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Abstract In this work, the Favre-averaged Navier-Stokes equations, in conservative and finite volume contexts, 

employing structured spatial discretization, are studied. Turbulence is taken into account considering the 

implementation of five k- two-equation turbulence models, based on the works of Coakley 1983; Wilcox; 

Yoder, Georgiadids and Orkwis; Coakley 1997; and Rumsey, Gatski, Ying and Bertelrud. The numerical 

experiments are performed using the Van Leer numerical algorithm. TVD high resolution is obtained by the use 

of a MUSCL procedure. Chemical non-equilibrium is studied using a five species chemical model. The results 

have indicated that the Rumsey, Gatski, Ying and Bertelrud non-linear turbulence model yields the best 

prediction of the stagnation pressure value, although the Coakley 1983 turbulence model is more 

computationally efficient. 
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1. Introduction 

Renewed interest in the area of hypersonic flight has brought computational fluid dynamics (CFD) to the 

forefront of fluid flow research [1]. Many years have seen a quantum leap in advancements made in the areas of 

computer systems and software which utilize them for problem solving. Sophisticated and accurate numerical 

algorithms are devised routinely that are capable of handling complex computational problems. Experimental 

test facilities capable of addressing complicated high-speed flow problems are still scarce because they are too 

expensive to build and sophisticated measurements techniques appropriate for such problems, such as the non-

intrusive laser, are still in the development stage. As a result, CFD has become a vital tool, in some cases the 

only tool, in the flow research today. 

In high speed flows, any adjustment of chemical composition or thermodynamic equilibrium to a change in local 

environment requires certain time. This is because the redistribution of chemical species and internal energies 

require certain number of molecular collisions, and hence a certain characteristic time. Chemical non-

equilibrium occurs when the characteristic time for the chemical reactions to reach local equilibrium is of the 

same order as the characteristic time of the fluid flow. Similarly, thermal non-equilibrium occurs when the 

characteristic time for translation and various internal energy modes to reach local equilibrium is of the same 

order as the characteristic time of the fluid flow. Since chemical and thermal changes are the results of collisions 

between the constituent particles, non-equilibrium effects prevail in high-speed flows in low-density air. 

In chemical non-equilibrium flows the mass conservation equation is applied to each of the constituent species 

in the gas mixture. Therefore, the overall mass conservation equation is replaced by as many species 

conservation equations as the number of chemical species considered. The assumption of thermal non-
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equilibrium introduces additional energy conservation equations – one for every additional energy mode. Thus, 

the number of governing equations for non-equilibrium flow is much bigger compared to those for perfect gas 

flow. A complete set of governing equations for non-equilibrium flow may be found in [2-3]. 

In spite of the advances made in the area of compressible turbulence modeling in recent years, no universal 

turbulence model, applicable to such complex flow problems has emerged so far. While the model should be 

accurate it should also be economical to use in conjunction with the governing equations of the fluid flow. 

Taking these issues into consideration, k- two-equation models have been chosen in the present work [4-8]. 

These models solve differential equations for the turbulent kinetic energy and the vorticity. Additional 

differential equations for the variances of temperature and species mass fractions have also been included. These 

variances have been used to model the turbulence-chemistry interactions in the reacting flows studied here. 

Second order spatial accuracy can be achieved by introducing more upwind points or cells in the schemes. It has 

been noted that the projection stage, whereby the solution is projected in each cell face (i-1/2,j,k; i+1/2,j,k) on 

piecewise constant states, is the cause of the first order space accuracy of the Godunov schemes ([9]). Hence, it 

is sufficient to modify the first projection stage without modifying the Riemann solver, in order to generate 

higher spatial approximations. The state variables at the interfaces are thereby obtained from an extrapolation 

between neighboring cell averages. This method for the generation of second order upwind schemes based on 

variable extrapolation is often referred to in the literature as the MUSCL approach. The use of nonlinear limiters 

in such procedure, with the intention of restricting the amplitude of the gradients appearing in the solution, 

avoiding thus the formation of new extrema, allows that first order upwind schemes be transformed in TVD 

high resolution schemes with the appropriate definition of such nonlinear limiters, assuring monotone 

preserving and total variation diminishing methods. 

In the current work, the Favre-averaged Navier-Stokes equations are studied, employing structured spatial 

discretization, with a conservative and finite volume approaches. Turbulence is taken into account considering 

the implementation of five k- two-equation turbulence models, based on the works of [4-8]. The numerical 

algorithm of [10] is used to perform the reentry flow numerical experiments, which give us an original 

contribution to the CFD community. TVD high resolution is obtained by the use of a MUSCL procedure. Two 

methods of time marching are evaluated to verify their potentialities, namely: Middle Point and Euler Modified. 

The “hot gas” hypersonic flow around a blunt body, in three-dimensions, is simulated. The convergence process 

is accelerated to steady state condition through a spatially variable time step procedure, which has proved 

effective gains in terms of computational acceleration ([11-12]). The reactive simulations involve Earth 

atmosphere chemical model of five species and seventeen reactions, based on the [13] model. N, O, N2, O2, and 

NO species are used to perform the numerical comparisons. The results have indicated that the [8] turbulence 

model yields the best prediction of the stagnation pressure value, although the [4] turbulence model is more 

computationally efficient. 

 

2. Favre Average 

The Navier-Stokes equations and the equations for energy and species continuity which governs the flows with 

multiple species undergoing chemical reactions have been used [14, 15, 16] for the analysis. Details of the 

present implementation for the five species chemical model, and the specification of the thermodynamic and 

transport properties are described in [17-18]. Density-weighted averaging [19] is used to derive the turbulent 

flow equations from the above relations. For a detailed description of the Favre equations, the g’s equations and 

the modeling are presented in [20]. The interested reader is encouraged to read this paper. 

 

3. Navier-Stokes Equations 

The flow is modeled by the Favre-averaged Navier-Stokes equations in the condition of chemical non-

equilibrium. Details of the five species model implementation are described in [17-18], and the interested reader 

is encouraged to read these works to become aware of the present study. 

