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Abstract The study of convective heat transfer has generated many interests and become more important 

recently because of their wide applications in engineering and in several industrial processes. The governing 

boundary layer equations are transformed into a system of non-dimensional third and second order differential 

equations. In this work the convective heat transfer equations of the boundary layer with pressure gradient over 

a wedge are solved simultaneously by a simple and precise iterative formula predicated on Taylor theory 

utilizing shooting method. This method provides the ability to choose the initial guess function and is utilized to 

solve the cognate boundary layer quandary. The velocity and temperature profiles for different wedge angle and 

different Prandtl number are obtained. The results are then compared with published results. The comparison 

shows an excellent agreement with the results that found in the literature. 
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1. Introduction 

Prelude since its first appearance in the literature in 1908 [1], the Blasius equation describing viscous flow over 

a flat plate has fascinated physicists, engineers, mathematicians and numerical analysts kindred. This ODE is 

opulent in physical, mathematical and numerical challenges. Two-dimensional flow over a fine-tuned 

impenetrable surface engenders a boundary layer as particles move more gradually near the surface than near 

the free stream. Because of its application to fluid flow, physicists and engineers have a keen interest in solving 

the Blasius equation and the cognate, but more general, Falkner-Skan (F-S) equation [2]. 

Since one can elegantly reduce these equations to one-dimensional non-linear ODEs through similarity 

arguments, mathematicians have found their fulfillment in uncovering the underlying symmetries and proving 

existence and (non-) uniqueness of its solutions. Thereafter, several authors [3-5] have made significant 

investigations in generalizing their theoretical study to various situations of practical interest. Such 

investigations find their applications involving laminar flow heat transfer as in electronic components cooling 

and plate-type heat exchangers design. 
Forced convective in boundary layer include the work of several authors [6-14]. More recently, Mahgoub [15] 

discussed forced convection heat transfer over a flat plate in a porous medium. Analysis of convective 

momentum and heat transfer system in boundary layer was done by Escriva and Govannini [16]. The study on 

heat and mass transfer under various physical situations was carried out by many researchers [17-21]. The study 

of direct numerical simulation (DNS) of flow over a flat plate was carried out by Wissink and Rodi [22]. 

Vajravelu et al. [23], investigated the unsteady convective boundary layer flow of a viscous fluid, and this was 

an extension work of Aydin and Kaya [10]. 

Unfortunately, a general analytical solution has not been forthcoming; however, for special cases of the F-S 

equation, several analytical solutions do exist. These prove most beneficial in verifying numerical algorithms. 
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Numerical analysts, or as they are called by J.P Boyd, “arithmurgists” [24], have had a field-day with these 

equations. They offer the mystery of nonlinearity - yet the simplicity of unidimensional - and the challenge of 

solving a boundary value problem through the determinism of an initial value problem. A host of numerical 

methods has emerged to solve these equations including, but not inhibited to, finite differences and finite 

elements. 

Lin and Lin [25] introduced a homogeneous attribute solution method for the forced convection heat transfer 

from isothermal or uniform-flux surfaces to fluids of any Prandtl number. The solutions of the resulting kindred 

attribute Equations are given by the Runge–Kutta scheme. Hsu and Hsiao [26] presented a combination of a 

series expansion, similarity transformation and finite difference method for the heat transfer problem of a 

second-grade viscoelastic fluid past a plate fin. Bor-Lih Kuo [27] studied the heat transfer analysis for the 

Falkner–Skan wedge flow by the differential transformation method; the results were in a good agreement with 

those provided by other numerical methods. 

A list of nearly 150 references (some repeated) for these and other algorithms is found in references 28 and 29.It 

is also noted that the majority of the numerical techniques are based on Runge-Kutta technique for solving 

ODE, and therefore have a definite “black box” quality. In spite of the enormous numerical effort however, a 

truly simple, yet numerically accurate and robust algorithm is still missing. Many, if not all, algorithms to this 

point seem rather delicate in that their iterative strategies must be carefully tuned to avoid numerical instability. 

