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Abstract In the present work, a study involving a spectral method to solve the reactive Euler and Navier-Stokes 

equations is performed. The Euler and Navier-Stokes equations, in conservative and finite volume contexts, 

employing structured spatial discretization, on a condition of thermochemical non-equilibrium, are studied. The 

spectral method presented in this work employs collocation points and variants of Chebyshev and Legendre 

interpolation functions are analyzed. High-order studies are accomplished to verify the accuracy of the spectral 

method. The “hot gas” hypersonic flows around a blunt body, around a double ellipse, and around a reentry 

capsule in two-dimensions are performed. The Van Leer and the Liou and Steffen Jr. flux vector splitting 

algorithms are applied to execute the numerical experiments. The Euler backward integration method is 

employed to march the schemes in time. The convergence process is accelerated to steady state condition 

through a spatially variable time step procedure, which has proved effective gains in terms of computational 

acceleration (see Maciel). The reactive simulations involve Earth atmosphere chemical model of seven species 

and eighteen reactions, based on the Blottner model. N, O, N2, O2, NO, NO
+
, and e

-
 species are used to 

accomplish the numerical comparisons. The results have indicated that the Chebyshev collocation point variants 

are more accurate in terms of stagnation pressure estimations. In the inviscid case such errors were inferior to 

16.16%, while in the viscous case such errors were inferior to 10.0%. The Legendre collocation point variants 

are more accurate in terms of the lift coefficient estimations. Moreover, the Legendre collocation point variants 

are more computationally efficient and cheaper. 

 

Keywords Hypersonic flow; thermochemical non-equilibrium reentry flows; reactive Euler and Navier-Stokes 

equations; high order accuracy; Van Leer scheme; Liou and Steffen Jr. scheme; spectral method. 

1. Introduction 

There are several approaches for computationally modeling fluid dynamics. These include finite difference, 

finite element, and spectral methods to name a few. Finite element and finite difference methods are frequently 

used and offer a wide range of well-known numerical schemes. These schemes can vary in terms of 

computational accuracy but are typically of lower order of accuracy. If a more accurate solution is desired, it is 

common practice to refine the mesh either globally or in a region of interest. This can often be a complicated or 

time consuming process as global mesh refinement will greatly increase the computation time while local 

refinement requires an elaborated refinement operation [1]. 

Alternatively, polynomial refinement has been used to improve the solution accuracy and has been shown to 

converge more quickly than mesh refinement in some cases [2-3]. For finite difference methods, polynomial 

refinement is performed by including neighboring node values in a higher order polynomial [4]. This can 

increase the complexity of the scheme especially near the boundaries where nodes do not exist to construct the 
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higher order polynomials. Finite element methods instead increase the number of unknown values within the 

cell itself to construct a higher order solution [5]. 

A scheme with a very high formal order of accuracy will not necessarily always produce the highest resolution. 

[6] demonstrated that a spectral-like scheme with a formal fourth-order accuracy produced a much more highly 

resolved solution than schemes with higher formal orders of accuracy when comparing modified wave numbers. 

Therefore, formal order of accuracy does not provide a comprehensive basis for selecting the best solution 

procedure. State-of-art methods such as spectral methods fall into this category. 

Spectral methods are considered a class of solution techniques using sets of known functions to solve 

differential equations [7]. Such methods are generally considered high order and capable of obtaining solutions 

with a high resolution. Unlike finite-difference and finite-element methods, spectral methods utilize an 

expansion in terms of global, rather than local, basis functions to represent the solution of a differential 

equation. When properly applied, these techniques accurately resolve phenomena on the scale of the mesh 

spacing. The order of truncation error decay with mesh refinement is also higher than which can be achieved 

with finite-difference and finite-element methods. For problems with smooth solutions, it is possible to produce 

spectral method whose truncation error goes to zero as faster than any finite power of the mesh spacing 

(exponential convergence). 

Spectral methods may be viewed as an extreme development of the class of discretization schemes known by 

the generic name of method of weighted residuals (MWR) [8]. The key elements of the MWR are the trial 

functions (also called the expansion or approximating functions) and the test functions (also known as weighted 

functions). The trial functions are used as the basis functions for a truncated series expansion of the solution 

that, when substituted into the differential equation, produces the residual. The test functions are used to enforce 

the minimization of the residual. 

The choice of the trial functions is what distinguishes the spectral methods from the element and finite 

difference methods. The trial functions for spectral methods are infinitely differentiable global functions 

(Typically, they are tensor products of the eigen functions of singular Sturm-Liouville problems). In the case of 

finite element methods, the domain is divided into small elements and a trial function is specified in each 

element. The trial functions are thus local in character and well suited for handling complex geometries. The 

finite difference trial functions are likewise local. 

The choice of test function distinguishes between Galerkin and collocation approaches. In the Galerkin 

approach, the test functions are the same as the trial functions, whereas in the collocation approach the test 

functions are translated Dirac delta functions. In other words, the Galerkin approach is equivalent to a least-

square approximation, whereas the collocation approach requires the differential equations to be solved exactly 

at the collocation points. 

The collocation approach is the simplest of the MWR and appears to have been first used by [9] in his study of 

electronic energy bands in metals. A few years later, [10] applied this method to the problem of torsion in square 

prism. [11] developed it as a general method for solving ordinary differential equations. They used a variety of 

trials functions and an arbitrary distribution of collocation points. The work of [12] established for the first time 

that a proper choice of the trial functions and the distribution of collocation points is crucial to the accuracy of 

the solution. Perhaps he should be credited with laying down the foundation of the orthogonal collocation 

method. 

Spectral methods have been used on one-dimensional, compressible flow problems with piecewise linear 

solutions by [13-14]. These reports demonstrated that spectral methods, when combined with appropriate 

filtering techniques, can capture one-dimensional shock waves in otherwise featureless flows. A different sort of 

demonstration was provided by [15]. They exhibited spectral solutions of compressible flows with nontrivial 

structures in the smooth regions. 

Renewed interest in the area of hypersonic flight has brought Computational Fluid Dynamics (CFD) to the 

forefront of fluid flow research [16]. Many years have seen a quantum leap in advancements made in the areas 

of computer systems and software which utilize them for problem solving. Sophisticated and accurate numerical 

algorithms are devised routinely that are capable of handling complex computational problems. Experimental 

test facilities capable of addressing complicated high-speed flow problems are still scarce because they are too 
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expensive to build and sophisticated measurements techniques appropriate for such problems, such as the non-

intrusive laser, are still in the development stage. As a result, CFD has become a vital tool in the flow problem 

solution. 

In high speed flows, any adjustment of chemical composition or thermodynamic equilibrium to a change in local 

environment requires certain time. This is because the redistribution of chemical species and internal energies 

require certain number of molecular collisions, and hence a certain characteristic time. Chemical non-

equilibrium occurs when the characteristic time for the chemical reactions to reach local equilibrium is of the 

same order as the characteristic time of the fluid flow. Similarly, thermal non-equilibrium occurs when the 

characteristic time for translation and various internal energy modes to reach local equilibrium is of the same 

order as the characteristic time of the fluid flow. Since chemical and thermal changes are the results of collisions 

between the constituent particles, non-equilibrium effects prevail in high-speed flows in low-density air. 

In chemical non-equilibrium flows the mass conservation equation is applied to each of the constituent species 

in the gas mixture. Therefore, the overall mass conservation equation is replaced by as many species 

conservation equations as the number of chemical species considered. The assumption of thermal non-

equilibrium introduces additional energy conservation equations – one for every additional energy mode. Thus, 

the number of governing equations for non-equilibrium flow is much bigger compared to those for perfect gas 

flow. A complete set of governing equations for non-equilibrium flow may be found in [17-18]. 

The problems of chemical non-equilibrium in the shock layers over vehicles flying at high speeds and high 

altitudes in the Earth’s atmosphere have been discussed by several investigators [19-22]. Most of the existing 

computer codes for calculating the non-equilibrium reacting flow use the one-temperature model, which 

assumes that all of the internal energy modes of the gaseous species are in equilibrium with the translational 

mode [21-22]. It has been pointed out that such a one-temperature description of the flow leads to a substantial 

overestimation of the rate of equilibrium because of the elevated vibrational temperature [20]. A three-

temperature chemical-kinetic model has been proposed by [23] to describe the relaxation phenomena correctly 

in such a flight regime. However, the model is quite complex and requires many chemical rate parameters which 

are not yet known. As a compromise between the three-temperature and the conventional one-temperature 

model, a two-temperature chemical-kinetic model has been developed ([24-25]), which is designated herein as 

the TTv model. The TTv model uses one temperature T to characterize both the translational energy of the 

atoms and molecules and the rotational energy of the molecules, and another temperature Tv to characterize the 

vibrational energy of the molecules, translational energy of the electrons, and electronic excitation energy of 

atoms and molecules. The model has been applied to compute the thermodynamic properties behind a normal 

shock wave in a flow through a constant-area duct [24-25]. Radiation emission from the non-equilibrium flow 

has been calculated using the Non-equilibrium Air Radiation (NEQAIR) program [26-27]. The flow and the 

radiation computations have been packaged into a single computer program, the Shock-Tube Radiation Program 

(STRAP) [25]. 

