 

As the Euler equations are obtained from the Navier-Stokes equations when the Reynolds number tends to 

infinite, only the Navier-Stokes equations are presented. Hence, the flow is modeled by the Navier-Stokes 

equations and the condition of thermochemical non-equilibrium, where the rotational and vibrational 
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contributions are considered, is taken into account. For details of the chemical model adopted for the 

simulations, as well the thermodynamic and transport property calculations, the reader is encouraged to read 

[25-26]. The reactive Navier-Stokes equations in thermochemical non-equilibrium were implemented on 

conservative and finite volume contexts, in two-dimensions. In this case, these equations in integral and 

conservative forms are given by: 

  




V V

CV

S

dVSdSnFQdV
t


, with:     jFFiEEF veve


 ,    (11) 

where: Q is the vector of conserved variables, V is the volume of a computational cell, F


 is the complete flux 

vector, n


 is the unity vector normal to the flux face, S is the flux area, SCV is the chemical and vibrational 

source term, Ee and Fe are the convective flux vectors or the Euler flux vectors in the x and y directions, 

respectively, and Ev and Fv are the viscous flux vectors in the x and y directions, respectively. The i


 and j


 

unity vectors define the Cartesian coordinate system. Thirteen (13) conservation equations are solved: one of 

general mass conservation, two of linear momentum conservation, one of total energy, eight of species mass 

conservation, and one of the vibrational internal energy of the molecules. Therefore, one of the species is absent 

of the iterative process. The CFD literature recommends that the species of biggest mass fraction of the gaseous 

mixture should be omitted, aiming to result in a minor numerical accumulation error. To the present study, in 

which is chosen a chemical model to the Mars atmosphere composed of nine (9) chemical species (N, O, N2, O2, 

NO, CO2, C, CO, CN) to the [21] model,this species can be the CO2 or the N2. To this work, theCO2was chosen. 

The vectors Q, Ee, Fe, Ev, Fv, and SCV can be defined as follows: 
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in which:  is the mixture density; u and v are Cartesian components of the velocity vector in the x and y 

directions, respectively; p is the pressure term; H is the fluid total enthalpy;1, 2, 3,4,5, 7, 8, and9 are 

densities of the N, O, N2,O2, NO, C, CO, and CN, respectively; eV is the sum of the vibrational energy of the 

molecules; the ’s are the components of the viscous stress tensor; fx and fy are viscous work and Fourier heat 

flux functions; svsx and svsy represent the species diffusion flux, defined by the Fick law; x and y are the 

terms of mixture diffusion; v,x and v,y are the terms of molecular diffusion calculated at the vibrational 

temperature; 
s

  is the chemical source term of each species equation, defined by the law of mass action;
*

ve  is 

the molecular-vibrational-internal energy calculated with the translational/rotational temperature; s is the 
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translational-vibrational characteristic relaxation time of each molecule; qv,x and qv,y are the vibrational Fourier 

heat flux components in the x and y directions, respectively; Re is the laminar Reynolds number. 

 
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The viscous stresses, in N/m
2
, are determined, according to a Newtonian fluid model, by: 

   yvxu32xu2 mmxx  ; 

 xvyumxy  ;                             (14) 

    ,yvxu32yv2 mmyy   

where µm is the molecular viscosity. Expressions to fx and fy are given below: 

x,vxxyxxx qqvuf  ;                      (15) 

y,vyyyxyy qqvuf  ,                                (16) 

Where qx and qy are the Fourier heat flux components and are given by: 

;xTkq TRx                              (17) 

yTkq TRy  ,          (18) 

Where kTR is the thermal conductivity due to translation and rotational modes. The qv,x and qv,y are the 

vibrational heat flux components and are given by: 

;xTkq VVx,v               (19) 

yTkq VVy,v  ,                                     (20) 

with kV being the vibrational thermal conductivity and TV is the vibrational temperature, what characterizes this 

model as of two temperatures: translational/rotational and vibrational. The terms of species diffusion, defined by 

the Fick law, to a condition of thermal non-equilibrium, are determined by ([27]): 

x

Y
Dv

s,MF

ssxs



 and

y

Y
Dv

s,MF

ssys



 ,                    (21) 

with “s” referent to a given species, YMF,s being the molar fraction of the species, defined as: 
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and Ds is the species-effective-diffusion coefficient. “ns” is the total number of species of the chemical model. 

The Reynolds number is defined as 

charinitialchar LVRe  ,                                    (23) 

Where “char” represents characteristic or freestream properties, Vinitial represents the flow initial velocity, µchar is 

the characteristic molecular viscosity, and L is a characteristic length of the studied configuration. The diffusion 

terms x and y which appear in the energy equation are defined by ([28]): 


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Being hs the specific enthalpy (sensible) of the chemical species “s”. The molecular diffusion terms calculated at 

the vibrational temperature, v,x and v,y, which appear in the vibrational-internal-energy equation are defined by 

[27]: 





mols

s,vsxsx,v hv and 



mols

s,vsysy,v hv ,               (25) 
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With hv,s being the specific enthalpy (sensible) of the chemical species “s” calculated at the vibrational 

temperature TV. The sum of Eq. (13), as also those present in Eq. (25), considers only the molecules of the 

system, namely: N2, O2, NO, CO2, CO, and CN. 

 

4. Numerical Algorithms 

Considering the two-dimensional and structured case, the flux vector splitting algorithms follow that described 

in [25-26, 29-30]. The system is solved in three parts separately, according to [31]. The first part takes into 

account the dynamic part, which considers the Navier-Stokes equations, the second one takes into account the 

chemical part involving the chemical contributions, and finally, the third part considers only the vibrational 

contribution. Hence, the discrete-dynamic-convective flux, which solves the dynamic part, is given by: 
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(26) 

with   t

j,2/1iyxj,2/1i SSS
   defining the normal area vector for the surface (i+½,j). The normal area 

components Sx and Sy to each flux interface are given in Tab. 1. The discrete-chemical-convective flux is 

defined by: 
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and finally the discrete-vibrational-convective flux is defined as: 

         









  LvRvj,2/1iRvLvj,2/1ij,2/1ij,2/1i aeae
2

1
aeaeM

2

1
SR ,    (28) 

where “a” is the speed of sound, defined in section 5. For better comprehension, Fig. 1 exhibits the 

computational cell adopted for the simulations, as well its respective nodes and flux interfaces. C can be defined 

as the sum of the fluxes in each interface. 