For example, most schemes require the initial guess of the shooting angle to be relatively close to the converged 

result, which does not make for a robust algorithm. Judging from recent literature, the general lack of numerical 

agreement to consistent five or more digits is indicative of the need for a reliable algorithm-- the development of 

which we now address. An approximate solution for second order differential equation based on Taylor 

expansion is presented in ref. 30. The Solution of the Blasius and Falkner-Skan Boundary Layer Equations 

based on the technique found in ref. 30 is presented in ref. 31. 

Our motivation in the present study is to obtain the solution of the convective heat transfer equations of 

boundary layer with pressure gradient over a wedge. The system of equations is solved simultaneously by a 

simple and accurate iterative formula based on Taylor theory using shooting method. This method provides the 

ability to choose the initial guess function and is used to solve the related boundary layer problem. The velocity 

and temperature profiles for different wedge angle and different Prandtl number are obtained. The results are 

then compared with published results. Comparison shows an excellent agreement with the results that found in 

the literature. Results are obtained using Matlab software and compared with that published in the literature. 

Comparison shows an excellent agreement between the proposed technique and the published one. 

 

2. Mathematical Formulation 

A steady laminar boundary-layer problem is studied. Let the free stream velocity 𝑈∞ which is not constant and 

depends on the pressure gradient along the flat plate. Assume the free stream temperature 𝑇∞ be constant and let 

all fluid properties be constant. The velocity distribution is unchanged by the temporal changes in temperature. 

The boundary layer flow over a flat plate is governed by the equations: continuity and Navier-Stokes equations. 

The associated partial differential equations are: 
𝜕𝑢∗

𝜕𝑥∗ +
𝜕𝑣∗

𝜕𝑦∗ = 0           (1) 

𝑢∗ 𝜕𝑢∗

𝜕𝑥∗
+ 𝑣∗ 𝜕𝑣∗

𝜕𝑦∗ = −
𝑑𝑝∗

𝑑𝑥∗
+

𝜕2𝑢∗

𝜕𝑦 ∗2         (2) 

𝑢∗ 𝜕𝑇

𝜕𝑥∗
+ 𝑣∗ 𝜕𝑇

𝜕𝑦 ∗ = 𝑘
𝜕2𝑇

𝜕𝑦 ∗2          (3) 

subject to the boundary conditions; 

𝑢∗ 0, 𝑦∗ = 1,     𝑢∗ 𝑥∗, 0 = 0,         𝑢∗ 𝑥∗, ∞ = 1,   𝑣∗ 𝑥∗, 0 = 0  

𝑇 0, 𝑦∗ = 1, 𝑇 𝑥∗, 0 = 1,     𝑇 𝑥∗, ∞ = 1      (4) 

Where 𝑥∗and𝑦∗ are the Cartesian coordinates measured along the surface of the flat plate starting from the 

leading edge of the flat plate. The coordinate 𝑦∗measured normal to the flat plate. 𝑢∗ and 𝑣∗are the velocity 

components along 𝑥∗and 𝑦∗ directions, whiles 𝑇 is the fluid temperature. 

The following dimensionless variables are introduced as follows: 
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𝑢 =
𝑢∗

𝑈∞
, 𝑣 =

𝑣∗

𝑈∞
, 𝑝 =

𝑝∗𝜌

𝑈∞
2 ,        𝜃 =

𝑇− 𝑇∞

𝑇𝑤−𝑇∞
,     𝑥 =

𝑥∗

𝐿
,       𝑦 =

𝑦∗

𝐿
    (5) 

The dimensionless equations are obtained as follows; 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0          (6) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

1

𝜌

𝑑𝑝

𝑑𝑥
+

𝜕2𝑦

𝜕𝑦2        (7) 

𝑢
𝜕𝜃

𝜕𝑥
+ 𝑣

𝜕𝜃

𝜕𝑦
= 𝑘

𝜕2𝜃

𝜕𝑦2         (8) 

The stream function 𝜓(𝑥, 𝑦) is introduced and defined as; 

𝑢 =
𝜕𝜓

𝜕𝑥
,             𝑣 = −

𝜕𝜓

𝜕𝑦
         (9) 