In the present work, a study involving a spectral method to solve the reactive Euler and Navier-Stokes equations 

is performed. The Euler and Navier-Stokes equations, in conservative and finite volume contexts, employing 

structured spatial discretization, on a condition of thermochemical non-equilibrium, are studied. The spectral 

method presented in this work employs collocation points and variants of Chebyshev and Legendre interpolation 

functions are analyzed. High-order studies are accomplished to verify the accuracy of the spectral method. The 

“hot gas” hypersonic flows around a blunt body, around a double ellipse, and around a reentry capsule in two-

dimensions are performed. The [28-29] flux vector splitting algorithms are applied to execute the numerical 

experiments. The Euler backward integration method is employed to march the schemes in time. The 

convergence process is accelerated to steady state condition through a spatially variable time step procedure, 

which has proved effective gains in terms of computational acceleration [30-31]. The reactive simulations 

involve Earth atmosphere chemical model of seven species and eighteen reactions, based on the [32] model. N, 

O, N2, O2, NO, NO
+
, and e

-
species are used to accomplish the numerical comparisons. The results have 

indicated that the Chebyshev collocation point variants are more accurate in terms of stagnation pressure 

estimations. In the inviscid case such errors were inferior to 16.16%, while in the viscous case such errors were 
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inferior to 10.0%. The Legendre collocation point variants are more accurate in terms of the lift coefficient 

estimations. 

2. Spectral Method 

Two classes of techniques for spectral discretization are referred to as tau and collocation methods [33]. The 

latter technique is used here. In this scheme, the approximation series is determined by satisfying the differential 

equation exactly at a set of distinct collocation points. The locations of these points in the domain are linked to 

the choice of basis function. In this study, arbitrary collocation points are implemented. The collocation method 

is used here since enforcement of boundary conditions and evaluations of nonlinear terms are straightforward. 

Additionally, some accuracy advantage is seen in the collocation method over the tau method for a number of 

problems [33]. The series expansion for a function Q(x) may be represented as 





N

0n
nnN

)x(BQ̂)x(Q ,                                          (1)
 

Where Bn(x) are the basis functions and N is the total number of nodes employed in the interpolation process (It 

is also the order of accuracy of the spectral method). The coefficients 
n

Q̂  are often termed the spectrum of 

QN(x). One common technique used to evaluate the spectrum is to consider Eq. (1) as an interpolation series 

representing Q(x). The interpolation “nodes” of such series are the collocation points of the method.  For a 

scheme based on Chebyshev collocation, the basis functions are: 

)x(P)x(xP2)x(T)x(B
2n1nnn 

 , 2n  ,      (2) 

with: P0(x) = 1 and P1(x) = x. The Chebyshev-Gauss-Lobatto standard collocation points are 








 


N

l
cosx

l

,          l = 0, 1, …, N.                                             (3) 

The Chebyshev collocation points result from a simple change of variables, which relates the Chebyshev 

interpolation series to a Fourier cosine series [33]. To evaluate the 
n

Q̂ , the inverse relation is required. This is 





N

0l
j,ilnlnn

Q)x(BwĉQ̂ ,          n = 0, 1, …, N,                                   (4) 

With wl being a normalized weighting function and 
n

ĉ a constant. These variables assume the following 

expressions to a Chebyshev-Gauss-Lobatto interpolation: 

n
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cn




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
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l
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c

1
w  .                       (5) 

Legendre collocation is based on using Legendre polynomials as the basis function in Eq. (1), e.g., 

     n)x(P1n)x(xP1n2)x(B 2n1nn   , 2n  ,     (6) 

where: P0(x) = 1 and P1(x) = x. Interpolation via Legendre series cannot easily be related to trigonometric 

interpolation, so there is no simple expression to evaluate the 
n

Q̂ coefficients. Appeal must be made to the 

theory of numerical quadrature to form an approximation to the integrals which result from analytic Legendre 

interpolation [34]. Considering Eq. (4), the normalized weights and constant of the Legendre-Gauss-Lobatto 

collocation points are 

)x(B)1N(N

1
w

l

2

N

l

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Nn,N
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ĉ

n


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

     

(7) 

In this work, it was assumed that the Legendre-Gauss-Lobatto collocation points are the same as the Chebyshev-

Gauss-Lobatto ones. It was also adopted the following collocation points and normalized weight for the 

Chebyshev-Gauss-Radau interpolation, based on the work of [35]: 


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For the Legendre-Gauss-Radau interpolation, also based in [35], the collocation points are defined by Eq. (8) 

and the normalized weights are described by: 

 

 
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1
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1

w

lN
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2

2

l

.                                          (10) 

The same calculation to the vector of conserved variables Q is applied to the vector of flux C, to be defined in 

section 4. 

Hence, we have two collocation point options and two normalized weight functions to be considered by the 

Chebyshev and the Legendre methods, namely: Chebyshev-Gauss-Radau, Chebyshev-Gauss-Lobatto, Legendre-

Gauss-Radau and Legendre-Gauss-Lobatto. 

 

3. Reactive Navier-Stokes Equations in 2D 

As the Navier-Stokes equations tend to the Euler equations when high Reynolds number are employed, only the 

former equations are presented. The reactive Navier-Stokes equations in thermochemical non-equilibrium, 

where the rotational and vibrational contributions are considered, were implemented on conservative and finite 

volume contexts, in the two-dimensional space. In this case, these equations in integral and conservative forms 

can be expressed by: 

  




V V

CV

S

dVSdSnFQdV
t


, with:     jFFiEEF veve


 ,       (11) 

where: Q is the vector of conserved variables, V is the volume of a computational cell, F


 is the complete flux 

vector, n


 is the unity vector normal to the flux face, S is the flux area, SCV is the chemical and vibrational 

source term, Ee and Fe are the convective flux vectors or the Euler flux vectors in the x and y directions, 

respectively, and Ev and Fv are the viscous flux vectors in the x and y directions, respectively. The i


 and j


 

unity vectors define the Cartesian coordinate system. Eleven (11) conservation equations are solved: one of 

general mass conservation, two of linear momentum conservation, one of total energy, six of species mass 

conservation, and one of the vibrational internal energy of the molecules. Therefore, one of the species is absent 

of the iterative process. The CFD literature recommends that the species of biggest mass fraction of the gaseous 

mixture should be omitted, aiming to result in a minor numerical accumulation error. To the present study, in 

which is chosen a chemical model to the air composed of seven (7) chemical species (N, O, N2, O2, NO, NO
+
, 

and e
-
) and eighteen chemical reactions to the [32] model, this species can be the N2 or the O2. To this work, the 

N2 was chosen. The vectors Q, Ee, Fe, Ev, Fv, and SCV can, hence, be defined as follows: 
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in which:  is the mixture density; u and v are Cartesian components of the velocity vector in the x and y 

directions, respectively; e is the fluid total energy; H is the total enthalpy; 1, 2, 4,5, 6, and 7 are densities of 

the N, O, O2,NO, NO
+
, and e

-
, respectively; eV is the sum of the vibrational energy of the molecules; the ’s are 

the components of the viscous stress tensor; fx and fy are viscous work and Fourier heat flux functions; svsx and 

svsy represent the species diffusion flux, defined by the Fick law; x and y are the terms of mixture diffusion; 

v,x and v,y are the terms of molecular diffusion calculated at the vibrational temperature; 
s

  is the chemical 

source term of each species equation, defined by the law of mass action;
*

ve  is the molecular-vibrational-internal 

energy calculated with the translational/rotational temperature; s is the translational-vibrational characteristic 

relaxation time of each molecule; qv,x and qv,y are the vibrational Fourier heat flux components in the x and y 

directions, respectively; and Re is the laminar Reynolds number. 
The viscous stresses, in N/m

2
, are determined, according to a Newtonian fluid model, by: 

  yvxu32xu2 mmxx  ; 

 xvyumxy  ;                            (14) 

    ,yvxu32yv2 mmyy   

where µm is the molecular viscosity. Expressions to fx and fy are given below: 

x,vxxyxxx qqvuf  ;                 (15) 

y,vyyyxyy qqvuf  ,                     (16) 

Where qx and qy are the Fourier heat flux components and are given by: 

x

T
kq x



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kq y



 .                           (17) 

where: k is the thermal conductivity due to translation and rotation. The qv,x and qv,y are the vibrational heat flux 

components and are given by: 

xTkq VVx,v  and yTkq VVy,v  ,             (18) 

with kV being the vibrational thermal conductivity and TV is the vibrational temperature, what characterizes this 

model as of two temperatures: translational/rotational and vibrational. The terms of species diffusion, defined by 

the Fick law, to a condition of thermal non-equilibrium, are determined by [36]: 
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with “s” referent to a given species, YMF,s being the molar fraction of the species, defined as: 


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M

M
Y                                    (20) 

and Ds is the species-effective-diffusion coefficient. “ns” is the number of species. The diffusion terms x and y 

which appear in the energy equation are defined by ([37]): 





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1s

ssxsx hv and  



ns

1s

ssysy hv ,                                          (21) 

Being hs the specific enthalpy (sensible) of the chemical species “s”. The molecular diffusion terms calculated at 

the vibrational temperature, v,x and v,y, which appear in the vibrational-internal-energy equation are defined by 

[36]: 
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



mols

s,vsxsx,v hv and 



mols

s,vsysy,v hv ,                                     (22) 

With hv,s being the specific enthalpy (sensible) of the chemical species “s” calculated at the vibrational 

temperature TV. The sum of Eq. (13), as also those present in Eq. (22), considers only the molecules of the 

system, namely: N2, O2, NO, and NO
+
. The laminar Reynolds number is estimated by: 

char,m

REFinitialchar LV
Re




 ,                                        (23) 

With b “char” related to characteristic or free stream variables, Vinitial is the flow initial velocity, and LREF a 

characteristic configuration length. For details of the chemical model, the calculation of thermodynamic and 

transport properties see [38-39]. 

 

4. Numerical Algorithms 

Considering the two-dimensional and structured case, the flux vector splitting algorithms follow that described 

in [28-29, 38-39]. The speed of sound is defined by the following expression: 

 



p

1a ,                                                              (24) 

where β is a parameter to be defined, calculated at each interaction. 

The system is solved in three parts separately, according to [40]. The first part takes into account the dynamic 

part, which considers the Navier-Stokes equations, the second one takes into account the chemical part 

involving the chemical contributions, and finally, the third part considers only the vibrational contribution. 