The same definitions presented in [25-26, 29-30] are valid to these algorithms. The definition of the dissipation 

term  determines the particular formulation of the convective fluxes. The choice below corresponds to the [17] 

scheme, according to [32]: 

 

 
























.0M1if,1M5.0M

;1M0if,1M5.0M

;1Mif,M

j,2/1i

2

Lj,2/1i

j,2/1i

2

Rj,2/1i

j,2/1ij,2/1i

VL

j,2/1ij,2/1i

    

(29) 

and the [18] scheme is obtained by, according to [32]: 

j,2/1i

LS

j,2/1ij,2/1i M   .            (30) 
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Both schemes are first-order accurate in space and in time. The high-order spatial accuracy is obtained, in the 

current study, by the spectral method. 

The viscous formulation follows that of [33], which adopts the Green theorem to calculate primitive variable 

gradients. The viscous gradients at the interface are obtained by arithmetical average between cell (i,j) and its 

neighbors. As was done with the convective terms, there is a need to separate the viscous flux in three parts: 

dynamic viscous flux, chemical viscous flux, and vibrational viscous flux. The dynamic part corresponds to the 

first four equations of the Navier-Stokes ones, the chemical part corresponds to the eight equations immediately 

below the energy equation, and the vibrational part corresponds to the equation that follows the last chemical 

one. 

The Euler backward method is used to perform time integration. This method is first-order accurate in time, to 

the three types of complete flux. To the convective dynamic component, this method can be represented in 

general form by: 

    )n(

j,ij,ij,i

)n(

j,i

)1n(

j,i QCVtQQ 
,              (31) 

to the convective chemical component, it can be represented in general form by: 

    )n(

j,iCj,i

)n(

j,ij,i

)n(

j,i

)1n(

j,i QSVQCtQQ 
,                                   (32) 

where the chemical source term SC is calculated with the temperature Trrc (reaction rate controlling temperature, 

see [25-26, 29-30]). Finally, to the convective vibrational component: 

    )n(

j,iVj,i

)n(

j,ij,i

)n(

j,i

)1n(

j,i QSVQCtQQ 
,                                 (33) 

in which: 




 
mols

s,vs,C

mols

s,VTV eSqS ,                           (34) 

Where qT-V is the heat flux due to translational-vibrational relaxation, defined in Eq. (13) and in [25-26, 29-30]. 

 

5. Spatially Variable Time Step 

The spatially variable time step has proved efficient gains in terms of convergence acceleration, as verified by 

[19-20]. Initially, the parameter  is determined, where: 

s

s
s

M

c
 and 




ns

1s

s ,                                                (35) 

With cs being the mass fraction and Ms the molecular weight. The total specific heat at constant volume due to 

translation is defined as: 





ns

1s

s,T,VsT,V cc ,                  (36) 

where, for each gas constituent of the nine (9) species chemical model, the specific heat at constant volume, 

based on the kinetic theory of gases ([34]), is defined by 

NN,T,V R
2

3
c  , OO,T,V R

2

3
c  , 

22 NN,T,V R
2

5
c  , 

22 OO,T,V R
2

5
c  , NONO,T,V R

2

5
c  ;  (37) 

22 COCO,T,V R
2

5
c  , CC,T,V R

2

3
c  , COCO,T,V R

2

5
c  , CNCN,T,V R

2

5
c  ,   (38) 

Being Rs the specific gas constant. The total pressure of the gaseous mixture is determined by Dalton law, which 

indicates that the total pressure of the gas is the sum of the partial pressure of each constituent gas, resulting in: 

TRcp sss  and 



ns

1s

spp .         (39) 

The speed of sound to a thermochemical non-equilibrium reactive mixture can be determined by 
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 
,

p1
a






           
(40)

 

where 

T,V

univ

c

R 
 , with Runiv = 1.987 cal/(g-mol.K). Finally, the spatially variable time step is defined from 

the CFL (Courant-Friedrichs-Lewis) definition: 

j,i

2

j,i

2

j,i

j,i

j,i

avu

sCFL
t




 ,                                                        (41) 

where j,is  is the characteristic length of each cell (defined between the minimum cell side length and the 

minimum centroid distance between each cell and its neighbors). 

 

6. Dimensionless Scales, Initial and Boundary Conditions 

6.1. Dimensionless Scales 

The dimensionless scales employed to the reactive equations consisted in: Rs is dimensionless by achar, 

whereachar is calculated according to [25-26, 29-30]; cv is dimensionless by achar; hs and 
0

sh   are dimensionless 

by 
2

chara ; T and Tv, translational/rotational temperature and vibrational temperature, respectively, are 

dimensionless by achar; s and  are dimensionless by char; u and v are dimensionless by achar;  is dimensionless 

by char; D, diffusion coefficient, dimensionless by 
2

chara dtchar, where dtchar is the minimum time step calculated 

in the computational domain at the first iteration;   is dimensionless by   3

charchar 10xdt  ; ev is 

dimensionless by 
2

chara ; p and e are dimensionless by 
2

charchara ; and s, relaxation time, is dimensionless by 

dtchar. The characteristic properties are defined in [35]. 

 

6.2. Initial Condition 

The initial conditions to both problems, for anine species chemical model are presented in Tabs. 2 and 3. The 

Reynolds number is obtained from data of [35]. 

 

6.3. Boundary Conditions 

The boundary conditions are basically of three types: solid wall, entrance, and exit. These conditions are 

implemented with the help of ghost cells. 

 

Wall condition. In the inviscid case, this condition imposes the flow tangency at the solid wall. This condition is 

satisfied considering the wall tangent velocity component of the ghost volume as equals to the respective 

velocity component of its real neighbor cell. At the same way, the wall normal velocity component of the ghost 

cell is equaled in value, but with opposite signal, to the respective velocity component of the real neighbor cell. 

It results in: 

and;yxyn 22

x  22

y yxxn  ;                               (42)

 where, for the (i+1/2,j) interface: 

j,1i1j,1ij,1i1j,1i yyyand;xxx   .                          (43) 

Hence, the ghost cell velocity components are written as: 

        .vnnunn2vand;vnn2unnu r

2

y

2

xryxgryxr

2

x

2

yg 
   

(44) 

with “g” related with ghost cell and “r” related with real cell. To the viscous case, the boundary condition 

imposes that the ghost cell velocity components be equal to the real cell velocity components, with negative 

signal: 
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rg uu  and rg vv  .                               (45) 

The normal pressure gradient of the fluid at the wall is assumed to be equal to zero according to a boundary-

layer like condition in the viscous case. The same hypothesis is applied for the normal temperature gradient at 

the wall, assuming an adiabatic wall. From these considerations, density and translational/rotational temperature 

are extrapolated from the respective values of its real neighbor volume (zero order extrapolation). The total 

vibrational internal energy is also extrapolated. 