Converting the set of partial differential equations (6)–(9) into ordinary differential equations by using the 

similarity transformation 

𝜓 =  𝜈𝑈∞𝑥 𝑓(𝜂)                     𝜂 =  
𝑈∞

𝜈𝑥
       (10) 

Where η is the similarity variable, f is the similarity function and ψ is the stream function, and simply by 

replacing u and v components of velocity by a single function. Let define the free stream velocity as 𝑈∞ =

𝐶𝑥𝑚  where m is the Falkner-Skan power-law parameter. The quantity β in (11) is related to the wedge angle, 

where the wedge angle is given by βπ/2 as shown in Figure 1. The case m = 0 is for a flat plate, and m = 1 is for 

the wedge half-angle 90
o
, which is two-dimensional stagnation flow known as Hiemenz flow; 

𝑚 =
𝛽

2−𝛽
 𝑎𝑛𝑑    𝛽 =

2𝑚

𝑚+1
         (11) 

If 𝑚 > 0, 𝑡ℎ𝑒𝑛 
𝑑𝑃

𝑥
< 0   ⇒ (favourable) forward pressure gradient  

If 𝑚 < 0, 𝑡ℎ𝑒𝑛 
𝑑𝑃

𝑥
> 0   ⇒adverse pressure gradient  

 
Figure 1: Different potential flows over a wedge. (a), Flow around a corner (diffusion). (b), Wedge flow 

By substitution, using equations (10) & (11) in equation (6)-(9), and thus these become; 

𝑓 ′′′ 𝜂 +
𝑚+1

2
𝑓 𝜂 𝑓 ′′ 𝜂 + 𝑚(1 − 𝑓 ′ 𝜂 2] = 0   ; 𝜂 ∈ [0, ∞]     (12) 

𝜃 ′′ 𝜂 +
𝑃𝑟 (𝑚  +1)

2
 𝑓(𝜂)𝜃 ′(𝜂)] = 0   ; 𝜂 ∈ [0, ∞]      (13) 

With the boundary conditions 

𝑓 0 = 0         𝑓 ′ 0 = 0           𝑙𝑖𝑚𝜂→∞ 𝑓 ′ 𝜂 = 1      (14) 

𝜃 0 = 1          𝑙𝑖𝑚𝜂→∞ 𝜃 𝜂 = 0        (15) 

Where Pr is the Prandtl number, which is equal to the ratio of the momentum diffusivity of the fluid to its 

thermal diffusivity. Equations (12) and (13) along with the boundary conditions (14) and (15) present a system 

of ordinary differential equations for the Falkner-Skan boundary layer problem. Simultaneous solution of these 

two equations yield the velocity and temperature profiles for the flow of a viscous fluid passing over a wedge. 

 

3. Method of Solution 

Equations (12) and (13) can be solved as initial value problem using the shooting method. Through a 

specification of an additional initial condition to replace the condition at infinity, the boundary value problem 
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transforms into an equivalent iterative initial value problem. In this case equations (13) and (14) are subjected to 

the following initial conditions: 

 

𝑓 0 =  0  𝑓 ′(0) = 0  𝑓 ′′(0) = 𝛼    (16) 

𝜃 0 = 1          𝜃 ′ 0 = 𝛾         (17) 

 

3.1. Shooting Method 

One method for solving boundary-value problems; is the shooting method which is based on converting the 

boundary-value problem into an equivalent initial-value problem. Generally, the equivalent system will not have 

sufficient initial conditions and so a guess is made for any undefined values. These guesses are changed until the 

final solution satisfies all the boundary conditions. 

The shooting method is the preferred way to treat the F-S boundary value problem. The boundary condition 

lim𝜂→∞𝑓
′ 𝜂 = 1is replaced by the initial condition 𝑓 ′′(0) = 𝛼, where 𝛼is the skin friction coefficient. To be 

equivalent, the shooting angle 𝛼 must be determined such thatlim𝜂→∞𝑓
′ 𝜂 = 1. Except where noted for a 

particular range of β, the solution is assumed unique [7]. In this method it is most important to choose the 

appropriate finite values of 𝜂 → ∞. The solution process is repeated with another large value of 𝑥 → ∞ until two 

successive values of 𝑓 ′′ 0  differ only after a desired digit signifying the limit of the boundary along𝜂. The last 

value of 𝜂 → ∞ is chosen as appropriate value of the limit 𝜂 → ∞for that particular set of parameters. Then the 

value of 𝑓 ′′ 0 = 𝛼 is refined until the exact value of 𝛼is determined.  