Hence, the discrete-dynamic-convective flux, which solves the dynamic part, is given by: 
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the discrete-chemical-convective flux is defined by: 
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and finally the discrete-vibrational-convective flux is given by: 

,    (27) 

where: C is the sum of the fluxes at each interface, and  T
j,2/1iyxj,2/1i SSS

   defines the normal area 

vector for the surface (i+½,j). The normal area components Sx and Sy to each flux interface are given in Tab. 1. 

Figure 1 exhibits the computational cell adopted for the simulations, as well its respective nodes and flux 

interfaces. 

The same definitions presented in [28-29, 38-39] are valid to these algorithms. The definition of the dissipation 

term  determines the particular formulation of the convective fluxes. The choice below corresponds to the [28] 

scheme, according to [41]: 
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(28) 

and the [29] scheme is obtained by, according to [41]: 

.            (29) 

Both schemes are first-order accurate in space and in time. The high-order spatial accuracy is obtained, in the 

current study, by the spectral method. 

The viscous formulation follows that of [42], which adopts the Green theorem to calculate primitive variable 

gradients. The viscous gradients at the flux interface are obtained by arithmetical average between cell (i,j) and 

its neighbors. As was done with the convective terms, there is a need to separate the viscous flux in three parts: 

dynamic viscous flux, chemical viscous flux, and vibrational viscous flux. The dynamic part corresponds to the 

first four equations of the Navier-Stokes, the chemical part corresponds to the six equations immediately below 

the energy equation, and the vibrational part corresponds to the equation that follows the last chemical one. The 

resultant ordinary differential equation system can be written as: 

,                                  (30) 

where the cell volume is given by: 

 

.                             (31) 

In the present study, the Euler backward method was employed to march the scheme in time. This method is 

first-order accurate in time, to the three types of complete flux. To the convective dynamic component, this 

method can be represented in general form by: 

   )n(

j,ij,ij,i

)n(

j,i

)1n(

j,i QCVtQQ 
,              (32) 

to the convective chemical component, it can be represented in general form by: 

    )n(

j,iCj,i

)n(

j,ij,i

)n(

j,i

)1n(

j,i QSVQCtQQ 
,         (33) 

where the chemical source term SC is calculated with the temperature Trrc (reaction rate controlling temperature, 

see [38-39]). Finally, to the convective vibrational component: 

    )n(

j,iVj,i

)n(

j,ij,i

)n(

j,i

)1n(

j,i QSVQCtQQ 
,                                 (34) 

in which: 

,                            (35) 

Where qT-V is the heat flux due to translational-vibrational relaxation, defined in Eq. (13) and in [38-39]. 

 

5. Spatially Variable Time Step 

The spatially variable time step has proved efficient gains in terms of convergence acceleration, as verified by 

[30-31]. Initially, the parameter  is determined, where: 

s

s
s

M

c
 and 




ns

1s

s ,                                                      (36) 

With cs being the mass fraction, and Ms the molecular weight. The total specific heat at constant volume due to 

translation is defined as: 





ns

1s

s,T,VsT,V cc ,            (37) 
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where, for each gas constituent of the seven (7) species chemical model, the specific heat at constant volume, 

based on the kinetic theory of gases [43], is defined by 

NN,T,V R
2

3
c  , OO,T,V R

2

3
c  , 

22 NN,T,V R
2

5
c  , 

22 OO,T,V R
2

5
c  , and NONO,T,V R

2

5
c  ;       (38) 

,R
2

5
c

NONO,T,V   and ,R
2

3
c

ee,T,V                                                     (39) 

Being Rs the specific gas constant. The total pressure of the gaseous mixture is determined by Dalton law, which 

indicates that the total pressure of the gas is the sum of the partial pressure of each constituent gas, resulting in: 

TRcp sss  and 



ns

1s

spp .         (40) 

The speed of sound to a reactive mixture can be determined by Eq. (24), where 

T,V

univ

c

R 
 , with Runiv = 1.987 

cal/(g-mol.K). Finally, the spatially variable time step is defined from the CFL (Courant-Friedrichs-Lewis) 

definition: 

j,i

2

j,i

2

j,i

j,i

j,i

avu

sCFL
t




 ,                                                         (41) 

where j,is  is the characteristic length of each cell (defined between the minimum cell side length and the 

minimum centroid distance between each cell and its neighbors). 

 

6. Dimensionless Scales, Initial and Boundary Conditions 

6.1. Dimensionless Scales 

The dimensionless scales employed to the reactive equations consisted in: Rs is dimensionless by achar, where 

charcharchar pa  ; cv is dimensionless by achar; hs and 
0

sh   are dimensionless by 
2

chara ; T and Tv, 

translational/rotational temperature and vibrational temperature, respectively, are dimensionless by achar; s and 

 are dimensionless by char; u and v are dimensionless by achar;  is dimensionless by char; D, diffusion 

coefficient, dimensionless by 
2

chara dtchar, where dtchar is the minimum time step calculated in the computational 

domain at the first iteration;   is dimensionless by   3

charchar 10xdt  ; ev is dimensionless by 
2

chara ; e and p 

are dimensionless by 
2

charchara ; s, relaxation time, is dimensionless by dtchar.The characteristic physical 

properties are defined in [44]. 

 

6.2. Initial Condition 

The initial conditions to the blunt body, to the double ellipse, and to the reentry capsule problems, for a seven 

species chemical model, are presented in Tabs. 2-4. The Reynolds number is obtained from data of [44]. 

 

6.3. Boundary Conditions 

The boundary conditions are basically of four types: solid wall, entrance, exit, and continuity. These conditions 

are implemented with the help of ghost cells. 

 

Wall condition. In inviscid case, this condition imposes the flow tangency at the solid wall. This condition is 

satisfied considering the wall tangent velocity component of the ghost volume as equals to the respective 

velocity component of its real neighbor cell. At the same way, the wall normal velocity component of the ghost 

cell is equaled in value, but with opposite signal, to the respective velocity component of the real neighbor cell. 

It results in: 
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and;yxyn 22

x  22

y yxxn  ;          (42)

 where, for the (i+1/2,j) interface: 

j,1i1j,1ij,1i1j,1i yyyand;xxx   .                         (43) 

Hence, the ghost cell velocity components are written as: 

        .vnnunn2vand;vnn2unnu r

2

y

2

xryxgryxr

2

x

2

yg 
   

(44) 

with “g” related with ghost cell and “r” related with real cell. To the viscous case, the boundary condition 

imposes that the ghost cell velocity components be equal to the real cell velocity components, with the negative 

signal: 

rg uu  and rg vv  .                            (45) 

The normal pressure gradient of the fluid at the wall is assumed to be equal to zero according to a boundary-

layer like condition. The same hypothesis is applied for the normal temperature gradient at the wall, assuming 

an adiabatic wall. From the above considerations, density and translational/rotational temperature are 

extrapolated from the respective values of its real neighbor volume (zero order extrapolation). The total 

vibrational internal energy is also extrapolated. With the mixture species mass fractions and with the values of 

the respective specific heats at constant volume, it is possible to obtain the mixture specific heat at constant 

volume. The mixture formation enthalpy is extrapolated from the real cell. The mixture total energy to the ghost 

cell is calculated by: 

    2

g

2

ggdim,,v

0

g,mixtREFg,trg,mixtvgg vu5.0ehTTce  ,    (46) 

where: TREF, the reference temperature, 
0

mixth , mixture formation enthalpy, and dim,ve , dimensionless 

vibrational energy, are defined in [38-39]. To the species density, the non-catalytic condition is imposed, what 

corresponds to zero order extrapolation from the real cell. 

 

Entrance condition. It is divided in two flow regimes: 

(a) Subsonic flow: Three properties are specified and one extrapolated in the boundary conditions of the 

dynamic part of the [28-29] numerical schemes. This approach is based on information propagation analysis 

along characteristic directions in the calculation domain [45]. In other words, for subsonic flow, three 

characteristics propagate information pointing into the computational domain. Thus three flow properties must 

be fixed at the inlet plane. Just one characteristic line allows information to travel upstream. So, one flow 

variable must be extrapolated from the interior grid to the inlet boundary. The total energy was the extrapolated 

variable from the real neighbor volume, for the studied problems. Density and velocity components adopted 

values of the initial flow. To the chemical part, six information propagate upstream because it is assumed that all 

six equations are conducted by the eigenvalue “(qn-a)”. In the subsonic flow, all eigenvalues are negative and 

the information should be extrapolated. In the same reasoning to the chemical boundary conditions, the 

vibrational-internal-energy equation is dictated by the “(qn-a)” eigenvalue and, in the subsonic region, its value 

is negative. Hence, the vibrational internal energy should be extrapolated. 

(b) Supersonic flow: In this case no information travels upstream; therefore all variables are fixed with their 

initial values. 

 

Exit condition It is also divided in two flow regimes: 

(a) Subsonic flow: Three characteristics propagate information outward the computational domain. Hence, the 

associated variables should be extrapolated from interior information. The characteristic direction associated to 

the “(qnormal-a)” velocity should be specified because it points inward to the computational domain [45]. In this 

case, the ghost volume total energy is specified from its initial value. Density and velocity components are 

extrapolated. To the chemical part, the eigenvalue “(qn-a)” is again negative and the characteristics are always 

flowing into the computational domain. Hence, the six chemical species under study should have their densities 
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fixed by their initial values. In the same reasoning, the internal vibrational energy should have its value 

prescribed by its initial value due to the eigenvalue “(qn-a)” be negative. 

(b) Supersonic flow: All variables are extrapolated from interior grid cells, as no flow information can make its 

way upstream. In other words, nothing can be fixed. 

 

Continuity condition. This condition imposes continuity of the flow at the trailing edge of the reentry capsule 

configuration. This is done considering the Kutta condition in this region. In terms of numerical implementation, 

it is obtained considering the vector of conserved variables above the wake as equal to the vector of conserved 

variables below the wake. 