The reactive Navier-Stokes equations in chemical non-equilibrium were implemented on conservative and finite 

volume contexts, in the three-dimensional space. In this case, these equations in integral and conservative forms 

can be expressed by: 
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where: Q is the vector of conserved variables, V is the volume of a computational cell, F


 is the complete flux 

vector, n


 is the unity vector normal to the flux face, S is the flux area, T is the k- two-equation model source 

term, SC is the chemical source term, Ee, Fe, and Ge are the convective flux vectors or the Euler flux vectors in 

the x, y, and z directions, respectively, Ev, Fv, and Gv are the viscous flux vectors in the x, y, and z directions, 

respectively. The i


, j


, and k


 unity vectors define the Cartesian coordinate system. Thirteen (13) conservation 

equations are solved: one of general mass conservation, three of linear momentum conservation, one of total 

energy, four of species mass conservation, two of the k- turbulence model, and two of the g-equations. 

Therefore, one of the species is absent of the iterative process. The CFD literature recommends that the species 

of biggest mass fraction of the gaseous mixture should be omitted, aiming to result in a minor numerical 

accumulation error, corresponding to the biggest mixture constituent (in the case, the air). To the present study, 

in which is chosen a chemical model to the air composed of five (5) chemical species (N, O, N2, O2 and NO) 

and seventeen (17) chemical reactions, being fifteen (15) dissociation reactions (endothermic reactions) and two 

(2) of exchange or recombination, this species can be the N2 or the O2. To this work, it was chosen the N2. The 

vectors Q, Ee, Fe, Ge, Ev, Fv, Gv, SC and T can, hence, be defined as follows: 
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in which:  is the mixture density; u, v, and w are Cartesian components of the velocity vector in the x, y, and z 

directions, respectively; p is the fluid static pressure; e is the fluid total energy; 1, 2, 4 and 5 are densities of 

the N, O, O2 and NO, respectively; k is the turbulent kinetic energy;  is the turbulent vorticity; Qh is the 

product of fluctuating enthalpy, 
""hh ;Qs is the sum of the product of fluctuating mass fraction, 



ns

1i

"

i

"

icc ; H is 

the mixture total enthalpy; the ’s are the components of the Reynolds stress tensor; the t’s are the components 

of the viscous stress tensor; fx,fy, and fz are viscous work and Fourier heat flux functions; svsx, svsy, and svsz 

represent the species diffusion flux, defined by the Fick law; x, y, and z are the terms of mixture diffusion; x, 

y, z, x, y, z, x, y, z, x, y, and zare two-equation turbulence  model parameters; sx, sy, and sz are 
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diffusion terms function of the mass fraction gradients; 
s

  is the chemical source term of each species 

equation, defined by the law of mass action; Tk and T are k- source terms; T is the turbulent viscosity or 

vorticity viscosity; PrdT is the turbulent Prandtl number; ScT is the turbulent Schmidt number; h is the static 

enthalpy; and cT is the total mass fraction sum. 
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   (4)
 

 T

5421CV 000000000S   .                            (5) 

 The viscous stresses, in N/m
2
, are determined, according to a Newtonian fluid model, by: 

  ; zwyvxu32xu2t MMxx 
     

(6) 

 xvyut Mxy  ;         (7) 
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 xwzut Mxz  ;         (8) 

    zwyvxu32yv2t MMyy  ;       (9) 

 ywzvt Myz  ;                                                            (10) 

    zwyvxu32zw2t MMzz  ,                                (11) 

where µM is the molecular viscosity. The components of the turbulent stress tensor (Reynolds stress tensor) are 

described by the following expressions: 

   ;k 2/3Re-zwyvxu32xu2 TTxx                             (12) 

 xvyu Txy  ;                                                          (13) 

 xwzuTxz  ;                                                           (14) 

   k2/3Re-zwyvxu32yv2 TTyy  ;                          (15) 

 ywzvTyz  ;                                                          (16) 

   k2/3Re-zwyvxu32zw2 TTzz  .                           (17) 

Expressions to fx, fy, and fz are given below: 

      xxxzxzxyxyxxxxx kqwtvtutf  ;        (18) 

      ;kqwtvtutf yyyzyzyyyyxyxyy                                  (19) 

      ;kqwtvtutf zzzzzzyzyzxzxzz                                 (20) 

where qx, qy, and qz are the Fourier heat flux components and are given by: 

  ;xhdPrdPrq TTLMx 
        

(21) 

  yhdPrdPrq TTLMy  ;                            (22) 

  zhdPrdPrq TTLMz  .                              (23) 

with PrdL the laminar Prandtl number. The last terms in Eqs. (18)-(20) are kx, ky, and kz and are defined as 

follows: 
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The diffusion terms related to the k- equations are defined as: 

  xkkTMx  ,   ykkTMy  ,                   (25)
 

  xTMx   ,   yTMy   ,   zTMz  ;                  (26) 

  xQdPrdPr hTTLMx  ,   ,yQdPrdPr hTTLMy 

  ;yQdPrdPr hTTLMz   

(27) 

  xQScSc STTMx  ,   ,yQScSc STTMy 

  ,zQScSc STTMz   

(28) 

With Sc and ScT the laminar and turbulent Schmidt numbers, with values 0.22 and 1.0, respectively. The terms 

of species diffusion, defined by the Fick law, to a condition of chemical non-equilibrium, are determined by 

([21]): 

  ;zk
kTMz


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x

c
Dv s

ssxs



 , 

y

c
Dv s

ssys



 , and 

z

c
Dv s

sszs



 ,                              (29) 

 

with “s” referent to a given species, cs being the molar fraction of the species, defined as: 




 s

sc                                          (30) 

and Ds is the species-effective-diffusion coefficient. The diffusion terms x, y, and z which appear in the 

energy equation are defined by ([13]): 





ns

1s

ssxsx hv , 



ns

1s

ssysy hv , 



ns

1s

sszsz hv ,             (31) 

being hs the specific enthalpy (sensible) of the chemical species “s”. Finally, the ’s terms of Eqs. (2-3) are 

described as, 

  ,xcScSc STTMsx    ycScSc STTMsy  , 

  zcScSc STTMsz  . 

(32) 

 

4. Flux Vector Splitting Scheme 

Considering the three-dimensional and structured case, the algorithm follows that described in [17-18], but 

considering the third momentum equation of Navier-Stokes ones. The speed of sound takes into account the 

turbulent kinetic energy by the following expression: 

k
p

a mixture 


 ,                                                                  (33) 

where
mixture
  is the ratio of mixture specific heats calculated in each interaction. In other words, the mixture cp 

is calculated by a weighted average involving the cp of each species and the mass fraction of each species 

considered as weight; in the same form, the mixture cv is calculated. Finally, the mixture γ is defined as the ratio 

of mixture cp and mixture cv calculated as described above. 