Similarly for the variable θ,The boundary condition limη→∞ θ η = 0 is replaced by the initial condition 

θ
′ 0 = γ. As done with the Falkner-Skan equation, after choosing the appropriate finite values of η → ∞. The 

solution process is repeated until a refined value of γ is determined as the exact one.  

 

3.2. Methodology of the Proposed Technique 

In this technique, the differential equation (12) is rearranged as follows: 

𝑓 ′′′ 𝜂 = −
𝑚+1

2
𝑓 𝜂 𝑓 ′′ 𝜂 − 𝑚(1 − (𝑓 ′ 𝜂 )2)      (18) 

By direct substitution of the initial conditions given in (11), (12) and (13) the third derivative 𝑓 ′′′ 0 atstarting 

point can be written as:  

𝑓 ′′′ 0 = −
𝑚+1

2
𝑓 0 𝑓 ′′ 0 − 𝑚(1 − 𝑓 ′ 0 2)      (19) 

The approximate function at𝜂 + ∆𝜂 is obtained using Taylor expansion (1) up to the fourth term: 

𝑓 𝜂 + ∆𝜂 = 𝑓 𝜂  + 𝑓 ′ 𝜂 ∆𝑥 +
1

2
𝑓 ′′ 𝜂 ∆𝜂2 +

1

6
𝑓 ′′′ 𝜂 ∆𝜂3     (20) 

The first and second derivatives of the function𝑓 𝜂  at 𝜂 + ∆𝜂are obtained using the central difference 

approximation of Taylor expansion as: 

𝑓 ′ 𝜂 + ∆𝜂 =
𝑓(𝜂+2∆𝜂)−𝑓(𝜂)

2∆𝜂
−

𝑓 ′′′(𝜂)

6
∆𝜂2        (21) 

𝑓 ′′ 𝜂 + ∆𝜂 =
𝑓 𝜂+2∆𝜂 −2𝑓 𝜂+∆𝜂 +𝑓(𝜂)

∆𝜂2         (22) 

Then, the approximate third derivative at time 𝜂 + ∆𝜂 is obtained using equation (18) as: 

𝑓 ′′′ 𝜂 + ∆𝜂 = −
𝑚+1

2
𝑓 𝜂 + ∆𝜂 𝑓 ′′ 𝜂 + ∆𝜂 − 𝑚(1 − 𝑓 ′ 𝜂 + ∆𝜂 2)     (23) 

So, the first iteration is obtained from equations (20) through (23) as: 

𝑓 ∆𝜂 = 𝑓 0 + 𝑓 ′ 0 ∆𝜂 +
1

2
𝑓 ′′ 0 ∆𝜂2 +

1

6
𝑓 ′′′ 0 ∆𝜂3      (24) 

𝑓 2∆𝜂 = 𝑓 0 + 2𝑓 ′ 0 ∆𝜂 + 2𝑓 ′′ 0 ∆𝜂2 +
4

3
𝑓 ′′′ 0 ∆𝜂3      (25) 

𝑓 ′ ∆𝜂 =
𝑓(2∆𝜂)−𝑓(0)

2∆𝜂
−

𝑓 ′′′(0)

6
∆𝜂2         (26) 

𝑓 ′′ ∆𝜂 =
𝑓 2∆𝜂 −2𝑓 ∆𝜂 +𝑓(0)

∆𝜂2          (27) 

𝑓 ′′′ ∆𝜂 = −
𝑚+1

2
𝑓 ∆𝜂 𝑓 ′′ ∆𝜂 − 𝑚(1 − 𝑓 ′ ∆𝜂 2)       (28) 