With the mixture species mass fractions and with the values of the respective specific heats at constant volume, 

it is possible to obtain the mixture specific heat at constant volume. The mixture formation enthalpy is 

extrapolated from the real cell. The mixture total energy to the ghost cell is calculated by: 

    2

g

2

gg,vREFmixt

0

g,mixtg,trg,mixtvg vu5.0eTRhTce  ,    (46) 

Where details of the calculation of cv,mixt,g, of Rmixt, and of the vibrational energy are found in [25-26, 29-30].To 

the species density, the non-catalytic condition is imposed, what corresponds to zero order extrapolation from 

the real cell.  

 

Entrance condition 

It is divided in two flow regimes: 

(a) Subsonic flow: Three properties are specified and one extrapolated in the boundary conditions of the 

dynamic part of the algorithm. This approach is based on information propagation analysis along characteristic 

directions in the calculation domain [36]. In other words, for subsonic flow, three characteristics propagate 

information pointing into the computational domain. Thus three flow properties must be fixed at the inlet plane. 

Just one characteristic line allows information to travel upstream. So, one flow variable must be extrapolated 

from the interior grid to the inlet boundary. The total energy was the extrapolated variable from the real 

neighbor volumes, for the studied problems. Density and velocity components adopted values of the initial flow. 

To the chemical part, eight information propagate upstream because it is assumed that all eight equations are 

conducted by the eigenvalue “(qn-a)”. In the subsonic flow, all eigenvalues are negative and the information 

should be extrapolated. In the same reasoning to the chemical boundary conditions, the vibrational-internal-

energy equation is dictated by the “(qn-a)” eigenvalue and, in the subsonic region, its value is negative. Hence, 

the vibrational internal energy should be extrapolated. 

(b) Supersonic flow: In this case no information travels upstream; therefore all variables are fixed with their 

initial values. 

 

Exit condition  

It is also divided in two flow regimes: 

(a) Subsonic flow: Three characteristic propagates information outward the computational domain. Hence, the 

associated variable should be extrapolated from interior information. The characteristic direction associated to 

the “(qnormal-a)” velocity should be specified because it points inward to the computational domain [36]. In this 

case, the ghost volume total energy is specified from its initial value. Density and velocity components are 

extrapolated. To the chemical part, the eigenvalue “(qn-a)” is again negative and the characteristics are always 

flowing into the computational domain. Hence, the eight chemical species under study should have their 

densities fixed by their initial values. In the same reasoning, the internal vibrational energy should have its value 

prescribed by its initial value due to the eigenvalue “(qn-a)” be negative. 

(b) Supersonic flow: All variables are extrapolated from interior grid cells, as no flow information can make its 

way upstream. In other words, nothing can be fixed. 

 

7. Physical Problems 

Two physical problems were solved in this work, namely: blunt body physical problem, and double ellipse 

physical problem. For the first problem the geometry under study is a blunt body with 0.85m of nose ratio and 

inclined rectilinear walls of 10
o
. The far field is located at 20.0 times the nose ratio in relation to the 

configuration nose. A mesh composed of 3,776 rectangular cells and 3,900 nodes was studied for the inviscid 
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case. This mesh is equivalent in finite differences to a one of 65x60 points. To the viscous case, a mesh of 2,646 

rectangular cells and 2,750 nodes, with an exponential stretching of 5.0%, was analyzed, which is equivalent in 

finite differences to 55x50 points. A “O” mesh was taken as the base to construct both meshes. No smoothing 

was used in this mesh generation process, being this one constructed in Cartesian coordinates. Figure 2 shows 

the blunt body geometry for this study. Figures 3 and 4 exhibit the inviscid and viscous meshes. 

The double ellipse problem is the second under study. The mesh is composed of 4,116 rectangular cells and 

4,250 nodes, with an exponential stretching of 5.0% for the viscous case, and far field located at 20.0 unities. 

This mesh is equivalent in finite differences to a one of 85x50 points. Figure 5 shows the double ellipse 

geometry and Figs. 6 and 7 exhibit the inviscid and viscous meshes. 

 

8. Results 

Tests were performed in a Core i7 processor of 2.4 GHz and 6.0 Gbytes of RAM microcomputer, in a Windows 

7.0 environment. Three (3) orders of reduction of the maximum residual in the field were considered to obtain a 

converged solution. The residual was defined as the value of the discretized conservation equation. In the 

convective dynamic part, such definition results in: 

 
j,ij,ij,i CVtsidualRe  .                                        (47) 

The attack angle was adopted equal to zero.For the blunt body and the double ellipse problems, a 5
th

 order 

spectral method was employed in the inviscid numerical simulations and a 8
th

 order spectral method was 

employed in the viscous numerical simulations. For a matter of simplification, the following abbreviations are 

employed: [17] scheme = VL, [18] scheme = LS, Chebyshev-Gauss-Radau = CGR, Chebyhsev-Gauss-Lobatto 

= CGL, Legendre-Gauss-Radau = LGR, and Legendre-Gauss-Lobatto = LGL. 

 

8.1. Blunt Body Problem 

Inviscid case 

Figures 8 to 11 show the pressure and translational/rotational temperature contours obtained by the VL and LS 

schemes as using the CGR collocation points. As can be seen, the solutions present good symmetry properties, 

being the LS solution less dissipative than the VL solution. The peaks of pressure for both schemes differ by a 

value of almost 100.0 unities. The temperature peaks differ by a factor of approximately 100.0K. Good 

symmetry properties are also observed in the temperature contours. 

Figures 12 to 15 exhibit the pressure and temperature contours generated by the VL and LS schemes as using 

the CGL collocation points. Comparing Figs. 12 and 13 for the pressure contours, it is evident the less 

dissipative effects of the LS scheme. The pressure peaks are very close. Figures 14 and 15 present the 

temperature contours obtained by both schemes. The VL solution presents a temperature peak approximately 

300K colder than the LS solution. Good symmetry properties are observed in both figures. 