The system is solved in two parts separately, according to [22]. The first part takes into account the dynamic 

part, which considers the Navier-Stokes equations plus the turbulence equations, the second one takes into 

account the chemical part involving the chemical contributions. Hence, the discrete-dynamic-convective flux, 

which solves the dynamic and turbulent parts, is given by: 
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 (34) 
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and the discrete-chemical-convective flux is defined by: 
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The same definitions presented in [17-18] are valid to this algorithm. Two time marching methods are applied to 

verify their potentialities: Middle Point and Euler Modified. The Middle Point method is a second-order, two-

stage Runge-Kutta one, to the two types of complete flux. To the convective dynamic part, this method can be 

represented in general form by: 

 
)m(

k,j,i

1n

k,j,i

)1m(

k,j,ik,j,ik,j,im
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QQ

)Q(RVtQQ

QQ










,                  (36) 

to the convective chemical part, it can be represented in general form by: 

  
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QSV)Q(RtQQ

QQ










,         (37) 

where the chemical source term SC is calculated with the translational/rotational temperature and the α values of 

each stage are: α1 = 1/2 and α2 = 1.0. The Euler Modified is also defined as a two-stage Runge-Kutta method, 

with α1= α2 = 1.0. 

The definition of the dissipation term  determines the particular formulation of the convective fluxes. The 

choice below corresponds to the [10] scheme, according to [23]: 
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VL

k,j,2/1ik,j,2/1i                                 (38) 

This scheme is first-order accurate in space and in time. The high-order spatial accuracy is obtained, in this 

study, by the MUSCL procedure. 

The viscous formulation follows that of [24], which adopts the Green theorem to calculate primitive variable 

gradients. The viscous vectors are obtained by arithmetical average between cell (i,j,k) and its neighbors. As 

was done with the convective terms, there is a need to separate the viscous flux in two parts: dynamical viscous 

flux, and chemical viscous flux. The dynamical part corresponds to the first five equations of the Navier-Stokes 

ones plus the four equations of the turbulence model, and the chemical part corresponds to the four equations 

immediately below the energy equation. 

 

5. MUSCL Procedure 

Details of the present implementation of the MUSCL procedure, as well the incorporation of TVD properties to 

the scheme, can be found in [9]. The expressions to calculate the fluxes following a MUSCL procedure and the 

nonlinear flux limiter definitions, herein employed, which incorporates TVD properties, are defined as follows. 

The conserved variables at the interface (i+1/2,j,k) can be considered as resulting from a combination of 

backward and forward extrapolations. To a linear one-sided extrapolation at the interface between the averaged 

values at the two upstream cells (i,j,k) and (i-1,j,k), one has: 
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k,j,2/1i QQ
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

 , (i-1,j,k), 

(39) 

leading to a second order fully one-sided scheme. If the first order scheme is defined by the numerical flux 

 
k,j,1ik,j,ik,j,2/1i Q,QFF  

         
(40) 

the second order space accurate numerical flux is obtained from 

 R

k,j,2/1i

L

k,j,2/1i

)2(

k,j,2/1i Q,QFF   .                                                  (41) 

Higher order flux vector splitting methods, such as those studied in this work, are obtained from: 
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All second order upwind schemes necessarily involve at least five mesh points or cells. 

To reach high order solutions without oscillations around discontinuities, nonlinear limiters are employed, 

replacing the term  in Eq. (39) by these limiters evaluated at the left and at the right states of the flux interface. 

To define such limiters, it is necessary to calculate the ratio of consecutive variations of the conserved variables. 

These ratios are defined as follows: 
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where the nonlinear limiters at the left and at the right states of the flux interface are defined by 

 

 k,j,2/1i

L r
 
and  

 k,j,2/1i

R r1 . In this work, five options of nonlinear limiters were considered 

to the numerical experiments. These limiters are defined as follows: 
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l signal,rMIN,0MAXsignalr  , minmod limiter;                         (46) 

      2,rMIN,1,r2MIN,0MAXr lll

SB

l  , “Super Bee” limiter, due to [26];               (47) 

        ,rMIN,1,rMIN,0MAXr lll

L

l , -limiter,                   (48) 

with “l” varying from 1 to 13 (three-dimensional space), signall being equal to 1.0 if rl 0.0 and -1.0 otherwise, 

rl is the ratio of consecutive variations of the lth conserved variable and  is a parameter assuming values 

between 1.0 and 2.0, being 1.5 the value assumed in this work. With the implementation of the numerical flux 

vectors following this MUSCL procedure, second order spatial accuracy and TVD properties are incorporated in 

the algorithms. 

 

6. Turbulence Models 

Five turbulence models were implemented according to a k-ω and k
1/2

-ω formulations. Two turbulence models 

due to Coakley were implemented. 

6.1. Coakley turbulence model – 1983 

The [4] model is a k
1/2

- one. The turbulent Reynolds number is defined as 

MNkR  .                                                                  (49) 

The production term of turbulent kinetic energy is given by 
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The function  is defined as 
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1PC 2   .                                       (51) 

The damping function is given by 
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.                                                              (52) 

The turbulent viscosity is defined by 

  kDCReT ,                                     (53) 

with: C a constant to be defined. To the [4] model, the Tk and T terms have the following expressions: 

kkk DPT  and   DPT ,                       (54) 

where: 
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where 045.0D405.0C1  . The closure coefficients adopted for the [4] model are: 0.1k  , 3.1 ,

09.0C  , 92.0C2  , 5.0 , 0065.0 , PrdL = 0.72,PrdT = 0.9. 

6.2. Wilcox turbulence model 

The turbulent viscosity is expressed in terms of k and  as: 

 kReT
.                                                                 (57) 

In this model, the quantities 
k  and   have the values 

*1  and 1 , respectively, where 
* and  are 

model constants. To the [5] model, the Tk and T terms have the following expressions: 

kkk DPT  and   DPT ,                     (58) 

where: 
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where the closure coefficients adopted for the [5] model are: 09.0*  , 403 , 5.0*  , 5.0 ,

95 ,PrdL = 0.72,PrdT = 0.9. 