The recurrence formula of this technique to solve the Falkner-Skan equation can be written as: 
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𝑓𝑛 = 𝑓𝑛−1 + 𝑓𝑛−1
′ ∆𝜂 +

1

2
𝑓𝑛−1

′′ ∆𝜂2 +
1

6
𝑓𝑛−1

′′′ ∆𝜂3       (29) 

𝑓𝑛+1 = 𝑓𝑛−1 + 𝑓𝑛−1
′ ∆𝜂 + 2𝑓𝑛−1

′′ ∆𝜂2 +
4

3
𝑓𝑛−1

′′′ ∆𝜂3       (30) 

𝑓𝑛
′ =

𝑓𝑛+1−𝑓𝑛−1

2∆𝜂
+

𝑓𝑛−1
′′′

6
∆𝜂2         (31) 

𝑓𝑛
′′ =

𝑓𝑛+1−2𝑓𝑛+𝑓𝑛−1

∆𝜂2           (32) 

𝑓𝑛
′′′ = −

𝑚+1

2
𝑓𝑛𝑓𝑛

′′ −𝑚 1 − 𝑓𝑛
′ 2
          (33) 

Similarly, the recurrence formula to solve the convection problem through boundary layer can be written as: 

𝜃𝑛 = 𝜃𝑛−1 + 𝜃 ′
𝑛−1∆𝑡 +

1

2
𝜃 ′′

𝑛−1∆𝑡
2        (34) 

𝜃𝑛+1 = 𝜃𝑛−1 + 2𝜃 ′𝑛−1∆𝑡 + 2𝜃 ′′
𝑛−1∆𝑡

2        (35) 

𝜃 ′
𝑛 = (𝜃𝑛+1 − 𝜃𝑛−1)/(2∆𝑡)         (36) 

𝜃 ′′
𝑛 = −

Pr 𝑚 +1 

2
𝑓𝑛   𝜃 ′

𝑛           (37) 

 

4. Results and Discussion 

In the absence of an analytical solution of a problem, a numerical solution is indeed an obvious and a natural 

choice. Thus, the nonlinear third-order Falkner–Skan equations (12,13) with boundary conditions (14, 15), are 

solved using the present technique with shooting algorithm. The present technique was derived based on Taylor 

Expansion. To assess the validity and accuracy of the present method, comparison with previously reported data 

available in the literature has been made via Table 1 and Table 2. 

 

Table 1: Comparison of Values of f ′′ 0 = αfor different values of m 

values of 𝒇′′ 𝟎 = 𝜶 

m 
𝛃 =

𝟐𝒎

𝒎 + 𝟏
 

Cebeci 

(1988) [32] 

Present 

-0.0904 -0.19877 0.00000 0.000000 

-0.0654 -0.13995 N/A 0.163800 

-0.0500 -0.10526 0.21351 0.213300 

0.0000 0.00000 0.33206 0.331980 

0.333333 0.50000 0.75745 0.757595 

1.0 1.0 1.23259 1.233142 

 

Table 2: Comparison of Values of θ
′ 0 = γ for different values of m and different values of Prandtl Number 

m 
𝛃 =  

𝟐𝒎

𝒎 + 𝟏
 

f''(0) θ'(0) 

      Pr=0.7 Pr=1 Pr =10 

      Louis[33] Present Louis Present[33] Louis Present 

-0.0753 -0.16286 0.1243 -0.242 -0.24212 -0.272 -0.27119 -0.570 -0.5571 

0 0 0.33198 -0.292 -0.29253 -0.332 -0.33183 -0.730 -0.72704 

0.111 0.19982 0.5117 -0.331 -0.33100 -0.378 -0.37748 -0.851 -0.8488 

0.333333 0.5 0.757595 -0.384 -0.38391 -0.44 -0.43975 -1.013 -1.0096 

1.0 1 1.233142 -0.496 -0.49549 -0.57 -0.56995 -1.344 -1.33555 

4.0 1.6 2.408136 -0.813 -0.81260 -0.938 -0.93765 -2.236 -2.2311 

 