 

7. Physical Problems 

Three physical problems were solved in this work, namely: blunt body, double ellipse, and reentry capsule. The 

first problem considers the geometry of a blunt body with 1.0 m of nose ratio and parallel rectilinear walls. The 

far field is located at 20.0 times the nose ratio in relation to the configuration nose. A mesh composed of 2,548 

rectangular cells and 2,650 nodes was studied for the inviscid case, with an exponential stretching of 5.0% for 

the viscous case. This mesh is equivalent in finite differences to a one of 53x50 points. Figure 2 shows the detail 

of the geometry and Figs. 3 and 4 exhibit the inviscid and viscous meshes. 

The double ellipse problem is the second under study. The mesh is composed of 4,116 rectangular cells and 

4,250 nodes, with an exponential stretching of 5.0% for the viscous case, and far field located at 20.0 unities. 

This mesh is equivalent in finite differences to a one of 85x50 points. Figure 5 shows the double ellipse 

geometry and Figs. 6 and 7 exhibit the inviscid and viscous meshes. 

The third problem is the geometry of the reentry capsule. Details of the configuration are presented in Fig. 8. 

The far field is located at 20.0 unities. A mesh of 3,136 rectangular cells and 3,250 nodes was used for the 

inviscid case, whereas with an exponential stretching of 5.0% was used for the viscous simulations. This mesh is 

equivalent in finite differences to a one of 65x50 points. Figures 9 and 10 show the inviscid and viscous meshes. 

 

8. Results 

Tests were performed in a Core i7 processor of 2.8GHz and 6.0Gbytes of RAM microcomputer, in a Windows 

7.0 environment. Three (3) orders of reduction of the maximum residual in the field were considered to obtain a 

converged solution. The residual was defined as the value of the discretized conservation equation. In the 

dynamic part of the [28-29] schemes, such definition results in: 

j,ij,ij,i CVtsidualRe  .                                            (47) 

The attack angle was adopted equal to zero. In this work, the inviscid results were obtained for a 4
th

 order of 

accuracy of the spectral method, whereas the viscous solutions were obtained for an16
th

 order of accuracy of the 

spectral method. For a matter of simplicity, the following abbreviations were used: [28] scheme = VL, [29] 

scheme = LS, Chebyshev-Gauss-Radau = CGR, Chebyshev-Gauss-Lobatto = CGL, Legendre-Gauss-Radau = 

LGR, and Legendre-Gauss-Lobatto = LGL. 

 

8.1. Blunt Body Problem 

Inviscid case. Figures 11 to 14 exhibit the pressure and temperature contours obtained by the VL and LS 

schemes as using the CGR collocation points. The VL algorithm captures a more intense shock than the LS 

algorithm, as can be seen by the pressure legend. Good symmetry and homogenous properties are observed in 

the pressure and in the translational/rotational temperature contours. No pre-shock oscillations are observed. The 

maximum temperature at the configuration nose is 8,470.45K obtained by the VL scheme. 

Figures 15 to 18 show the pressure and translational/rotational temperature contours generated by the VL and 

LS schemes as using CGL collocation points. The maximum pressure is obtained by the LS algorithm, being 

inferior to that observed in the CGR case. No pre-shock oscillations are observed. The temperature contours 

presents good symmetry properties. The maximum temperature reaches the value of 8,516.50K and is captured 

by the VL scheme. The contours are free of oscillations. 
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Figures 19 to 22 present the pressure and translational/rotational temperature contours calculated by the VL and 

LS schemes when using the LGR collocation points. The pressure peaks of both solutions are smaller than those 

obtained in the Chebyshev variants. No pressure oscillations are observed and good symmetry properties are 

verified. The maximum temperature peak is 8,872.81K, obtained again by the VL scheme. Good symmetry 

properties are also observed in both temperature contours. 

Figures 23 to 26 exhibit the pressure and temperature contours obtained by the VL and LS algorithms when 

using the LGL collocation points. The pressure peaks are still low. Good symmetry and homogeneous properties 

are observed and the shock wave is well captured. The temperature contours present also good symmetry 

properties, free of oscillations. The maximum temperature is obtained by the VL scheme with a value of 

8,831.72K. 

Viscous case. Figures 27 to 30 present the pressure and temperature contours generated by the VL and LS 

schemes as using CGR collocation points. The pressure peak values are close to the theoretical stagnation 

pressure value, with LS scheme being the closest. Good symmetry properties are observed and no pre-shock 

oscillations are observed. The maximum temperature is calculated with the VL scheme, reaching the mark of 

8,762.19K. Good symmetry properties are verified in the temperature field. Note that the heat transfer is better 

captured by the VL scheme, as can be seen by the contours of temperature close to the configuration wall. The 

correct transport of properties like viscosity and thermal conduction are qualitatively confirmed. 

Figures 31 to 34 show the pressure and translational/rotational temperature contours calculated by the VL and 

LS algorithms when using CGL collocation points. Again the LS’ pressure peak value is very close to the 

theoretical value of stagnation pressure (see Table 5). The shock wave is well captured by both schemes. Figures 

33 and 34 show the translational/rotational temperature contours and the good transport of viscosity and thermal 

conduction is noted in the VL solution. The maximum temperature is 8,783.18K and is again obtained by the 

VL scheme; in other words, the VL scheme is being more conservative than the LS scheme. 

Figures 35 to 38 exhibit the pressure and temperature contours obtained by the VL and LS algorithms as using 

the LGR collocation points. Both pressure contours are very similar in qualitative terms, although the pressure 

peaks are very low. Good symmetry properties are observed in both solutions, free of pre-shock oscillations. 

Figures 37 and 38 exhibit the temperature contours calculated by the VL and LS schemes, respectively. The 

temperature field of the VL’ssolution is more intense than that of the LS’ solution, reaching a maximum of 

9,220.16K. Good symmetry and homogenous properties are observed in both figures. 

Figures 39 to 42 present the pressure and translational/rotational temperature contours calculated by the VL and 

LS algorithms when using the LGL collocation points. Both pressure peak values are reduced in relation to the 

theoretical stagnation pressure value. Both solutions present good symmetry and homogenous properties, free of 

oscillations. The shock wave is well captured by both schemes and the transport of viscous properties is well 

highlighted in the VL’s temperature contours. The maximum temperature is obtained by the VL scheme and 

reaches the value of 9,208.20K.The Legendre solutions present in general higher values to the stagnation 

temperature than the Chebyshev solutions. In general terms, theChebyshev variants dominate the pressure field, 

whereas the Legendre variants dominate the temperature field. 

 

8.2. Double Ellipse Problem 

Inviscid case. Figures 43 to 46 exhibit the pressure and temperature contours obtained by the VL and LS 

schemes as using the CGR collocation points. Figures 43 and 44 present the pressure contours, where the 

LSscheme captures a more intense shock at the bigger ellipse than the VL scheme. Good homogenous properties 

are observed in the pressure and in the temperature contours. No pre-shock oscillations are observed. The 

maximum temperature captured by the LS scheme at the configuration nose is 8,843.91K. 

Figures 47to 50 show the pressure and translational/rotational temperature contours calculated by the VL and LS 

schemes as using CGL collocation points. Figures 47 and 48 exhibit the pressure contours of both schemes. The 

maximum pressure peak is obtained by the LS algorithm. No pre-shock oscillations are observed. Figures 49 

and 50 present the temperature contours obtained by both schemes. The maximum temperature reaches the 

value of 8,948.46K and is captured by the VL scheme. The contours are free of oscillations. 
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Figures 51 to 54 present the pressure and temperature contours generated by the VL and LS schemes when 

using the LGR collocation points. Figures 51 and 52 show the pressure contours, where the LS solution is more 

intense than the VL solution. No pressure oscillations are observed. Figures 53 and 54 exhibit the temperature 

contours obtained by both schemes. The maximum temperature is 9,271.03K obtained again by the VL scheme. 

Good homogenous properties are verified in both solutions. 

Figures 55 to 58 show the pressure and translational/rotational temperature contours obtained by the VL and LS 

algorithms when using the LGL collocation points. Figures 55 and 56 exhibit the pressure contours obtained by 

both algorithms. The pressure field generated by the LS algorithm is more intense than the respective one of the 

VL algorithm. Good homogeneous properties are observed and the shock waves at the two ellipses are well 

captured. Figures 57 and 58 present the temperature contours obtained by both algorithms, free of oscillations. 

The maximum temperature is obtained by the VL scheme with a value of 9,131.99K. 

Viscous case. Figures 59 to 62 present the pressure and temperature contours generated by the VL and LS 

schemes as using CGR collocation points. Figures 59 and 60 show the pressure contours obtained by both 

schemes. The VL scheme presents the closest pressure peak value in relation to the theoretical stagnation 

pressure value. No pre-shock oscillations are observed. Figures 61 and 62 exhibit the temperature contours 

generated by both schemes. The maximum temperature is 9,641.04K calculated with the VL scheme. Good 

transport of viscous properties is perceptible in the VL’s solution. The correct transport of properties like 

viscosity and thermal conduction are qualitatively confirmed. 

Figures 63 to 66 show the pressure and translational/rotational temperature contours calculated by the VL and 

LS algorithms when using CGL collocation points. Figures 63 and 64 exhibit the pressure contours, where the 

VL’s value of pressure peak is very close to the theoretical value of stagnation pressure. The shock waves are 

well captured by both schemes. Figures 65 and 66present the translational/rotational temperature contours 

calculated by both algorithms. The good transport of viscosity and thermal conduction is noted in the VL 

solution. The maximum temperature is 9,677.41K and is again obtained by the VL scheme. 