 

6.3. Yoder, Georgiadids and Orkwis turbulence model 

To the [6] model, the turbulent Reynolds number is specified by: 

  MT /kRe .                                                                   (61) 

The parameter * is given by: 

   kTkT

*

0

* RRe1RRe  .                                                  (62) 

The turbulent viscosity is specified by: 

 /kRe *

T .                                                                (63) 
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The source term denoted by T in the governing equations contains the production and dissipation terms of k and 

. To the [6] model, the Tk and T terms have the following expressions: 

kkk DPT  and   DPT .                            (64) 

 

To define the production and dissipation terms, it is necessary to define firstly some parameters. The turbulent 

Mach number is defined as: 

2
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It is also necessary to specify the function F: 

 0.0,MMMAXF 2

0,T

2

T  .                               (66) 

The 
*  parameter is given by: 

     4

ST

4

ST

* R/Re1R/Re18/509.0  .                 (67) 

Finally, the production and dissipation terms of Eq. (64) are given by 
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u
P yzxzxyk




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


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


 and   Re/F1kD k

*

k  ;                             (68) 

kkP/P  and   ReFD *2

  ,                 (69) 

with: 

   *

TT0 RRe1RRe9/5   .                    (70) 

The [6] turbulence model adopts the following closure coefficients: Rs = 8.0,Rk = 6.0, R = 2.7, k = 1.0,  = 

0.0,  = 3/40, MT,0 = 0.0, 0 = 0.1, 3/*

0  , 0.2k   and 0.2 . 

 

6.4. Coakley turbulence model - 1997 

In the [7] turbulence model, the turbulent viscosity is expressed in terms of k and  as: 

  kCReT .                                            (71) 

In this model, the quantities 
k  and   have the values *1  and 1 , respectively, where 

* and  are 

model constants. 

The source term denoted by T in the governing equations contains the production and dissipation terms of k and 

. To the [7] model, the Tk and T terms have the following expressions: 

kkk DPT  and   DPT .                    (72) 

To define the production and dissipation terms, it is necessary to define firstly some parameters. The Si,j gradient 

is defined as 






















































z

u

x

w
5.0

y

w

z

v
5.0

x

v

y

u
5.0Sij .          (73) 

The gradient S is expressed as 

ijijSS2S  .                                           (74) 

The  parameter is defined as 

 S .                                               (75) 

The divergent and the parameter  are determined by 

z

w

y

v

x

u
D














 and




D
.                         (76) 

The coefficient k and  are defined by 
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  C1
3

2
k and k .                         (77) 

The terms of production and destruction of kinetic energy are defined as 

 

RekCP 2

k   and   Rek1D kk  .           (78) 

In relation to the terms of production and destruction of vorticity, new terms are defined. The characteristic 

turbulent length is expressed as 

 kl .                                              (79) 

The coefficients k and   are defined as 
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


 .                (81) 

The turbulent Reynolds number is determined by 




m

t

k
R .                                           (82) 

Some others parameters are defined 

ot RRCR  , )R(TANHD  , 



 


D

k
;             

 (83) 

  TANH ,  dzdpdydpdxdp
k

1
f ii 


 , 

2

iii ff  ;                     (84) 

 ii fTANHf  ,  4D11w  ;                      (85) 

    wf25.035.0w1675.0C i1  ;                     (86) 

2

12w C)CC(   ,  kw wC2dw .                 (87) 

Finally, the production and destruction terms of vorticity are defined as 

ReCCP 22

1   and   RedwCCD 2

21   .         (88) 

The closure coefficients assume the following values: 09.0C  , 833.0C2  , 0.5 , 0.1k  , 

5.0 , 5.0*  , 41.0 , 0.10R o  , 72.0dPr L   and 9.0dPr T  . 

 

6.5. Rumsey, Gatski, Ying and Bertelrud turbulence model 

Finally, the k- model of [8] is studied. The equilibrium eddy-viscosity term employed in the diffusion terms is 

given by 

  kcRe **

T ,                                     (89) 

where .081.0c*   The explicit nonlinear constitutive equation that is used to close the Reynolds-averaged 

Navier-Stokes equations is given (after regularization) 
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and 
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(92) 

are the mean-rate-of-strain tensor and the mean-vorticity tensor, respectively. The turbulent viscosity T is 

  kcReT .                                                                (93) 

and 

1662222

662

663

)(2.0)1(3
c 




 ;                   (94) 

2

1

ijij2 )SS)(/(  and 2

1

ijij3 )WW)(/(  ,            (95) 

where: 

1 = (4/3-C2)(g/2); 2 = (2-C3)(g/2); 3 = (2-C4)(g/2);             (96) 

.
1C2/C

1
g

51 


          

(97) 

The constants that govern the pressure-strain correlation model of [8] are C1 = 6.8, C2 = 0.36, C3 = 1.25, C4 = 

0.4 and C5 = 1.88. The 
'

T  terms considered in Eqs. (90-91) are given by 

  kcRe ''

T ,                                       (98) 

where 

1662222

2
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663

)1(3
c 




 .                                          (99) 

The source term denoted by T in the governing equation contains the production and dissipation terms of k and 

. To the [8] model, the Tk and T terms have the following expressions: 

kkk DPT  and   DPT ,                                    (100) 

where: 
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




 ,  and ReD 2 .                                                   (102) 

The closure coefficients adopted to the [8] model assume the following values: 83.0 , 41.0 , 4.1k 

, 2.2 ,PrdL = 0.72,PrdT = 0.9,  *2 c/  . 

 

 

7. Spatially Variable Time Step 

The spatially variable time step has proved efficient gains in terms of convergence acceleration, as proved by 

[11-12]. The total pressure of the gaseous mixture is determined by Dalton law, which indicates that the total 

pressure of the gas is the sum of the partial pressure of each constituent gas, resulting in: 

TRcp sss  and 



N

1s

spp .                                                              (103) 

The speed of sound to a reactive mixture and considering turbulence modeling can be, hence, determined by Eq. 

(33). Finally, the spatially variable time step is defined from the CFL definition: 

k,j,i

2

k,j,i

2

k,j,i

2

k,j,i

k,j,i

k,j,i

awvu

sCFL
t




 ,                                                            (104) 

where k,j,is  is the characteristic length of each cell (defined between the minimum cell side and the minimum 

barycenter distance between each cell and its neighbors). 