Figures 16 to 19 show the pressure and temperature contours calculated by the VL and LS schemes when using 

the LGR collocation points. Good symmetry properties are observed. The pressure peaks differ approximately 

of 50.0 unities. The temperature contours present good homogeneous properties. The VL temperature peak is 

almost 1,000K hotter than the LS temperature peak. 

Figures 20 to 23 exhibit the pressure and temperature contours obtained by the VL and LS schemes as using the 

LGL collocation points. The pressure peaks differ of approximately 70.0 unities, being the LS solution more 

severe. Figures 22 and 23 present the translational/rotational temperature contours. The VL temperature peak is 

approximately 1,200K hotter than the LS temperature peak. Good homogeneous properties are observed in both 

solutions. 

Viscous case. Figures 24 to 27 show the pressure and temperature contours obtained by the VL and LS 

numerical algorithms as using the CGR collocation points. In terms of pressure contours, both solutions present 

different aspects. The normal shock wave calculated by the VL scheme is more developed and more spreading 

than the LS one. The pressure peaks differ by approximately 60.0 unities, being the VL peak more intense than 

the LS peak. The translational/rotational temperature contours generated by the VL scheme is hotter than the 

respective temperature contours generated by the LS scheme. The shock wave is more developed in the VL 

solution. 
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Figures 28 to 31 exhibit the pressure and temperature contours calculated by the VL and LS numerical schemes 

when using the CGL collocation points. The pressure contours are more developed in the VL solution, with the 

pressure peak approximately 40.0 unities more severe than the LS solution. Good symmetry properties are 

observed in both solutions. In the temperature contours, the VL temperature peak is almost 2,000K hotter than 

the LS temperature peak. Good homogeneous properties are observed in both figures. 

Figures 32 to 35 show pressure and temperature contours obtained by the VL and LS numerical algorithms as 

using the LGR collocation points. Figures 32 and 33 present the pressure contours and the LS solution is more 

severe than the VL solution. In this case, the VL solution was less dissipative and more developed than the LS 

solution. Figure 34 and 35 exhibit the translational/rotational temperature contours obtained by both schemes. 

The VL’s temperature contours are more intense than LS’ temperature contours, the difference in terms of 

temperature peaks is quasi 2,200K in favor of the VL scheme. Good symmetry and homogenous properties are 

observed in both solutions. 

Figure 36 to 39 exhibit the pressure and temperature contours calculated by the VL and LS schemes when using 

the LGL collocation points. The pressure peaks differ of approximately 20.0 unities in favor of the LS solution. 

The VL solution is less dissipative than the LS solution. Figures 38 and 39 show the temperature contours 

obtained by both schemes. The normal shock wave generated by the VL scheme is more intense and hotter than 

that generated by the LS scheme. The temperature peaks differ by approximately 2,200K, being hotter in VL 

solution. Good symmetry and homogeneous properties are observed in both solutions. 

 

8.2. Double Ellipse Problem 

Inviscid case.Figures 40 to 43 show the pressure and translational/rotational temperature contours obtained by 

the VL and LS schemes as using the CGR collocation points. The highest pressure peak is obtained by the LS 

solution, being about 10.0 unities more severe than the respective VL solution. Both schemes capture the two 

normal shock waves at the bigger and minor ellipses. Figures 42 and 43 exhibit the temperature contours, where 

the LS scheme detects the most intense temperature field. Good homogeneous properties are observed in both 

solutions. The maximum temperature peak reaches the value of 14,085.40 K. 

Figures 44 to 47 present the pressure and temperature contours calculated by the VL and LS schemes when 

employing the CGL collocation points. Again the LS scheme predicts the most severe pressure field, with the 

pressure peak being 40.0 unities more severe. Both schemes capture the two normal shock waves, ahead of the 

bigger ellipse and ahead of the minor ellipse. The LS scheme is less dissipative than the VL scheme. Figures 46 

and 47 exhibit the temperature contours, where the most intense temperature field is due to the VL scheme, with 

the temperature peak reaching the value of 14,339.50 K. 

Figures 48 to 51 show the pressure and the translational/rotational temperature contours generated by the VL 

and LS schemes as employing the LGR collocation points. The most intense pressure field is due to the LS 

scheme, with the pressure peak being about 55.0 unities more strength than the VL pressure peak. Good 

homogeneous properties are observed. Figures 50 and 51 exhibit the temperature contours generated by the VL 

and LS algorithms, respectively. The most intense temperature field is due to the VL scheme again, with 

temperature peak being about 2,500 K hotter than the LS respective field. The LS algorithm is less dissipative 

than the VL one. The maximum temperature peak captured by the VL scheme has the value of 14,597.90 K. 

Figures 52 to 55 present the pressure and temperature contours calculated by the VL and LS schemes when 

using the LGL collocation points. The pressure contours generated by the LS scheme is more intense than the 

respective one of the VL scheme, being about 60.0 unities more strength. The most intense temperature contours 

are obtained by the VL scheme, with the temperature peak circa of 3,000 K hotter than the LS’ temperature 

peak. Good homogeneous properties are observed in both figures. The two normal shock waves are captured by 

both schemes. The maximum temperature peak calculated by the VL scheme reaches the value of 15,228.70 K. 

Viscous case. Figures 56 to 59 show the pressure and temperature contours obtained by the VL and LS schemes 

as employing the CGR collocation points. The pressure field generated by the VL scheme is more intense than 

the respective one generated by the LS scheme, with the pressure peak being 10.0 unities more strength than the 

latter. The most intense temperature field is obtained by the VL scheme again, reaching a maximum of 



de Góes Maciel ES                                  Journal of Scientific and Engineering Research, 2017, 4(12):236-267 

 

Journal of Scientific and Engineering Research 

248 

 

16,584.60 K at the double ellipse nose. The two normal shock waves are well captured by the both schemes. The 

LS scheme is less dissipative than the VL scheme. 

Figures 60 to 63 exhibit the pressure and the translational/rotational temperature contours generated by the VL 

and LS schemes when employing the CGL collocation points. The pressure field generated by the VL algorithm 

is more strength than the respective one of the LS algorithm. Figures 62 and 63 show the temperature contours 

obtained by the VL and LS schemes, respectively. The most intense temperature field is generated by the VL 

scheme again, with a peak of about 17,804.90 K, circa of 1,600 K higher than the LS’ temperature peak. 