Figures 67 to 70 exhibit the pressure and temperature contours obtained by the VL and LS algorithms as using 

the LGR collocation points. Figures 67 and 68 present the pressure contours obtained by both schemes. Both 

pressure contours are very similar in qualitative terms, being the LS’ solution more intense than the respective 

VL’s solution in quantitative terms. Figures 69 and 70 show the temperature contours calculated by the VL and 

LS schemes, respectively. The maximum temperature in the field is obtained by the VL algorithm and reaches 

the value of 10,199.80K. 

Figures 71 to 74 present the pressure and translational/rotational temperature contours generated by the VL and 

LS algorithms when using the LGL collocation points. Figures 71 and 72 show the pressure contours, where the 

LS’ field is more intense than the VL’s field. The shock waves at the two ellipses are well captured by both 

schemes. Figures 73 and 74 exhibit the temperature contours, where the maximum temperature in the field is 

obtained by the VL scheme and reaches the value of 10,209.10K. Good homogeneous properties are observed in 

both fields. 

 

8.3. Reentry Capsule Problem 

Inviscid case. Figures 75 to 78 present the pressure and translational/rotational temperature contours obtained 

by the VL and LS schemes as using the CGR collocation points. Figures 75 and 76 present the pressure contours 

and good symmetry and homogenous properties are verified. The stagnation pressure estimated by the LS 

scheme as using the CGR collocation points is the best in comparison with the CGL, LGR, and LGL solutions, 

with an error of 4.55%.The Kutta condition was correctly implemented. There are qualitative differences in the 

pressure contours captured by both schemes. The solution of Figure 75 seems better to represent the normal 

shock. Figures 77 and 78 present the temperature contours and good symmetry properties are noted. Again, the 

normal shock seems better captured by the VL solution. The maximum temperature is captured by the LS 

scheme and has the value of 7,725.38K 

Figures 79 to 82 show the pressure and temperature contours generated by the VL and LS numerical algorithms 

when using the CGL collocation points. Figures 79 and 80 exhibit the pressure contours calculated by both 

algorithms. The LS’ pressure peak is higher than the VL’s one. Good symmetry properties are observed in the 
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pressure and in the temperature contours, free of pre-shock oscillations. The temperature contours are shown in 

Figs. 81 and 82 and both figures present good symmetry characteristics, without oscillations. The maximum 

temperature peak is obtained by the LS scheme and has the value of 7,863.71 K. 

Figures 83 to 86 exhibit the pressure and translational/rotational temperature contours calculated by the VL and 

LS algorithms as using the LGR collocation points. Figures 83 and 84 present the pressure contours obtained by 

the VL and LS algorithms, respectively. The value of stagnation pressure obtained by the LS algorithm is bigger 

than that of the VL algorithm, although they are very low. As mentioned before, the Legendre variant behaves 

better for the temperature field and for the determination of the lift aerodynamic coefficient, as seen in Tabs. 8 

and 9. Good symmetry properties, without oscillations, are observed in all solutions. The LS algorithm again 

captures the maximum temperature in the field with a value of 8,058.64K. 

Figures 87 to 90 show the pressure and translational/rotational temperature contours obtained by the VL and LS 

schemes as using the LGL collocation points. Figures 87 and 88 exhibit the pressure contours, where both 

schemes capture correctly the normal shock wave ahead of the configuration nose. Moreover, the stagnation 

pressure values of both schemes are under-predicted in relation to the theoretical value. Good symmetry 

properties are observed. Figures 89 and 90 present the temperature contours obtained by both schemes. Good 

homogenous properties are verified in the temperature solutions. The trailing edge flow is well captured by the 

numerical schemes, emphasizing the correct implementation of the Kutta condition. The maximum temperature 

in the field is calculated by the LS algorithm and reaches the value of 8,012.98K. 

Viscous case. Figures 91 to 94 exhibit the pressure and temperature contours calculated by the VL and LS 

numerical schemes as using the CGR collocation points. Figures 91 and 92 present the pressure contours, where 

the VL’s field is more intense than the LS’ field. Good symmetry properties are observed. The dynamic and 

thermal shock waves are correctly captured by the VL algorithm. Figures 93 and 94 show the temperature 

contours obtained by the VL and LS schemes, respectively. The maximum stagnation temperature calculated by 

the VL scheme reaches the value of 8,252.77K. 

Figures 95 to 98 show the pressure and translational/rotational temperature contours generated by the VL and 

LS schemes when using the CGL collocation points. The best result of the reentry-capsule-viscous case for the 

stagnation pressure was obtained by the LS scheme as using the CGL spectral variant with an error of 1.52%. 

Again, in general terms, the Chebyshev variants present better behavior when applied to the dynamic part of the 

flow. Good symmetry properties are verified in the pressure and in the temperature fields. The maximum 

temperature peak is obtained by the VL scheme and has the value of 8,262.58K 

Figures 99 to 102 present the pressure and temperature contours obtained by the VL and LS numerical schemes 

as using the LGR collocation points. The stagnation pressure values generated by the VL and LS schemes are 

under-estimated in relation to the theoretical value. The contours are free of pre-shock oscillations and present 

good homogenous features. Figures 101 and 102 present the temperature contours. The normal thermal shock 

wave is well captured by the numerical algorithms. Good symmetry properties are observed and the wake is 

well captured by the numerical schemes, highlighting the correct implementation of the Kutta condition. The 

maximum temperature in the field is calculated by the VL scheme and has the value of 8,389.48K. 

Figures 103 to 106 exhibit the pressure and temperature contours calculated by the VL and LS numerical 

algorithms when using the LGL collocation points. The stagnation pressure continues under-estimated. Good 

symmetry properties are verified. The temperature contours are free of oscillations, the wake is well captured by 

the numerical schemes, and good homogenous properties are noted. The normal thermal shock wave is well 

captured by the numerical schemes. The maximum temperature in the field is obtained by the VL scheme and 

reaches the value of 8,389.21K. Again the maximum temperature in the field was predominantly captured by the 

Legendre variants. 

 

8.4. Other Comparisons 

Figure 107 shows the convergence history of the VL scheme to a 4
th

 order spectral method using CGL for 

collocation points and to an ENO solution also of 4
th

 order using Newton interpolation function, to the blunt 

body inviscid case. The CGL collocation points were chosen because they provide the best convergence of the 

VL scheme for the inviscid case and 4
th

 order of accuracy. The ENO procedure was implemented by the author 
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and was used for numerical comparisons. To details of the implementation of the ENO procedure on a context 

of thermochemical non-equilibrium, the reader is encouraged to read [46-48]. As can be seen in Fig. 107, the 

spectral (CGL) method coupled with the VL scheme was the most efficient converging in 222 iterations, with a 

maximum CFL of 0.70. The ENO solution was very inefficient compared with the spectral method. The 

maximum allowable CFL number employed in the ENO solutions was 0.01. Figure 108 compares the ENO 

solution of 4
th

 order using Newton interpolation function, and the spectral (LGR) method, both coupled with the 

LS scheme. Again, the LGR collocation points were chosen due to provide the best convergence for the LS 

scheme in the inviscid case and 4
th

 order of accuracy. In this case, the good convergence of the spectral (LGR) 

method was highlighted, converging in 274 iterations with a CFL number of 0.50, whereas the ENO solutions 

converged in more than 8,000 iterations with a CFL number of 0.01. 

As conclusion, the correct implementation of the proposed spectral method guide us to an efficient high order 

scheme, converging in less than 300 iterations in the inviscid case, for the blunt body problem, when 

programmed coupled with the VL or LS schemes. The CGL and LGR variants of the spectral method for the 

inviscid case were the most efficient in the studies performed by the author and ratified the fast convergence as 

expected. 

 

8.5. Quantitative Analysis 

In order to perform a quantitative analysis, the present reactive results are compared to the perfect gas solutions. 

The stagnation pressures at the blunt body nose, at the double ellipse nose, and at the reentry capsule nose were 

evaluated assuming the perfect gas formulation. Such parameter calculated at this way is not the best 

comparison, but in the absence of practical reactive results, this constitutes the best available solution. 

To calculate the stagnation pressure at the nose of these three configurations, [49] presents in its B Appendix 

values of the normal shock wave properties ahead of the configuration. The ratio pr0/pr∞ is estimated as function 

of the normal Mach number and the stagnation pressure pr0 can be determined from this parameter. Hence, 

Table 5 gives the theoretical stagnation pressure values obtained for the three configurations at the initial-

normal-Mach number.The value of pr∞ is determined by the following expression: 

2

charchar

initial

a

pr
pr




,                                                                (48) 

where, for example, for the blunt body case, prinitial = 687N/m
2
, char = 0.004kg/m

3
 and achar = 317.024m/s. 

Considering these values, one concludes that pr∞ = 1.709 (non-dimensional). Using the ratio obtained from [49], 

the stagnation pressure ahead of the configuration nose is estimated as 170.87 unities. Tables 6 (inviscid case) 

and 7 (viscous case) compare values of the stagnation pressure obtained from the simulations with the 

theoretical values and show the percentage errors. As can be seen, the best results in the inviscid case are 

provided by the CGR collocation points, with an error of 0.23%, when coupled with the VL scheme, for the 

blunt body problem; by the CGR collocation points, with an error of 2.71%, when coupled with the LS scheme, 

for the double ellipse problem; and by CGL collocation points, with an error of 4.55%, when coupled with the 

LS scheme, for the reentry capsule problem. For the viscous case, the CGL collocation points, with an error of 

1.38%, coupled with the LS scheme, for the blunt body problem, was the best; with the CGR collocation points, 

with an error of 0.28%, coupled with the VL scheme, for the double ellipse problem, was the best; and with the 

CGL collocation points, with an error of 1.52%, coupled with the LS scheme, for the reentry capsule problem, 

was the best. 