 

8. Dimensionless, Initial and Boundary Conditions 

8.1. Dimensionless 

The dimensionless employed to the chemical non-equilibrium case consisted in: Rs is nondimensionalized by 

achar, where   pa char ; cv is nondimensionalized by achar; hs and 
0

sh  are nondimensionalized by 
2

chara ; 

T, translational/rotational temperature, is nondimensionalized by achar; s and  are nondimensionalized by ; u, 

v, and w arenondimensionalized by achar; M is nondimensionalized by ; D, diffusion coefficient, 

nondimensionalized by 
2

chara dtchar, where dtchar is the minimum time step calculated in the computational 

domain at the first iteration;   is nondimensionalized by char

3 dt10x 

 ; e and p arenondimensionalized by 

2

chara . 

8.2. Initial Condition 

The initial conditions to this problem, for a five species chemical model, are presented in Table 1. LREF is the 

reference length, equal to L in the present study. The Reynolds number is obtained from data of [27]. 

Table 1: Initial conditions to the problem of the blunt body 

Property Value 

M 8.78 

 0.00326 kg/m
3
 

p 687 Pa 

U 4,776 m/s 

T 694 K 

Altitude 40,000 m 

cN 10
-9

 

cO 0.07955 
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2Oc
 

0.13400 

cNO 0.05090 

L 2.0 m 

Re 2.3885x10
6
 

k 10
-6

 

 10u/LREF 

Qh 10
-4 2h


 

 

Qs 10
-2




N

1s

2

,s
c  

 

8.3. Boundary Conditions 

The boundary conditions are basically of three types: solid wall, entrance, and exit. These conditions are 

implemented with the help of ghost cells. 

 

Wall condition: At a solid boundary the non-slip condition is enforced. Therefore, the tangent velocity 

component of the ghost volume at wall has the same magnitude as the respective velocity component of its real 

neighbor cell, but opposite signal. In the same way, the normal velocity component of the ghost volume at wall 

is equal in value, but opposite in signal, to the respective velocity component of its real neighbor cell. 

The normal pressure gradient of the fluid at the wall is assumed to be equal to zero in a boundary-layer like 

condition. The same hypothesis is applied for the normal temperature gradient at the wall, assuming an adiabatic 

wall. 

From the above considerations, density and translational/rotational temperature are extrapolated from the 

respective values of its real neighbor volume (zero order extrapolation). 

With the species mass fractions and with the definition of the internal energy for each gas, it is possible to obtain 

the mixture internal energy of the ghost volume. The mixture formation enthalpy is extrapolated from the real 

cell. The mixture total energy to the ghost cell is calculated by: 

  2

g

2

g

2

g

0

g,mixtureg,igg wvu5.0hee  ,                                                         (105) 

where “g” reports to “ghost” cell and ei,g is the internal energy of the mixture. To the species density, the non-

catalytic condition is imposed, what corresponds to zero order extrapolation from the real cell species densities. 

The turbulent kinetic energy and the turbulent vorticity at the ghost volumes are determined by the following 

expression: 

All models: 0.0kghost  and     2

nMghost d338  ,                                       (106) 

where   assumes the value 3/40 and dn is the distance of the first cell to the wall. Values to Qh and Qs at the 

boundary are the same as the initial condition. 

 

Entrance condition: It is divided in two flow regimes: 

(a) Subsonic flow: Eight properties are specified and one extrapolated in the boundary conditions of the 

dynamic part of the algorithm. This approach is based on information propagation analysis along characteristic 

directions in the calculation domain ([28]). In other words, for subsonic flow, eight characteristic propagate 

information point into the computational domain. Thus eight flow properties must be fixed at the inlet plane. 

Just one characteristic line allows information to travel upstream. So, one flow variable must be extrapolated 

from the grid interior to the inlet boundary. The total energy was the extrapolated variable from the real 

neighbor volumes, for the studied problem. Density and velocity components adopted values of freestream flow. 

The turbulence kinetic energy and the vorticity are prescribed and receive the following values: k = 0.01kff and 

ω = 10u/LREF, respectively, where kff = 0.5u
2
. Qh and Qs are also fixed with the values 10

-6 2h  and 10
-3





N

1s

2

,sc , 

respectively. To the chemical part, four information propagate upstream because it is assumed that all four 
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equations are conducted by the eigenvalue “(qn-a)”. In the subsonic flow, all eigenvalues are negative and the 

information should be extrapolated. Hence, all of them should be extrapolated. 

(b) Supersonic flow: In this case no information travels upstream; therefore all variables are fixed with their of 

freestream values. 

Exit condition: It is also divided in two flow regimes: 

(a) Subsonic flow: Eight characteristic propagate information outward the computational domain. Hence, the 

associated variables should be extrapolated from interior information. The characteristic direction associated to 

the “(qnormal-a)” velocity should be specified because it points inward to the computational domain ([28]). In this 

case, the ghost volume total energy is specified from its initial value. Density, velocity components and 

turbulent variables are extrapolated. To the chemical part, the eigenvalue “(qn-a)” is again negative and the 

characteristics are always flowing in to the computational domain. Hence, the four chemical species under study 

should have their densities fixed by their freestream values. 

(b) Supersonic flow: All variables are extrapolated from interior grid cells, as no flow information can make its 

way upstream. In other words, nothing can be fixed. 

 

9. Physical Problem and Mesh 

One physical problem is studied in this work: the blunt body problem. The geometry under study is a blunt body 

with 1.0 m of nose ratio and parallel rectilinear walls. The far field is located at 20.0 times the nose ratio in 

relation to the configuration nose. 

Figure 1 shows the viscous mesh used to the blunt body problem. This mesh is composed of 22,932 rectangular 

cells and 26,500 nodes, employing an exponential stretching of 5.0%. This mesh is equivalent in finite 

differences to a one of 53x50x10 points. A “O” mesh is taken as the base to construct such mesh. No smoothing 

is used in this mesh generation process, being this one constructed in Cartesian coordinates. 