The present Technique is used to solve the Falkner-skan third order equation for different number of pressure 

gradient; -0.0904, -0.0654, -0.05, 0.0, 1/3, 1. The f''(0) and θ'(0) are obtained using shooting technique and 

presented in Table 3.  
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Table 3: Values of θ
′ 0 = γ for different values of m and different values of Prandtl Nmber 

m 
𝛃 =  

𝟐𝒎

𝒎 + 𝟏
 

f''(0) Present θ'(0) 

      Pr=0.6 Pr=1 Pr=15 

-0.0904 -0.19877 0 -0.19205 -0.21973 -0.44061 

-0.0654 -0.13995 0.1638 -0.24032 -0.28422 -0.67672 

-0.05 -0.10526 0.2133 -0.25175 -0.2992 -0.7269 

0.0 0 0.33198 -0.27688 -0.33183 -0.83265 

0.333333 0.5 0.757595 -0.36174 -0.43975 -1.16255 

1.0 1.0 1.233142 -0.466 -0.56995 -1.5413 

 

The velocity profile of the wedge flow for different pressure gradient is shown in Figure 2. Large pressure 

gradient hinders boundary layer growth and resulted in a reduced boundary layer thickness. In figure 2, when 

the pressure gradient parameter is m=-0.0904, the separation point is reached and the fluid will not be in contact 

with the surface anymore. It is also observed that the velocity increases with the increase in the pressure gradient 

parameter m. The pressure gradient parameter suppresses the boundary layer growth, and when the pressure 

gradient parameter is m=1, this is on a two-dimensional stagnation flow. 

 

Figure 2: Velocity Profile 𝒇′(𝜼) for various values of m 

The influence of Prandtl number Pr at fixed pressure gradient m on temperature profile θ(η) for forced 

convection flow is shown in figures 3 to 8. The Prandtle number values Pr = 15, 1, and0.6. The Prandtl number 

with value 15 represents a large Prandtl number which means that heat wave penetration is less in fluid for 

example in oil. The Prandtl number with value 0.6 for example liquid metals (Mercury). The pressure gradient 

values m = -0.094, -0.065, -0.05, 0, 1/3 and 1.In convective heat transfer for different pressure gradient, the 

Prandtl number controls the relative thickness of the momentum and the thermal boundary layer. For a small 

Prandtl number, the heat is transferred slower, which makes the temperature drops slowly. For large Prandtl 

number, the temperature shows a sharp fall. The thermal boundary layer thickness decreases sharply with 

significant increases in Prandtl number. The reason is that, the value of Prandtl number is larger, the thermal 

diffusivity decreases. It will result in decrease of energy transfer ability and causing the thermal boundary layer 

to decrease. 
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Figure 3: Temperature Profile θ for various values of Prandtl Number at m=-0.0904 

 
Figure 4: Temperature Profile θ for various values of Prandtl Number at m=-0.065 

 
Figure 5: Temperature Profile θ for various values of Prandtl Number at m= -0.05 
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Figure 6: Temperature Profile θ for various values of Prandtl Number at m=0 

 
Figure 7: Temperature Profile θ for various values of Prandtl Number at m=1/3 

 
Figure 8: Temperature Profile θ for various values of Prandtl Number at m= 1 
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The influence of the different pressure gradients m with various values of Prandtl parameter Pr, on temperature 

profile is shown in Figure9. It is observed that the rate temperature variation increases with the increase in the 

values of pressure gradient parameter m and Prandtle number Pr. 

 
Figure 9: Temperature Profile θ for various values of Prandtl Number and m 

 

 

5. Conclusion 

In this work the Convective heat transfer equations of boundary layer with pressure gradient over a wedge are 

solved simultaneously by a simple and accurate iterative formula based on Taylor theory using shooting method. 

This method provides the ability to choose the initial guess function and is utilized to solve the related boundary 

layer problem. The velocity and temperature profiles for different wedge angle and different Prandtl number are 

obtained. The results are then compared with published results. Comparison shows an excellent agreement with 

the results that found in the literature. Using the suggested technique, there is no need to transform the higher 

order differential equations to state space as in Runge-kutta technique. 
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