As the hypersonic flows around the blunt body and reentry capsule configurations were simulated with a zero 

value to the attack angle, a zero lift coefficient, due to geometry symmetry, is the expected value for this 

aerodynamic coefficient. Tables 8 (inviscid) and 9 (viscous) present an analysis of the lift aerodynamic 

coefficient, based only on pressure contribution, in this study. As can be observed, the best value to the lift 

coefficient in the inviscid case is obtained by the LGL collocation points, coupled with the VL scheme, for the 

blunt body problem; and again by the LGL collocation points, coupled with the VL scheme, for the reentry 

capsule problem. In the viscous case, the best value to the lift coefficient is obtained by the LGL collocation 

points, coupled with the VL scheme, for the blunt body problem; and by the CGR collocation points, coupled 
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with the VL scheme, for the reentry capsule problem. 

 

8.6. Computational Performance 

Tables 10 and 11 present the computational data of the VL and LS schemes for the blunt body, for the double 

ellipse, and for the reentry capsule problems in both inviscid and viscous cases. It shows the CFL number and 

the number of iterations to convergence for all studied cases in the current work. It can be verified that the best 

performance of the VL scheme in the inviscid case occurred when using the CGL collocation points, employing 

a CFL of 0.70, and converging in 222 iterations, in the blunt body problem, whereas in the viscous case 

occurred when using the LGR collocation points, employing a CFL of 0.30, and converging in 359 iterations, 

also in the blunt body problem. On the other hand, the best performance of the LS scheme in the inviscid case 

occurred when using the LGR collocation points, employing a CFL of 0.50, and converging in 274 iterations, in 

the blunt body problem, whereas in the viscous case occurred when using the LGR collocation points, 

employing a CFL of 0.50, and converging in 224 iterations, also in the blunt body problem. 

As final conclusion, it is possible to highlight that, for the blunt body problem, the VL scheme in the inviscid 

case using CGR collocation points had the best performance in estimating the stagnation pressure, and the lift 

aerodynamic coefficient was best estimated by the VL scheme as using the LGL collocation points also in the 

inviscid case; for the double ellipse problem, the VL scheme in the viscous case using CGR collocation points 

had the best performance in estimating the stagnation pressure; and finally, for the reentry capsule problem, the 

LS scheme in the viscous case using CGL collocation points had the best performance in estimating the 

stagnation pressure, and the lift aerodynamic coefficient was best estimated by the VL scheme as using the CGR 

collocation points also in the viscous case. Moreover, the best performance of the numerical schemes, for the 

4
th

order of accuracy, was due to the VL one, when using the CGL collocation points, employing a CFL of 0.70, 

and converging in 222 iterations, in the blunt body problem, whereas for the 16
th

 order of accuracy, the best 

performance of the numerical schemes was due to the LS one, when using the LGR collocation points, 

employing a CFL of 0.50, and converging in 224 iterations, also in the blunt body problem. 

Finally, to close this work, the computational cost of the numerical schemes using the several types of 

collocation points is presented in Tab. 12. For the inviscid case, the cheapest combination was the VL scheme 

using CGL collocation points with a cost of 0.0002387 sec/per-volume/per-iteration, whereas for the viscous 

case the cheapest was due to the VL scheme coupled with the LGL collocation points with a cost of 0.0011181 

sec/per-volume/per-iteration. 

Table 1: Values of Sx and Sy 

Surface Sx Sy 
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yy 
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
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Table 2: Initial conditions to the blunt body problem 

Property Value 

Minitial 8.78 

initial 0.00326 kg/m
3
 

prinitial 687 Pa 

Uinitial 4,776 m/s 

Tinitial 694 K 

Altitude 40,000 m 

cN 10
-9

 

cO 0.07955 

cO2 0.13400 

cNO 0.05090 

cNO+ 0.0 

ce- 0.0 
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LREF 2.0 m 

Rechar 2.386x10
6
 

Table 3: Initial conditions to the double ellipse problem 

Property Value 

Minitial 15.0 

initial 0.00922 kg/m
3
 

prinitial 794 Pa 

Uinitial 5,208 m/s 

Tinitial 300 K 

Altitude 50,000 m 

cN 10
-9

 

cO 0.07955 

cO2 0.13400 

cNO 0.05090 

cNO+ 0.0 

ce- 0.0 

L 5.0 m 

Rechar 1.574x10
6
 

 

Table 4: Initial conditions to the reentry capsule problem 

Property Value 

Minitial 10.6 

initial 0.02863 kg/m
3
 

prinitial 3,885 Pa 

Uinitial 4,628 m/s 

Tinitial 473 K 

Altitude 40,000 m 

cN 10
-9

 

cO 0.07955 

cO2 0.13400 

cNO 0.05090 

cNO+ 0.0 

ce- 0.0 

L 3.0 m 

Rechar 3.468x10
6
 

 

Table 5: Values of theoretical stagnation pressure 

Problem: Minitial: pr0/pr∞: pr∞: pr0 (Theoretical): 

Blunt body 8.78 99.98 1.709 170.87 

Double ellipse 15.00 290.20 7.109 2,063.03 

Reentry capsule 10.60 145.46 9.664 1,405.73 

 

Table 6: Values of stagnation pressure and respective errors (Inviscid case/4
th

 Order) 

Physical Problem: Scheme: Spectral Method: pr0: 

(Numerical) 

Error: 

 VL
(1)

 Chebyshev-Gauss-Radau 171.26 0.23 

 LS
(2)

 Chebyshev-Gauss-Radau 169.97 0.53 

 VL Chebyshev-Gauss-Lobatto 149.43 12.55 

Blunt Body LS Chebyshev-Gauss-Lobatto 153.67 10.07 

(pr0 = 170.87) VL Legendre-Gauss-Radau 108.33 36.60 

 LS Legendre-Gauss-Radau 129.26 24.35 

 VL Legendre-Gauss-Lobatto 119.48 30.08 

 LS Legendre-Gauss-Lobatto 135.52 20.69 

 VL Chebyshev-Gauss-Radau 1,976.37 4.20 

 LS Chebyshev-Gauss-Radau 2,007.04 2.71 

 VL Chebyshev-Gauss-Lobatto 1,729.61 16.16 
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Double Ellipse LS Chebyshev-Gauss-Lobatto 1,826.03 11.49 

(pr0 = 2,063.03) VL Legendre-Gauss-Radau 1,430.46 30.66 

 LS Legendre-Gauss-Radau 1,561.44 24.31 

 VL Legendre-Gauss-Lobatto 1,552.29 24.76 

 LS Legendre-Gauss-Lobatto 1,616.46 21.65 

 VL Chebyshev-Gauss-Radau 1,485.22 5.65 

 LS Chebyshev-Gauss-Radau 1,476.91 5.06 

 VL Chebyshev-Gauss-Lobatto 1,314.23 6.51 

Reentry Capsule LS Chebyshev-Gauss-Lobatto 1,341.75 4.55 

(pr0 = 1,405.73) VL Legendre-Gauss-Radau 1,051.35 25.21 

 LS Legendre-Gauss-Radau 1,163.45 17.24 

 VL Legendre-Gauss-Lobatto 1,115.11 20.67 

 LS Legendre-Gauss-Lobatto 1,205.70 14.23 

(1): Van Leer; (2): Liou and Steffen Jr. 

 

Table 7: Values of stagnation pressure and respective errors (Viscous case/16
th

 Order) 

Physical Problem: Scheme: Spectral Method: pr0: 

(Numerical) 

Error: 

 VL Chebyshev-Gauss-Radau 184.89 8.21 

 LS Chebyshev-Gauss-Radau 176.71 3.42 

 VL Chebyshev-Gauss-Lobatto 178.02 4.18 

Blunt Body LS Chebyshev-Gauss-Lobatto 173.22 1.38 

(pr0 = 170.87) VL Legendre-Gauss-Radau 134.27 21.42 

 LS Legendre-Gauss-Radau 145.43 14.89 

 VL Legendre-Gauss-Lobatto 134.60 21.23 

 LS Legendre-Gauss-Lobatto 145.65 14.76 

 VL Chebyshev-Gauss-Radau 2,057.21 0.28 

 LS Chebyshev-Gauss-Radau 2,010.07 2.57 

 VL Chebyshev-Gauss-Lobatto 1,980.71 3.99 

Double Ellipse LS Chebyshev-Gauss-Lobatto 1,957.57 5.11 

(pr0 = 2,063.03) VL Legendre-Gauss-Radau 1,513.28 26.65 

 LS Legendre-Gauss-Radau 1,671.85 18.96 

 VL Legendre-Gauss-Lobatto 1,516.80 26.48 

 LS Legendre-Gauss-Lobatto 1,674.13 18.85 

 VL Chebyshev-Gauss-Radau 1,516.36 7.87 

 LS Chebyshev-Gauss-Radau 1,462.72 4.05 

 VL Chebyshev-Gauss-Lobatto 1,465.82 4.27 

Reentry Capsule LS Chebyshev-Gauss-Lobatto 1,427.05 1.52 

(pr0 = 1,405.73) VL Legendre-Gauss-Radau 1,122.29 20.16 

 LS Legendre-Gauss-Radau 1,217.90 13.36 

 VL Legendre-Gauss-Lobatto 1,124.82 19.98 

 LS Legendre-Gauss-Lobatto 1,219.58 13.24 

 

Table 8: Values of the lift aerodynamic coefficient (Inviscid case/4
th

 Order) 

Physical Problem: Scheme: Spectral Method: cL: 

 VL Chebyshev-Gauss-Radau -2.9327x10
-15

 

 LS Chebyshev-Gauss-Radau 1.5459x10
-14

 

 VL Chebyshev-Gauss-Lobatto 1.6470x10
-14

 

Blunt Body LS Chebyshev-Gauss-Lobatto -1.2491x10
-13

 

 VL Legendre-Gauss-Radau 2.8218x10
-14

 

 LS Legendre-Gauss-Radau -7.3724x10
-14

 