 

10. Results 

Tests were performed in a Core i7 processor of 2.1GHz and 8.0Gbytes of RAM microcomputer, in a Windows 

8.0 environment. Three (3) orders of reduction of the maximum residual in the field were considered to obtain a 

converged solution; however, with the minimum of two and a half (2.5) orders the author considered the 

solution converged. The residual was defined as the value of the discretized conservation equation. The entrance 

or attack angle and the longitudinal angle were adopted equal to zero. 

10.1. Coakley Results - 1983 

Middle Point Method: Figure 2 shows the pressure contours obtained by the [10] scheme, and employing the 

[4] turbulence model coupled with the Middle Point time marching method. The value of the pressure peak is 

around 159.00 unities. Good symmetry properties can be observed. The normal shock wave is also well captured 

by the numerical algorithm. 

Figure 3 exhibits the Mach number contours generated by the [10] numerical scheme, and using the [4] 

turbulence model coupled with the Middle Point time marching method. Good symmetry properties are 

observed. The subsonic region behind the normal part of the shock wave is well captured. 

Figure 4 presents the O2 mass fraction contours obtained by the [10] numerical scheme, and employing the [4] 

turbulence model coupled with the Middle Point time marching method. It is also verified good symmetry 

properties, with a satisfactory O2dissociation. 

Figure 5 exhibits the turbulent kinetic energy contours under the same previous numerical scheme selection. 

These contours show really the contours of k
1/2

. Reasonable values of turbulence can be observed.  

Euler Modified Method: Figure 6 shows the pressure contours obtained by the [10] scheme, and using the [4] 

turbulence model coupled with the Euler Modified time marching method. The pressure peak is also 159.00, the 

same value obtained by the Middle Point method. Good symmetry properties are observed, and the normal 

shock wave is well captured by the numerical scheme. 

Figure 7 presents the Mach number contours generated by the [10] scheme, using the [4] turbulence model 

coupled with the Euler Modified method. The contours are free of pre-shock oscillations. Moreover, the 

subsonic region around the body is well captured by the numerical scheme. 
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Figure 8 exhibits the O2 mass fraction contours obtained by the [10] algorithm, employing the [4] turbulence 

model coupled with the Euler Modified method. Results show reasonable dissociation of O2 and good symmetry 

characteristics are also observed. 

Figure 9 shows the turbulence kinetic energy contours under the same previous numerical scheme selection. 

Turbulence level is well captured by the numerical scheme. 

 

10.2. Wilcox Results 

Middle Point Method: Figure 10 presents the pressure contours generated by the [10] scheme, and using the [5] 

turbulence model coupled with the Middle Point method. The pressure peak is 158.93 and good symmetry 

properties are observed. Besides, the shock wave is well captured by the numerical scheme. 

Figure 11 exhibits the Mach number contours generated by the [10] scheme, and employing the [5] turbulence 

model coupled with the Middle Point method. Solution free of pre-shock oscillations can be verified. 

Figure 12 shows the O2 mass fraction contours obtained by the [10] scheme, and using the [5] turbulence model 

coupled with the Middle Point method. The dissociation of O2 is satisfactory and good symmetry properties are 

also observed. 

Figure 13 presents the turbulence kinetic energy contours under the same previous numerical scheme selection. 

Bigger turbulence effects can be observed when compared to the [4] turbulence model results. In qualitative 

terms, a significant difference is also perceptible. Again, good symmetry properties are verified. 

 

Euler Modified Method: Figure 14 exhibits the pressure contours obtained by the [10] numerical algorithm, and 

using the [5] turbulence model coupled withthe Euler Modified method. The pressure peak is 158.94. Good 

symmetry properties are observed. 

Figure 15 shows the Mach number contours obtained by the [10] scheme, and employing the [5] turbulence 

model coupled withthe Euler Modified method. Good symmetry properties and solution free of pre-shock 

oscillations can be observed. 

Figure 16 presents the O2 mass fraction contours generated by the [10] scheme, and using the [5] turbulence 

model coupled with the Euler Modified method. Good dissociation of O2 is observed. Good symmetry 

characteristics can be also verified. 

Figure 17 exhibits the turbulence kinetic energy contours under the same previous numerical scheme selection. 

Effects of turbulence are more intense in comparison with the [4] turbulence model results. The [5] qualitative 

results are again different from the [4] qualitative results. Good symmetry properties are also observed. 

 

10.3. Yoder, Georgiadids and Orkwis Results 

Middle Point Method: Figure 18 shows the pressure contours obtained by the [10] scheme, and using the [6] 

turbulence model coupled with the Middle Point method. Some pre-shock oscillations can be highlighted in the 

solution. The pressure peak is 158.77 unities. Moreover, good symmetry properties can be observed. 

Figure 19 exhibits the Mach number contours generated by the [10] scheme, and employing the [6] turbulence 

model coupled with the Middle Point method. There is not pre-shock oscillations in the solution and the normal 

shock wave is well captured. 

Figure 20 presents the O2 mass fraction contours generated by the [10] scheme, and using the [6] turbulence 

model coupled with the Middle Point method. Good dissociation of O2 and symmetry properties can be also 

observed. 

Figure 21 shows the turbulence kinetic energy contours generated under the same previous numerical scheme 

selection. Turbulence effects are detectable, although less intense compared to the [5] results. 

 

Euler Modified Method: Figure 22 exhibits the pressure contours obtained by the [10] scheme, and using the 

[6] turbulence model coupled with the Euler Modified method. The solution is free of pre-shock oscillations. 

The pressure peak is 158.77, inferior to that obtained when the [4] turbulence model has been used. 

Figure 23 shows the Mach number contours obtained by the [10] scheme, and employing the [6] turbulence 

model coupled with the Euler Modified method. The subsonic region around the body is well captured by the 
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numerical scheme. Good symmetry properties can also be verified. 

Figure 24 presents O2 mass fraction contours obtained by the [10] scheme, and using the [6] turbulence model 

coupled with the Euler Modified method. Good O2dissociation is perceptible in the mass fraction contours. 

Figure 25 shows the turbulence kinetic energy contours generated under the same previous numerical scheme 

selection. Bigger turbulence effects are observed, however, inferior to those verified in the [5] turbulence model. 

Good symmetry properties can be observed. 

 

10.4. Coakley Results – 1997 

Middle Point Method: Figure 26 exhibits the pressure contours obtained by the [10] numerical scheme, using 

the [7] turbulence model coupled with the Middle Point method. Solution free of pre-shock oscillations are 

observed with good symmetry properties. The pressure peak is 158.78. 