Figures 64 to 67 present the pressure and temperature contours calculated by the VL and LS algorithms when 

using the LGR collocation points. The most intense pressure field is due to LS and good homogeneous 

properties are observed in both solutions. The LS pressure peak is circa of 50.0 unities more intense than the VL 

pressure peak. Figures 66 and 67 show the temperature contours obtained by the VL and LS schemes, 

respectively. The most intense temperature field is generated by the VL algorithm again, reaching the maximum 

value of 18,468.20 K, about 800.0 K higher than the LS temperature peak. It is possible to identify the viscous 

shock layer close to the body surface in the VL’s solution. 

Figures 68 to 71 show the pressure and translational/rotational temperature contours obtained by the VL and LS 

schemes as employing the LGL collocation points. The LS algorithm captures the most intense pressure field, 

with pressure peak about 50.0 unities more strength than the VL pressure peak. Figures 70 and 71 exhibit the 

temperature contours calculated by the VL and LS algorithms, respectively. The most intense temperature field 

is due to the VL algorithm, with the temperature peak of 18,453.10 K. Effects of the viscous shock layer were 

well captured. The two normal shock waves are well detected by both schemes. 

 

8.3. Quantitative Analysis 

In order to perform a quantitative analysis, the present reactive results are compared to the perfect gas solutions. 

The stagnation temperatures at the blunt body nose and at the double ellipse nose were evaluated assuming the 

perfect gas formulation. Such parameter calculated at this way is not the best comparison, but in the absence of 

practical reactive results, it constitutes the best available solution. 

To calculate the stagnation temperatures ahead of the blunt body and ahead of the double ellipse configurations, 

[37] presents a formula for this parameter head of the configuration as function of the normal shock wave 

properties. Equation (48) was picked up from this reference. 








 
 2

initialinitial0 M
2

1
1TT .                                       (48) 

In the present study, considering the CO2 as a perfect gas and that the Mars atmosphere is composed basically of 

this gas, one obtains for the theoretical stagnation temperatures the values exhibited in Tab. 4, where γCO2 was 

obtained from [35]. Values of numerical stagnation temperatures are exhibited in Tabs. 5 (inviscid case) and 6 

(viscous case). The minimum percentage error for the blunt body problem in the inviscid case was due to VL 

scheme using the LGL collocation point variant with a value of 0.26%, whereas for the viscous case was due to 

VL scheme using the CGL collocation point variant with a value of 1.29%.For the double ellipse problem, the 

minimum percentage error for the inviscid case was due to VL scheme using the LGL collocation point variant 

with a value of 3.88%, whereas for the viscous case was due to LS scheme using the CGR collocation point 

variant with a value of 0.77%. 

As the hypersonic flow around the blunt body was simulated with a zero value to the attack angle, a zero lift 

coefficient is the expected value for this aerodynamic coefficient in this problem. Tables 7(inviscid case) and 8 

(viscous case) exhibit an analysis of the lift aerodynamic coefficient, based only on pressure contribution, in this 

study. As can be observed, the best value to the lift coefficient in the inviscid case was obtained by the VL 

scheme when using the LGR collocation points, whereas in the viscous case was obtained by the LS scheme 

when using also the LGR collocation points. 

 

8.4. Computational Performance 

Tables 9 (inviscid case) and 10 (viscous case) present the computational data of the VL and LS schemes for both 

problems. It shows the CFL number and the number of iterations to convergence for all studied cases in the 
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current work. It can be verified that the best performance of the VL scheme occurred when using the LGR 

collocation points in the blunt body inviscid case with a CFL of 0.50, converging in 235 iterations, whereas of 

the LS scheme occurred when using the LGL collocation points in the blunt body inviscid case with a CFL of 

0.40, converging in 252 iterations. The global analysis highlights the VL scheme using the LGR collocation 

points in the inviscid case as the best method in terms of convergence ratio. 

As final conclusion, it is possible to highlight the LGL collocation points, in its fifth-order of accuracy, for the 

inviscid case, as the best performance in estimating the stagnation temperature ahead of the blunt body 

configuration, with an error of 0.26%, when coupled with the VL scheme, and the LGR collocation points, in its 

eighth-order of accuracy, for the viscous case, as the best performance is estimating the lift aerodynamic 

coefficient around the blunt body configuration when coupled with the LS scheme. On the other hand, in the 

double ellipse problem, the CGR collocation points, in its eighth-order of accuracy, for the viscous case, was the 

best performance in estimating the stagnation temperature, with an error of 0.77%, when coupled with the LS 

scheme. Moreover, the LGR collocation points, in its fifth-order of accuracy, for the inviscid case, when 

coupled with the VL scheme, were globally the most efficient in terms of computational effort. It is also 

important to note that all Legendre variants of the spectral method predicted the stagnation temperature value 

with errors inferior to 25.00% for the inviscid case, whereas the Chebyshev variants of the spectral method 

predicted the stagnation temperature value with errors inferior to 13.00% for the viscous case. 

Finally, to close this work, the computational cost of the numerical schemes using the several types of 

collocation points is presented in Tab. 11. For the inviscid case, the cheapest combination was the LS scheme 

using CGL collocation points and the LGL collocation points with a cost of 0.0011401 sec/per-volume/per-

iteration, whereas for the viscous case the cheapest was due to the VL scheme coupled with the LGL collocation 

points with a cost of 0.0011683 sec/per-volume/per-iteration. 

Table 1: Values of Sx and Sy. 