 VL Legendre-Gauss-Lobatto 9.6563x10
-16

 

 LS Legendre-Gauss-Lobatto 1.0525x10
-14

 

 VL Chebyshev-Gauss-Radau -2.2301x10
-9

 

 LS Chebyshev-Gauss-Radau -6.2623x10
-10
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 VL Chebyshev-Gauss-Lobatto -1.1116x10
-9

 

Reentry Capsule LS Chebyshev-Gauss-Lobatto -5.2904x10
-10

 

 VL Legendre-Gauss-Radau 1.6647x10
-10

 

 LS Legendre-Gauss-Radau -2.5957x10
-10

 

 VL Legendre-Gauss-Lobatto -6.0024x10
-11

 

 LS Legendre-Gauss-Lobatto -2.6593x10
-10

 

 

Table 9: Values of the lift aerodynamic coefficient (Viscous case/16
th

 Order) 

Physical Problem: Scheme: Spectral Method: cL: 

 VL Chebyshev-Gauss-Radau -2.3134x10
-15

 

 LS Chebyshev-Gauss-Radau 2.5888x10
-14

 

 VL Chebyshev-Gauss-Lobatto 6.5277x10
-15

 

Blunt Body LS Chebyshev-Gauss-Lobatto 8.7879x10
-15

 

 VL Legendre-Gauss-Radau 3.9828x10
-15

 

 LS Legendre-Gauss-Radau 1.9796x10
-14

 

 VL Legendre-Gauss-Lobatto 1.4037x10
-15

 

 LS Legendre-Gauss-Lobatto 1.6162x10
-14

 

 VL Chebyshev-Gauss-Radau -5.9099x10
-11

 

 LS Chebyshev-Gauss-Radau -3.9657x10
-4

 

 VL Chebyshev-Gauss-Lobatto -6.0566x10
-11

 

Reentry Capsule LS Chebyshev-Gauss-Lobatto -3.5919x10
-4

 

 VL Legendre-Gauss-Radau -2.1631x10
-10

 

 LS Legendre-Gauss-Radau -1.5175x10
-4

 

 VL Legendre-Gauss-Lobatto -2.2428x10
-10

 

 LS Legendre-Gauss-Lobatto -1.5625x10
-4

 

 

Table 10: Computational data (Inviscid case/4
th

 Order) 

Physical Problem: Scheme: Spectral Method: CFL: Iterations: 

 VL Chebyshev-Gauss-Radau 0.50 662 

 LS Chebyshev-Gauss-Radau 0.70 358 

 VL Chebyshev-Gauss-Lobatto 0.70 222 

Blunt Body LS Chebyshev-Gauss-Lobatto 0.70 286 

 VL Legendre-Gauss-Radau 0.50 232 

 LS Legendre-Gauss-Radau 0.50 274 

 VL Legendre-Gauss-Lobatto 0.50 233 

 LS Legendre-Gauss-Lobatto 0.50 301 

 VL Chebyshev-Gauss-Radau 0.20 1,348 

 LS Chebyshev-Gauss-Radau 0.20 1,320 

 VL Chebyshev-Gauss-Lobatto 0.20 967 

Double Ellipse LS Chebyshev-Gauss-Lobatto 0.30 672 

 VL Legendre-Gauss-Radau 0.20 523 

 LS Legendre-Gauss-Radau 0.30 371 

 VL Legendre-Gauss-Lobatto 0.20 639 

 LS Legendre-Gauss-Lobatto 0.30 441 

 VL Chebyshev-Gauss-Radau 0.30 1,028 

 LS Chebyshev-Gauss-Radau 0.30 1,461 

 VL Chebyshev-Gauss-Lobatto 0.30 906 

Reentry Capsule LS Chebyshev-Gauss-Lobatto 0.30 1,118 

 VL Legendre-Gauss-Radau 0.30 478 

 LS Legendre-Gauss-Radau 0.30 681 
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 VL Legendre-Gauss-Lobatto 0.30 653 

 LS Legendre-Gauss-Lobatto 0.30 779 

Table 11: Computational data (Viscous case/16
th

 Order) 

Physical Problem: Scheme: Spectral Method: CFL: Iterations: 

 VL Chebyshev-Gauss-Radau 0.50 558 

 LS Chebyshev-Gauss-Radau 0.70 349 

 VL Chebyshev-Gauss-Lobatto 0.50 506 

Blunt Body LS Chebyshev-Gauss-Lobatto 0.70 324 

 VL Legendre-Gauss-Radau 0.30 359 

 LS Legendre-Gauss-Radau 0.50 224 

 VL Legendre-Gauss-Lobatto 0.30 364 

 LS Legendre-Gauss-Lobatto 0.50 225 

 VL Chebyshev-Gauss-Radau 0.20 2,680 

 LS Chebyshev-Gauss-Radau 0.30 1,692 

 VL Chebyshev-Gauss-Lobatto 0.20 2,303 

Double Ellipse LS Chebyshev-Gauss-Lobatto 0.30 1,574 

 VL Legendre-Gauss-Radau 0.10 2,153 

 LS Legendre-Gauss-Radau 0.20 1,339 

 VL Legendre-Gauss-Lobatto 0.10 2,116 

 LS Legendre-Gauss-Lobatto 0.20 1,346 

 VL Chebyshev-Gauss-Radau 0.10 4,318 

 LS Chebyshev-Gauss-Radau 0.20 2,671 

 VL Chebyshev-Gauss-Lobatto 0.10 3,927 

Reentry Capsule LS Chebyshev-Gauss-Lobatto 0.20 2,570 

 VL Legendre-Gauss-Radau 0.10 1,831 

 LS Legendre-Gauss-Radau 0.10 2,271 

 VL Legendre-Gauss-Lobatto 0.10 1,846 

 LS Legendre-Gauss-Lobatto 0.10 2,281 

 

Table 12: Computational cost of spectral variants 

Order of 

Accuracy: 

Scheme: Spectral Method: Computational Cost 

(seconds/volumes/iterations): 

 VL Chebyshev-Gauss-Radau 0.0002401 

 LS Chebyshev-Gauss-Radau 0.0002390 

 VL Chebyshev-Gauss-Lobatto 0.0002387 

4
th

 Order LS Chebyshev-Gauss-Lobatto 0.0002388 

(Inviscid case) VL Legendre-Gauss-Radau 0.0002977 

 LS Legendre-Gauss-Radau 0.0002979 

 VL Legendre-Gauss-Lobatto 0.0002510 

 LS Legendre-Gauss-Lobatto 0.0002639 

 VL Chebyshev-Gauss-Radau 0.0011211 

 LS Chebyshev-Gauss-Radau 0.0011234 

 VL Chebyshev-Gauss-Lobatto 0.0013643 

16
th

 Order LS Chebyshev-Gauss-Lobatto 0.0013591 

(Viscous case) VL Legendre-Gauss-Radau 0.0013632 

 LS Legendre-Gauss-Radau 0.0011196 

 VL Legendre-Gauss-Lobatto 0.0011181 

 LS Legendre-Gauss-Lobatto 0.0011251 
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Figure 1: Computational cell 

 

Figure 2: Blunt body configuration 

Figure 3: Blunt body inviscid mesh Figure 4: Blunt body viscous mesh 

 
Figure 5: Double ellipse configuration 

 
Figure 6: Double ellipse inviscid mesh 
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Figure 7: Double ellipse viscous mesh 

 
Figure 8: Reentry capsule configuration 

 
Figure 9: Reentry capsule inviscid mesh 

 
Figure 10: Reentry capsule viscous mesh 

Blunt Body Inviscid Solutions 

 
Figure 11: Pressure contours (CGR-VL) 

 
Figure 12: Pressure contours (CGR-LS) 
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Figure 13: Translational/rotational temperature 

contours (CGR-VL) 

Figure 14: Translational/rotational temperature 

contours (CGR-LS) 

 
Figure 15: Pressure contours (CGL-VL) 

 
Figure 16: Pressure contours (CGL-LS) 

 
Figure 17: Translational/rotational temperature 

contours (CGL-VL) 

 
Figure 18: Translational/rotational temperature 

contours (CGL-LS) 

 
Figure 19: Pressure contours (LGR-VL) 

 
Figure 20: Pressure contours (LGR-LS) 
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Figure 21: Translational/rotational temperature 

contours (LGR-VL) 

Figure 22: Translational/rotational temperature 

contours (LGR-LS) 

 
Figure 23: Pressure contours (LGL-VL) 

 
Figure 24: Pressure contours (LGL-LS) 

 
Figure 25: Translational/rotational temperature 

contours (LGL-VL) 

 
Figure 26: Translational/rotational temperature 

contours (LGL-LS) 

Blunt Body Viscous Solutions 

 
Figure 27: Pressure contours (CGR-VL) 

 
Figure 28: Pressure contours (CGR-LS) 
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Figure 29: Translational/rotational temperature 

contours (CGR-VL) 

Figure 30: Translational/rotational temperature 

contours (CGR-LS) 

 
Figure 31: Pressure contours (CGL-VL) 

 
Figure 32: Pressure contours (CGL-LS) 

 
Figure 33: Translational/rotational temperature 

contours (CGL-VL) 

 
Figure 34: Translational/rotational temperature 

contours (CGL-LS) 

 
Figure 35: Pressure contours (LGR-VL) 

 
Figure 36: Pressure contours (LGR-LS) 

 
Figure 37: Translational/rotational temperature 

contours (LGR-VL) 

 
Figure 38: Translational/rotational temperature 

contours (LGR-LS) 
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Figure 39: Pressure contours (LGL-VL) 

 
Figure 40: Pressure contours (LGL-LS) 

 
Figure 41: Translational/rotational temperature 

contours (LGL-VL) 

 
Figure 42: Translational/rotational temperature 

contours (LGL-LS) 