Figure 27 shows the Mach number contours generated by the [10] algorithm, as using the [7] turbulence model 

coupled with the Middle Point method. The Mach number contours are of good quality, the subsonic region 

behind the normal shock wave is well captured, and good symmetry properties are observable. 

Figure 28 presents the O2 mass fraction contours obtained by the [10] numerical algorithm, and using the [7] 

turbulence model coupled with the Middle Point method. Good dissociation of O2 can be verified. 

Figure 29 exhibits the turbulence kinetic energy contours obtained by the [10] scheme under the same previous 

numerical scheme selection. Good turbulence effects are satisfactorily captured. The turbulence level is bigger 

than the results provided by the [4] turbulence model, but inferior to those observed in the [5] turbulence model. 

 

Euler Modified Method: Figure 30 presents the pressure contours obtained by the [10] scheme, and using the 

[7] turbulence model coupled with the Euler Modified method. The solution is free of pre-shock oscillations. 

The pressure peak is 158.78. Moreover, good symmetry properties are detected. 

Figure 31 shows the Mach number contours generated by the [10] scheme, and employing the [7] turbulence 

model coupled with the Euler Modified method. No pre-shock oscillations can be verified, but good symmetry 

properties occur. 

Figure 32 exhibits the O2 mass fraction contours obtained by the [10] scheme, and using the [7] turbulence 

model coupled with the Euler Modified method. Good dissociation of O2 is observed in relation to its initial 

value. 

Figure 33 shows the turbulence kinetic energy contours obtained under the same previous numerical scheme 

selection. Good turbulence effects are perceptible, however, inferior to those observed in the [5] turbulence 

model. 

 

10.5. Rumsey, Gatski, Ying and Bertelrud Results 

Middle Point Method: Figure 34 exhibits the pressure contours obtained by the [10] scheme, and using the [8] 

turbulence model coupled with the Middle Point method. Good symmetry properties can be observed. The 

pressure peak is 158.82 unities. Besides, the solution is free of pre-shock oscillations. 

Figure 35 shows the Mach number contours generated by the [10] scheme, and employing the [8] turbulence 

model coupled with the Middle Point time marching method. Good symmetry properties are observed, free of 

pre-shock oscillations. 

Figure 36 presents the O2 mass fraction contours obtained by the [10] scheme, and using the [8] turbulence 

model coupled with the Middle Point time marching method. Good O2dissociation can be detected in relation to 

the initial condition. Good symmetry properties can also be verified. 

Figure 37 shows the turbulence kinetic energy contours generated under the same previous numerical scheme 

selection. Bigger turbulence effects are perceptible in relation to the other models, however, inferior to those 

observed in the [5] turbulence model results. 

 

Euler Modified Method:Figure 38 exhibits the pressure contours obtained by the [10] numerical algorithm, and 

using the [8] turbulence model coupled with the Euler Modified method. Good symmetry properties can be 

observed, free of pre-shock oscillations. The pressure peak is 158.82. 
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Figure 39 presents the Mach number contours obtained by the [10] scheme, and employing the [8] turbulence 

model coupled with the Euler Modified method. Good symmetry properties are observed. The Mach number 

contours present homogenous properties, being of good quality. 

Figure 40 shows the O2 mass fraction contours generated by the [10] scheme, and using the [8] turbulence 

model coupled with the Euler Modifiedtime marching method. Good dissociation of O2 can be detectable. 

Besides, good symmetry properties can be observed. 

Figure 41 exhibits the turbulence kinetic energy contours obtained under the same previous numerical scheme 

selection. A significant amount of turbulence can be observed by the turbulence kinetic energy contours, 

although inferior to that observed in the [5] turbulence model. 

 

10.6. Other Results 

Figure 42 shows the –Cp distributions at wall yielded by the turbulence models when the Middle Point time 

marching method has been employed. As can be seen, all solutions converge to the same profile, and no 

significant differences exist. Figure 43 presents the –Cp distributions at wall produced by the turbulence models 

when using the Euler Modified method. Good agreement among the curves can be observed, without 

meaningful differences. Figure 44 exhibits the translational/rotational temperature profiles obtained by all five 

turbulence models when using the Middle Point method. The [4] and [8] profiles are less intense than the other 

profiles; in other words, the [4] and [8] profiles reach temperatures smaller than the others curves. So, it can be 

pointed out that the [4] and [8] turbulence models are the most conservative in relation to the other models. 

Figure 45 shows the translational/rotational temperature profiles obtained by the turbulence models when using 

de Euler Modified method. The [4] and [8] profiles are again more conservative than the other models, reaching 

smaller values at wall. 

 

10.7. Quantitative Analysis 

In order to perform a quantitative analysis, the present reactive results are compared to the perfect gas solutions. 

The stagnation pressure at the blunt body nose was evaluated assuming the perfect gas formulation. Such 

parameter calculated at this way is not the best comparison, but in the absence of practical reactive results, this 

constitutes the best available solution. 

 

 

  
Figure 1: Mesh to blunt body experiments                    Figure 2: Pressure contours (C83/MP) 
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Figure 3: Mach number contours (C83/MP)                Figure 4: O2 mass fraction contours (C83/MP) 

          
            

Figure 5: Turbulent kinetic energy contours (C83/MP)         Figure 6: Pressure contours (C83/EM) 

                      
Figure 7: Mach number contours (C83/EM)              Figure 8: O2 mass fraction contours (C83/EM) 

 
 

Figure 9: Turbulent kinetic energy contours (C83/EM)        Figure 10: Pressure contours (W88/MP) 
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Figure 11: Mach number contours (W88/MP)         Figure 12: O2 mass fraction contours (W88/MP) 

         
Figure 13: Turbulent kinetic energy contours (W88/MP)       Figure 14: Pressure contours (W88/EM) 

  
Figure 15: Mach number contours (W88/EM)       Figure 16: O2 mass fraction contours (W88/EM) 

        
    Figure 17: Turbulent kinetic energy contours (W88/EM)   Figure 18: Pressure contours (YGO96/MP) 
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    Figure 19: Mach number contours (YGO96/MP)      Figure 20: O2 mass fraction contours (YGO96/MP) 

  
   Figure 21: Turbulent kinetic energy contours (YGO96/MP)       Figure 22. Pressure contours (YGO96/EM). 