Surface Sx Sy 

i,j-1/2  
j,ij,1i

yy 


  
j,1ij,i

xx


  

i+1/2,j  
j,1i1j,1i

yy


   
1j,1ij,1i

xx


  

i,j+1/2  
1j,1i1j,i

yy


   
1j,i1j,1i

xx


  

i-1/2,j  
1j,ij,i

yy


   
j,i1j,i

xx 


 

 

Table 2: Initial conditions to the blunt body problem 

Property Value 

Minitial 31.0 

initial 0.0002687 kg/m
3
 

prinitial 8.3039 Pa 

Uinitial 6,155 m/s 

Tinitial 160.9 K 

Altitude 41,700 m 

cN 0.00 

cO 0.00 

2Nc  0.03 

2Oc  0.00 

cNO 0.00 

2COc  0.97 

cC 0.00 

cCO 0.00 
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cCN 0.00 

L 1.7 m 

Rechar 3.23x10
5
 

 

Table 3: Initial conditions to the double ellipse problem 

Property Value 

Minitial 26.0 

initial 0.000265 kg/m
3
 

prinitial 8.1394 Pa 

Uinitial 5,210 m/s 

Tinitial 160.0 K 

Altitude 44,000 m 

cN 0.00 

cO 0.00 

2Nc  0.0270 

2Oc  0.0015 

cNO 0.00 

2COc  0.9715 

cC 0.00 

cCO 0.00 

cCN 0.00 

L 5.00 m 

Rechar 8.04x10
5
 

 

Table 4: Theoretical value of the stagnation temperature 

Physical Problem: γCO2: Minitial: Tinitial: T0(Theoretical): 

Blunt body 1.29 31.0 160.9K 22,581.51K 

Double ellipse 1.29 26.0 160.0K 15,843.20K 

 

Table 5: Values of stagnation temperature and respective errors in the inviscid case (5
th

 order of accuracy) 

Problem Scheme: Spectral Model – Collocation Points: T0 (Numerical): Error (%): 

 VL
(1)

 Chabyshev-Gauss-Radau 16,522.70 26.83 

 LS
(2)

 Chabyshev-Gauss-Radau 17,411.40 22.90 

 VL Chabyshev-Gauss-Lobatto 17,892.20 20.77 

Blunt Body LS Chabyshev-Gauss-Lobatto 18,191.10 19.44 

(T0 = 22,581.51K) VL Legendre-Gauss-Radau 21,727.90 3.78 

 LS Legendre-Gauss-Radau 20,869.90 7.58 

 VL Legendre-Gauss-Lobatto 22,640.50 0.26 

 LS Legendre-Gauss-Lobatto 21,445.90 5.03 

 VL Chabyshev-Gauss-Radau 12,288.00 22.44 

 LS Chabyshev-Gauss-Radau 14,085.40 11.09 

 VL Chabyshev-Gauss-Lobatto 14,339.50 9.49 

Double Ellipse LS Chabyshev-Gauss-Lobatto 12,751.90 19.51 

(T0 = 15,843.20K) VL Legendre-Gauss-Radau 14,597.90 7.86 

 LS Legendre-Gauss-Radau 11,925.70 24.73 

 VL Legendre-Gauss-Lobatto 15,228.70 3.88 

 LS Legendre-Gauss-Lobatto 12,320.40 22.24 

(1): Van Leer; (2): Liou and Steffen Jr. 
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Table 6: Values of stagnation temperature and respective errors in the viscous case (8
th

 order of accuracy) 

Problem: Scheme: Spectral Model – Collocation Points: T0 (Numerical): Error (%): 

 VL Chabyshev-Gauss-Radau 21,721.60 3.81 

 LS Chabyshev-Gauss-Radau 20,271.00 10.23 

 VL Chabyshev-Gauss-Lobatto 22,872.70 1.29 

Blunt Body LS Chabyshev-Gauss-Lobatto 20,864.20 7.60 

(T0 = 22,581.51K) VL Legendre-Gauss-Radau 26,222.10 16.12 

 LS Legendre-Gauss-Radau 24,060.20 6.55 

 VL Legendre-Gauss-Lobatto 26,225.80 16.14 

 LS Legendre-Gauss-Lobatto 24,103.50 6.74 

 VL Chabyshev-Gauss-Radau 16,584.60 4.68 

 LS Chabyshev-Gauss-Radau 15,721.10 0.77 

 VL Chabyshev-Gauss-Lobatto 17,804.90 12.38 

Double Ellipse LS Chabyshev-Gauss-Lobatto 16,334.70 3.10 

(T0 = 15,843.20K) VL Legendre-Gauss-Radau 18,408.20 16.19 

 LS Legendre-Gauss-Radau 17,620.60 11.22 

 VL Legendre-Gauss-Lobatto 18,453.10 16.47 

 LS Legendre-Gauss-Lobatto 17,602.90 11.11 

 

Table 7: Lift aerodynamic coefficient in the blunt body inviscid case (5
th

 order of accuracy) 

Scheme: Spectral Model – Collocation Points: cL: 

VL Chabyshev-Gauss-Radau -2.5912x10
-14

 

LS Chabyshev-Gauss-Radau 9.1525x10
-15

 

VL Chabyshev-Gauss-Lobatto -3.9787x10
-14

 

LS Chabyshev-Gauss-Lobatto -5.1117x10
-14

 

VL Legendre-Gauss-Radau -3.5279x10
-15

 

LS Legendre-Gauss-Radau -3.5730x10
-15

 

VL Legendre-Gauss-Lobatto 7.3782x10
-15

 

LS Legendre-Gauss-Lobatto -1.8605x10
-14

 

 

Table 8: Lift aerodynamic coefficient in the blunt body viscous case (8
th

 order of accuracy). 

Scheme: Spectral Model – Collocation Points: cL: 

VL Chabyshev-Gauss-Radau 6.0827x10
-15

 

LS Chabyshev-Gauss-Radau -3.7306x10
-14

 

VL Chabyshev-Gauss-Lobatto 1.3908x10
-14

 

LS Chabyshev-Gauss-Lobatto -2.3846x10
-15

 

VL Legendre-Gauss-Radau -1.0009x10
-14

 

LS Legendre-Gauss-Radau -1.3129x10
-16

 

VL Legendre-Gauss-Lobatto 2.7935x10
-15

 

LS Legendre-Gauss-Lobatto 4.7036x10
-16

 

 

Table 9: Computational data for the inviscid case 

March Method: Scheme: Spectral Model – Collocation Points: CFL: Iterations: 

 VL Chabyshev-Gauss-Radau 0.70 427 

 LS Chabyshev-Gauss-Radau 0.70 681 

 VL Chabyshev-Gauss-Lobatto 0.70 410 

Blunt Body LS Chabyshev-Gauss-Lobatto 0.70 564 

 VL Legendre-Gauss-Radau 0.50 235 

 LS Legendre-Gauss-Radau 0.50 564 

 VL Legendre-Gauss-Lobatto 0.10 1,414 
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 LS Legendre-Gauss-Lobatto 0.50 309 