Double Ellipse Inviscid Solutions 

 
Figure 43: Pressure contours (CGR-VL) 

 
Figure 44: Pressure contours (CGR-LS) 

 
Figure 45: Translational/rotational temperature 

contours (CGR-VL) 

 
Figure 46: Translational/rotational temperature 

contours (CGR-LS) 
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Figure 47: Pressure contours (CGL-VL) 

 
Figure 48: Pressure contours (CGL-LS) 

 
Figure 49: Translational/rotational temperature 

contours (CGL-VL) 

 
Figure 50: Translational/rotational temperature 

contours (CGL-LS) 

 
Figure 51: Pressure contours (LGR-VL) 

 
Figure 52: Pressure contours (LGR-LS) 

 
Figure 53: Translational/rotational temperature 

contours (LGR-VL) 

 
Figure 54: Translational/rotational temperature 

contours (LGR-LS) 
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Figure 55: Pressure contours (LGL-VL) 

 
Figure 56: Pressure contours (LGL-LS) 

 
Figure 57: Translational/rotational temperature 

contours (LGL-VL) 

 
Figure 58: Translational/rotational temperature 

contours (LGL-LS) 

Double Ellipse Viscous Solutions 

 
Figure 59: Pressure contours (CGR-VL) 

 
Figure 60: Pressure contours (CGR-LS) 

 
Figure 61: Translational/rotational temperature 

contours (CGR-VL) 

 
Figure 62: Translational/rotational temperature 

contours (CGR-LS) 
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Figure 63: Pressure contours (CGL-VL) 

 
Figure 64: Pressure contours (CGL-LS) 

 
Figure 65: Translational/rotational temperature 

contours (CGL-VL) 

 
Figure 66: Translational/rotational temperature 

contours (CGL-LS) 

 
Figure 67: Pressure contours (LGR-VL) 

 
Figure 68: Pressure contours (LGR-LS) 

 
Figure 69: Translational/rotational temperature 

contours (LGR-VL) 

 
Figure 70: Translational/rotational temperature 

contours (LGR-LS) 
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Figure 71: Pressure contours (LGL-VL) 

 
Figure 72: Pressure contours (LGL-LS) 

 
Figure 73: Translational/rotational temperature 

contours (LGL-VL) 

 
Figure 74: Translational/rotational temperature 

contours (LGL-LS) 

Reentry Capsule Inviscid Solutions 

 
Figure 75: Pressure contours (CGR-VL) 

 
Figure 76: Pressure contours (CGR-LS). 

 
Figure 77: Translational/rotational temperature 

contours (CGR-VL) 

 
Figure 78: Translational/rotational temperature 

contours (CGR-LS) 
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Figure 79: Pressure contours (CGL-VL) 

 
Figure 80: Pressure contours (CGL-LS) 

 
Figure 81: Translational/rotational temperature 

contours (CGL-VL) 

 
Figure 82: Translational/rotational temperature 

contours (CGL-LS) 

 
Figure 83: Pressure contours (LGR-VL) 

 
Figure 84: Pressure contours (LGR-LS) 

 
Figure 85: Translational/rotational temperature 

contours (LGR-VL) 

 
Figure 86: Translational/rotational temperature 

contours (LGR-LS) 
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Figure 87: Pressure contours (LGL-VL) 

 
Figure 88: Pressure contours (LGL-LS) 

 
Figure 89: Translational/rotational temperature 

contours (LGL-VL) 

 
Figure 90: Translational/rotational temperature 

contours (LGL-LS) 

Reentry Capsule Viscous Solutions 

 
Figure 91: Pressure contours (CGR-VL) 

 
Figure 92: Pressure contours (CGR-LS). 

 
Figure 93: Translational/rotational temperature 

contours (CGR-VL) 

 
Figure 94: Translational/rotational temperature 

contours (CGR-LS) 
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Figure 95: Pressure contours (CGL-VL) 

 
Figure 96: Pressure contours (CGL-LS) 

 
Figure 97: Translational/rotational temperature 

contours (CGL-VL) 

 
Figure 98: Translational/rotational temperature 

contours (CGL-LS) 

 
Figure 99: Pressure contours (LGR-VL) 

 
Figure 100: Pressure contours (LGR-LS) 

 
Figure 101: Translational/rotational temperature 

contours (LGR-VL) 

 
Figure 102: Translational/rotational temperature 

contours (LGR-LS) 
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Figure 103: Pressure contours (LGL-VL) 

 
Figure 104: Pressure contours (LGL-LS) 

 
Figure 105: Translational/rotational temperature 

contours (LGL-VL) 

 
Figure 106: Translational/rotational temperature 

contours (LGL-LS) 

 
Figure 107: Comparison between convergence 

histories (VL) 

 
Figure 108: Comparison between convergence 

histories (LS) 

9. Conclusions 

In the present work, a study involving a spectral method to solve the reactive Euler and Navier-Stokes equations 

was performed. The Euler and Navier-Stokes equations, in conservative and finite volume contexts, employing 

structured spatial discretization, on a condition of thermochemical non-equilibrium, were studied. The spectral 

method presented in this work employed collocation points and variants of Chebyshev and Legendre 

interpolation functions were analyzed. High-order studies were accomplished to verify the accuracy of the 

spectral method. The “hot gas” hypersonic flows around a blunt body, around a double ellipse, and around a 

reentry capsule in two-dimensions were simulated. The [28-29] flux vector splitting algorithms were applied to 

execute the numerical experiments. The Euler backward integration method was employed to march the 

schemes in time. The convergence process was accelerated to steady state condition through a spatially variable 

time step procedure, which had proved effective gains in terms of computational acceleration [30-31]. The 
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reactive simulations involved Earth atmosphere chemical model of seven species and eighteen reactions, based 

on the [32] model. N, O, N2, O2, NO, NO
+
, and e

-
 species were used to accomplish the numerical comparisons. 

The results have indicated that the Chebyshev collocation point variants are more accurate in terms of stagnation 

pressure estimations. In the inviscid case such errors were inferior to 16.16%, while in the viscous case such 

errors were inferior to 10.0%. The Legendre collocation point variants are more accurate in terms of the lift 

coefficient estimations. Moreover, the Legendre collocation point variants are more computationally efficient 

and cheaper. 

As final conclusion, it is possible to highlight that, for the blunt body problem, the [28] scheme in the inviscid 

case using Chebyshev-Gauss-Radau collocation points had the best performance in estimating the stagnation 

pressure, and the lift aerodynamic coefficient was best estimated by the [28] scheme as using the Legendre-

Gauss-Lobatto collocation points also in the inviscid case; for the double ellipse problem, the [28] scheme in the 

viscous case using Chebyshev-Gauss-Radau collocation points had the best performance in estimating the 

stagnation pressure; and finally, for the reentry capsule problem, the [29] scheme in the viscous case using 

Chebyshev-Gauss-Lobatto collocation points had the best performance in estimating the stagnation pressure, 

and the lift aerodynamic coefficient was best estimated by the [28] scheme as using the Chebyshev-Gauss-

Radau collocation points also in the viscous case. Moreover, the best performance of the numerical schemes, for 

the 4
th

 order of accuracy, was due to the [28] one, when using the Chebyshev-Gauss-Lobatto collocation points, 

employing a CFL of 0.70, and converging in 222 iterations, in the blunt body problem, whereas for the 16
th

 

order of accuracy, the best performance of the numerical schemes was due to the [29] one, when using the 

Legendre-Gauss-Radau collocation points, employing a CFL of 0.50, and converging in 224 iterations, also in 

the blunt body problem. 

Finally, to close this work, the computational cost of the numerical schemes using the several types of 

collocation points was presented in Tab. 12. For the inviscid case, the cheapest combination was the [28] 

scheme using Chevyshev-Gauss-Lobatto collocation points with a cost of 0.0002387 sec/per-volume/per-

iteration, whereas for the viscous case the cheapest was due to the [28] scheme coupled with the Legendre-

Gauss-Lobatto collocation points with a cost of 0.0011181 sec/per-volume/per-iteration. 

 

10. Motivation and Novelty 

The motivation to study spectral methods applied to reentry flow was enormous because of some papers in the 

CFD literature report such methods as the state of art of high order resolution. The intention of this paper was to 

propose a different spectral method that was of easy implementation and conformed about author’s ideas of 

treating the governing equations of fluid flow. The formulation presented here is for a thermochemical non-

equilibrium condition and a two-temperature model. The comparisons involving the residual histories of ENO 

and of spectral method were very important to confirm that our numerical implementation was correct and also 

the potentiality of the method. Three physical problems were also a challenge that we accepted to lead with. The 

results with good accuracy represent a motivation to extend the present formulation to more species and 

different chemical conditions. 

The novelty of the present study was to implement this different spectral method to treat thermochemical non-

equilibrium reentry flows and to formulate the appropriate equations for accepting this method. The robustness 

and convergence features of this spectral method are very impressive. While the author had to use CFL numbers 

of order 0.01 for his ENO explicit method, CFL numbers as great as 0.70 for his explicit spectral method were 

of common use. The proposed spectral method is different from the standard spectral ones on a sense that in the 

latter, the differential equations and the solution method are discretized with spectral tools, whereas in the 

former, only the vector of conserved variables and the convective fluxes should be discretized according to the 

spectral tools. The result is a robust and fast solver to treat the fluid-dynamic of reentry flows. 

 

11. Future Works 

For the future, the author should extend the present formulation for an eleven species chemical model under the 

condition of thermochemical non-equilibrium in two-dimensions. After that, he should extend to the desired 

three-dimensional studies. Moreover, its implementation with turbulence effects and magnetic field actuation, 
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that the author consider as the state of the art project, is an objective to be reached, in both, two- and three-

dimensions. Finally, the interpretation of the present formulation to two-dimensional unstructured studies is also 

a goal to be reached. 
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