  
Figure 23: Mach number contours (YGO96/EM)     Figure 24: O2 mass fraction contours (YGO96/EM) 

    
Figure 25: Turbulent kinetic energy contours (YGO96/EM)                Figure 26: Pressure contours (C97/MP) 
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  Figure 27: Mach number contours (C97/MP)          Figure 28: O2 mass fraction contours (C97/MP) 

  
    Figure 29: Turbulent kinetic energy contours (C97/MP)              Figure 30: Pressure contours (C97/EM) 

  
     Figure 31: Mach number contours (C97/EM)           Figure 32: O2 mass fraction contours (C97/EM) 

  
   Figure 33: Turbulent kinetic energy contours (C97/EM)             Figure 34: Pressure contours (RGYB98/MP) 
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   Figure 35: Mach number contours (RGYB98/MP)                Figure 36: O2 mass fraction contours (RGYB98/MP) 

  
Figure 37: Turbulent kinetic energy contours (RGYB98/MP)         Figure 38: Pressure contours (RGYB98/EM) 

  

Figure 39: Mach number contours (RGYB98/EM)    Figure 40: O2 mass fraction contours (RGYB98:EM) 
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Figure 41: Turbulent kinetic energy contours (RGYB98/EM) 

  
Figure 42: Cp distributions (Middle Point).                Figure 43: Cp distributions (Euler Modified). 

  
Figure 44: Wall temperature distributions (Middle Point)   Figure 45: Wall temperature distributions (Euler Modified) 

 

To calculate the stagnation pressure ahead of the blunt body, [29] presents in its B Appendix values of the 

normal shock wave properties ahead of the configuration. The ratio pr0/pr∞ is estimated as function of the 

normal Mach number and the stagnation pressure pr0 can be determined from this parameter. Hence, to a 

freestream Mach number of 8.78, the ratio pr0/pr∞ assumes the value 99.98.  The value of pr∞ is determined by 

the following expression: 

2

initial

a

pr
pr






 .                                                                               (107) 
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In the present study, prinitial = 687N/m
2
, ∞ = 0.004kg/m

3
 and a∞ = 317.024m/s. Considering these values, one 

concludes that pr∞ = 1.709 (non-dimensional). Using the ratio obtained from [29], the stagnation pressure ahead 

of the configuration nose is estimated as 170.87 unities. Table 2 compares the values of the stagnation pressure 

obtained from the simulations with this theoretical value and shows the percentage errors. As can be seen, the 

best results are provided by the [4], turbulence model, when both the Middle Point and the Euler Modified have 

been employed, with an error of 6.95%. All solutions present an error inferior to 7.10%, which represents a good 

approximation to the theoretical value. 

Table 2: Values of stagnation pressure and errors 

Turbulence Model Time Marching pr0 Error (%) 

Coakley [4] Middle Point 159.00 6.95 

 Euler Modified 159.00 6.95 

Wilcox [5] Middle Point 158.93 6.99 

 Euler Modified 158.94 6.98 

YGO [6] Middle Point 158.77 7.08 

 Euler Modified 158.77 7.08 

Coakley [7] Middle Point 158.78 7.08 

 Euler Modified 158.78 7.08 

RGYB [8] Middle Point 158.82 7.05 

 Euler Modified 158.82 7.05 

 

10.8. Computational Performance 

Table 3 presents the computational data of the [10] scheme for the blunt body problem. It shows the CFL 

number and the number of iterations to convergence for all studied cases in the current work. It can be verified 

that the best performance is due to [10] when using the [4] turbulence model coupled with the Middle Point time 

marching method. It is important to note that the Middle Point time marching method is better than the Euler 

Modified time marching method in terms of number of iterations for convergence to all cases studied in this 

work. 

 

Table 3: Computational data 

Turbulence Model Time Marching CFL Iterations 

Coakley [4] Middle Point 0.10 3,363 

 Euler Modified 0.10 3,713 

Wilcox [5] Middle Point 0.10 3,671 

 Euler Modified 0.10 3,935 

YGO [6] Middle Point 0.10 4,305 

 Euler Modified 0.10 4,410 

Coakley [7] Middle Point 0.10 4,293 

 Euler Modified 0.10 4,381 

RGYB [8] Middle Point 0.10 3,889 

 Euler Modified 0.10 4,054 

 

As final conclusion, it is possible to highlight the [4] turbulence model as the best performance in estimating the 

stagnation pressure ahead of the blunt body, in both time marching methods studied herein. Moreover, the [4] 

turbulence model coupled with a Middle Point method was the most efficient in terms of computational effort. It 

is also important to note that all turbulence models predicted the stagnation pressure value with errors inferior to 

7.10%. 

 

11. Conclusions 

This work analyzed the Favre-averaged Navier-Stokes equations, using conservative and finite volume contexts, 

and employing structured spatial discretization. Turbulence is taken into account considering the 
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implementation of five k- two-equation turbulence models, based on the works of [4-8]. The numerical 

algorithm of [10] is used to perform the reentry flow numerical experiments, which give us an original 

contribution to the CFD community. TVD high resolution is obtained by the use of a MUSCL procedure. Two 

methods of time marching are evaluated to verify their potentialities, namely: Middle Point and Euler Modified. 

The “hot gas” hypersonic flow around a blunt body, in three-dimensions, is simulated. The convergence process 

is accelerated to steady state condition through a spatially variable time step procedure, which has proved 

effective gains in terms of computational acceleration ([11-12]). The reactive simulations involve Earth 

atmosphere chemical model of five species and seventeen reactions, based on the [13] model. N, O, N2, O2, and 

NO species are used to perform the numerical comparisons. The results have indicated that the [4] turbulence 

model yields the best prediction of the stagnation pressure value and is the most computationally efficient when 

using the Middle Point method. 

As final conclusion, it is possible to highlight the [4] turbulence model as the best in the estimative of the 

stagnation pressure ahead of the blunt body, for both time integration methods studied herein. Moreover, the [4] 

turbulence model was the most efficient in terms of computational performance when using the Middle Point 

method. It is also important to note that all turbulence models predicted the stagnation pressure value with errors 

inferior to 7.10%, showing that excellent results can be obtained by an in-house developed CFD code. 
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