 VL Chabyshev-Gauss-Radau 0.20 1,164 

 LS Chabyshev-Gauss-Radau 0.10 2,526 

 VL Chabyshev-Gauss-Lobatto 0.10 1,652 

Double Ellipse LS Chabyshev-Gauss-Lobatto 0.20 949 

 VL Legendre-Gauss-Radau 0.10 872 

 LS Legendre-Gauss-Radau 0.40 281 

 VL Legendre-Gauss-Lobatto 0.10 744 

 LS Legendre-Gauss-Lobatto 0.40 252 

 

Table 10: Computational data for the viscous case 

March Method: Scheme: Spectral Model – Collocation Points: CFL: Iterations: 

 VL Chabyshev-Gauss-Radau 0.20 1,531 

 LS Chabyshev-Gauss-Radau 0.70 422 

 VL Chabyshev-Gauss-Lobatto 0.20 1,301 

Blunt Body LS Chabyshev-Gauss-Lobatto 0.70 369 

 VL Legendre-Gauss-Radau 0.10 1,295 

 LS Legendre-Gauss-Radau 0.50 300 

 VL Legendre-Gauss-Lobatto 0.10 1,325 

 LS Legendre-Gauss-Lobatto 0.50 306 

 VL Chabyshev-Gauss-Radau 0.20 2,334 

 LS Chabyshev-Gauss-Radau 0.30 1,868 

 VL Chabyshev-Gauss-Lobatto 0.10 3,867 

Double Ellipse LS Chabyshev-Gauss-Lobatto 0.30 1,580 

 VL Legendre-Gauss-Radau 0.10 2,131 

 LS Legendre-Gauss-Radau 0.30 906 

 VL Legendre-Gauss-Lobatto 0.10 2,116 

 LS Legendre-Gauss-Lobatto 0.30 926 

 

Table 11: Computational cost of spectral variants 

Order of 

Accuracy: 

Scheme: Spectral Method: Computational Cost 

(seconds/volumes/iterations): 

 VL Chebyshev-Gauss-Radau 0.0016944 

 LS Chebyshev-Gauss-Radau 0.0015458 

 VL Chebyshev-Gauss-Lobatto 0.0011446 

5
th

 Order LS Chebyshev-Gauss-Lobatto 0.0011401 

(Inviscid case) VL Legendre-Gauss-Radau 0.0011799 

 LS Legendre-Gauss-Radau 0.0012340 

 VL Legendre-Gauss-Lobatto 0.0013220 

 LS Legendre-Gauss-Lobatto 0.0011401 

 VL Chebyshev-Gauss-Radau 0.0013224 

 LS Chebyshev-Gauss-Radau 0.0011992 

 VL Chebyshev-Gauss-Lobatto 0.0011768 

8
th

 Order LS Chebyshev-Gauss-Lobatto 0.0012229 

(Viscous case) VL Legendre-Gauss-Radau 0.0011758 

 LS Legendre-Gauss-Radau 0.0013643 

 VL Legendre-Gauss-Lobatto 0.0011683 

 LS Legendre-Gauss-Lobatto 0.0011832 
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Figure 1: Computational cell 
 

Figure 2: Blunt body geometry 

Figure 3: Blunt body mesh for inviscid flow Figure 4: Blunt body mesh for viscous flow 

 
Figure 5: Double ellipse geometry Figure 6: Double ellipse mesh for inviscid flow 
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Figure 7: Double ellipse mesh for viscous flow 

 

Inviscid Solutions – 5
th

 Order – Blunt Body Problem 

 
Figure 8: Pressure contours (CGR-VL) Figure 9: Pressure contours (CGR-LS) 

 
Figure 10: Translational/rotational temperature 

contours (CGR-VL) 

Figure 11: Translational/rotational temperature 

contours (CGR-LS) 
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Figure 12: Pressure contours (CGL-VL) Figure 13. Pressure contours (CGL-LS) 

Figure 14: Translational/rotational temperature 

contours (CGL-VL) 

Figure 15: Translational/rotational temperature 

contours (CGL-LS) 

 
Figure 16: Pressure contours (LGR-VL) Figure 17: Pressure contours (LGR-LS) 
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Figure 18: Translational/rotational temperature 

contours (LGR-VL) 

Figure 19: Translational/rotational temperature 

contours (LGR-LS) 

Figure 20: Pressure contours (LGL-VL) Figure 21: Pressure contours (LGL-LS) 

 
Figure 22: Translational/rotational temperature 

contours (LGL-VL) 

Figure 23: Translational/rotational temperature 

contours (LGL-LS) 
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Viscous Solutions – 8
th

 Order – Blunt Body Problem 

 
Figure 24: Pressure contours (CGR-VL) Figure 25: Pressure contours (CGR-LS) 

 
Figure 26: Translational/rotational temperature 

contours (CGR-VL) 

Figure 27: Translational/rotational temperature 

contours (CGR-LS) 

Figure 28: Pressure contours (CGL-VL) Figure 29: Pressure contours (CGL-LS) 



de Góes Maciel ES                                  Journal of Scientific and Engineering Research, 2017, 4(12):236-267 

 

Journal of Scientific and Engineering Research 

258 

 

Figure 30: Translational/rotational temperature 

contours (CGL-VL) 

Figure 31: Translational/rotational temperature 

contours (CGL-LS) 

Figure 32: Pressure contours (LGR-VL) 
 

Figure 33: Pressure contours (LGR-LS) 

Figure 34: Translational/rotational temperature 

contours (LGR-VL) 

Figure 35: Translational/rotational temperature 

contours (LGR-LS) 
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Figure 36: Pressure contours (LGL-VL) Figure 37: Pressure contours (LGL-LS) 

 
Figure 38: Translational/rotational temperature 

contours (LGL-VL) 

Figure 39: Translational/rotational temperature 

contours (LGL-LS) 

 

Inviscid Solutions – 5
th

 Order – Double Ellipse Problem 

 
Figure 40: Pressure contours (CGR-VL) 

 
Figure 41: Pressure contours (CGR-LS) 
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Figure 42: Translational/rotational temperature 

contours (CGR-VL) 

 
Figure 43: Translational/rotational temperature 

contours (CGR-LS) 

 
Figure 44: Pressure contours (CGL-VL) 

 
Figure 45: Pressure contours (CGL-LS) 

Figure 46: Translational/rotational temperature 

contours (CGL-VL) 

Figure 47: Translational/rotational temperature 

contours (CGL-LS) 
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Figure 48: Pressure contours (LGR-VL) 

 
Figure 49: Pressure contours (LGR-LS) 

 
Figure 50: Translational/rotational temperature 

contours (LGR-VL) 

 
Figure 51: Translational/rotational temperature 

contours (LGR-LS) 

 
Figure 52: Pressure contours (LGL-VL) 

 
Figure 53: Pressure contours (LGL-LS) 
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Figure 54: Translational/rotational temperature 

contours (LGL-VL) 

 
Figure 55: Translational/rotational temperature 

contours (LGL-LS) 

 

Viscous Solutions – 8
th

 Order – Double Ellipse Problem 

 
Figure 56: Pressure contours (CGR-VL) 

 
Figure 57: Pressure contours (CGR-LS) 

 
Figure 58: Translational/rotational temperature 

contours (CGR-VL) 

 
Figure 59: Translational/rotational temperature 

contours (CGR-LS) 
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Figure 60: Pressure contours (CGL-VL) 

 
Figure 61: Pressure contours (CGL-LS) 

 
Figure 62: Translational/rotational temperature 

contours (CGL-VL) 

 
Figure 63: Translational/rotational temperature 

contours (CGL-LS) 

 
Figure 64: Pressure contours (LGR-VL) 

 
Figure 65: Pressure contours (LGR-LS) 
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Figure 66: Translational/rotational temperature 

contours (LGR-VL) 

 
Figure 67: Translational/rotational temperature 

contours (LGR-LS) 

 
Figure 68: Pressure contours (LGL-VL) 

 
Figure 69: Pressure contours (LGL-LS) 

 
Figure 70: Translational/rotational temperature 

contours (LGL-VL) 

 
Figure 71. Translational/rotational temperature 

contours (LGL-LS) 

 

9. Conclusions 

In the present work, a study involving a spectral method to solve the reactive Euler and Navier-Stokes equations 

under condition of entry flow in Mars was performed. The Euler and Navier-Stokes equations, in conservative 

and finite volume contexts, employing structured spatial discretization, were studied. The [17-18] schemes were 

used to perform the numerical experiments. The Euler backward integration method was applied to march the 

schemes in time. The spectral method presented in this work employed collocation points and variants of 
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Chebyshev and Legendre interpolation functions were analyzed. The “hot gas” hypersonic flows around a blunt 

body, and around a double ellipse in two-dimensions, were simulated. The convergence process was accelerated 

to steady state condition through a spatially variable time step procedure, which has proved effective gains in 

terms of computational acceleration [19-20]. The reactive simulations involved Mars atmosphere chemical 

model of nine species and fifty-three reactions, based on the [21] model. N, O, N2, O2, NO, CO2, C, CO, CN 

species were used to perform the numerical comparisons. The results have indicated that all Legendre variants 

of the spectral method predicted the stagnation temperature value with errors inferior to 25.00% for the inviscid 

case, whereas the Chebyshev variants of the spectral method predicted the stagnation temperature value with 

errors inferior to 13.00% for the viscous case. 

As final conclusion, it is possible to highlight the Legendre-Gauss-Lobatto collocation points, in its fifth-order 

of accuracy, for the inviscid case, as the best performance in estimating the stagnation temperature ahead of the 

blunt body configuration, with an error of 0.26%, when coupled with the [17] scheme, and the Legendre-Gauss-

Radau collocation points, in its eighth-order of accuracy, for the viscous case, as the best performance is 

estimating the lift aerodynamic coefficient around the blunt body configuration when coupled with the [18] 

scheme. On the other hand, in the double ellipse problem, the Chebyshev-Gauss-Radau collocation points, in its 

eighth-order of accuracy, for the viscous case, was the best performance in estimating the stagnation 

temperature, with an error of 0.77%, when coupled with the [18] scheme. Moreover, the Legendre-Gauss-Radau 

collocation points, in its fifth-order of accuracy, for the inviscid case, when coupled with the [17] scheme, were 

globally the most efficient in terms of computational effort. It is also important to note that all Legendre variants 

of the spectral method predicted the stagnation temperature value with errors inferior to 25.00% for the inviscid 

case, whereas the Chebyshev variants of the spectral method predicted the stagnation temperature value with 

errors inferior to 13.00% for the viscous case. 

Finally, to close this work, the computational cost of the numerical schemes using the several types of 

collocation points was presented in Tab. 11. For the inviscid case, the cheapest combination was the [18] 

scheme using Chebyshev-Gauss-Lobatto collocation points and the Legendre-Gauss-Lobatto collocation points 

with a cost of 0.0011401 sec/per-volume/per-iteration, whereas for the viscous case the cheapest was due to the 

[17] scheme coupled with the Legendre-Gauss-Lobatto collocation points with a cost of 0.0011683 sec/per-

volume/per-iteration. 

 

10. Motivation and Novelty 

The motivation to study spectral methods applied to reentry flow was enormous because of some papers in the 

CFD literature report for such methods as the state of art of high order resolution. The intention of this paper 

was to propose a different spectral method that was of easy implementation and conformed about author’s ideas 

of treating the governing equations of fluid flow. The formulation presented here is for a thermochemical non-

equilibrium condition and a two-temperature model. Two physical problems were also a challenge that we 

accepted to lead with. The results with good accuracy represent a motivation to extend the present formulation 

to more species and different chemical conditions. 

The novelty of the present study was to implement such different spectral method to treat thermochemical non-

equilibrium reentry flows and to formulate the appropriate equations for accepting this method. The robustness 

and convergence features of this spectral method are very impressive. While the author had to use CFL numbers 

of order 0.10 for his MUSCL second-order explicit method, CFL numbers as great as 0.70 for his explicit 

spectral method were of common use. The proposed spectral method is different from the standard spectral ones 

on a sense that in the latter, the differential equations and the solution method are discretized with spectral tools, 

whereas in the former, only the vector of conserved variables and the convective fluxes should be discretized 

according to the spectral tools. The result is a robust and fast solver to treat the fluid-dynamic of reentry flows. 

 

11. Future Works 

For the future, the author should extend the present formulation for an eleven species chemical model under the 

condition of thermochemical non-equilibrium in two-dimensions. After that, they should extend to the desired 

three-dimensional studies. Moreover, its implementation with turbulence effects and magnetic field actuation, 
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that the author consider as the state of the art project, is an objective to be reached, in both, two- and three-

dimensions. Finally, the interpretation of the present formulation to two-dimensional unstructured studies is also 

a goal to be reached. 
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