
Available online www.jsaer.com 
 

Journal of Scientific and Engineering Research 

69 

 

Journal of Scientific and Engineering Research, 2017, 4(10):69-77 

 

    

 
Research Article 

ISSN: 2394-2630 

CODEN(USA): JSERBR  

    

 

Stochastic Modeling of the Transmission Dynamics of HIV in a Heterosexual 

Population on Complex Graphs 

O. Abu 

Department of Mathematics and Statistics, Federal Polytechnic, Idah, Nigeria  

Abstract The objective of this study is to predict the prevalence of HIV prevalence in a heterosexual population 

through complex graphs.  A heterosexual population together with the partnership connections is described by a 

complex graph. We considered two scenarios; first a situation where individuals have the numbers of partners 

distributed according to a power-law distribution and secondly a situation where individuals are restricted each 

to one partner. In each case, the partnership durations are described by Weibull distribution and the effects of 

condom use are investigated.  The results show that monogamous forms of relationship and effective condom 

use are the best strategy for the control of HIV prevalence. Therefore, behavioural change from multiple 

partnership and unprotected sex is crucial for the control of HIV/AIDS. 
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1. Introduction 

The human immune-deficiency virus (HIV) together with the associated acquired immune deficiency syndrome 

(AIDS) is a pandemic [1-3]. AIDS is an illness that damages a person’s ability to fight off disease, leaving the 

body open to attack from ordinarily innocuous infections and some forms of cancers. HIV disrupts the 

functioning of the immune system. A weakened immune system allows the development of a number of 

different infections and cancers, and it is these diseases which cause illness and death in people with AIDS. HIV 

also infects and causes direct damage to other types of cells [4]. 

Two-third of all HIV infected people live in Sub-Saharan Africa; Nigeria ranking third in the highest burden 

apart from South Africa and India. This calls for more concerted control effort to arrest this ugly trend.  

Heterosexual contacts are most responsible for HIV infections compared to homosexual, drug injection and 

mother- to-child routes of transmission [5]. 

Several intervention methods are available. These range from sex abstinence, use of condoms, education and use 

of antiretroviral drugs and counseling. Condoms used correctly can reduce the likelihood of HIV transmission to 

an extremely low level. Combinations of antiretroviral medications that have been available since 1996 are 

slowing, stopping, and even reversing the progression of HIV disease. Antiretroviral drugs are allowing many 

HIV infected people (who otherwise would become ill) to live active, healthy lives with few or no symptoms. 

These drugs are not a cure for HIV; the medications now available must be continued indefinitely to prevent 

progression of the disease [4]. 

Two types of HIV are currently recognized: HIV-1 and HIV-2. The classification is based on differences in 

genetic structure. HIV-2 is the less common type and is found primarily in Western Africa. Both types of virus 

are transmitted in the same way and cause the same illnesses. However, it appears that HIV-2 is more difficult to 

transmit and that time from infection toillness is longer. In addition, a number of different sub-types or strains of 

HIV-1 have been classified. These subtypes (also known as “clades”) are distinguished by smaller variations in 

their genetic composition. The sub-types are identified by letter. They are unevenly distributed geographically. 
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Sub-type B is found mostly in the Americas, Japan, Australia, the Caribbean, and Europe. Sub-types A and D 

are most common in sub-Saharan Africa [4]. 

As pointed out in Williams et al [3], the development of antiretroviral drugs to treat HIV has been a singular 

scientific achievement. Between 1995 and 2009 an estimated 14.4 million life-years has been gained globally 

among adults on ART but the rate of new infections is unacceptably high and still exceeds the number of people 

starting ART each year. 

As presented in casels et al [5], ART reduces viral load and the probability of transmission. It also reduces 

HIV/AIDS-related mortality and, therefore, increases the life expectancy of infected individuals. 

The plan of this paper is as follows. Introductory part is presented in section 1. Section 2 is devoted to graphs 

and modeling. The model description is presented in section 3. Simulations are carried out in section 4. Results, 

discussion and conclusive remarks are passed in sections 5, 6 and 7 respectively.  

 

2. Graphs and Modeling 

Stochastic models of HIV have been proposed and studied by researchers. For example, Peterson et al [6] 

applied Monte-Carlo simulation technique in a population of intravenous drug users. 

Greenhalgh and Hay [7] studied a mathematical model of the spread of HIV/AIDS among injecting drug users. 

Dalal et al [8] examined a stochastic model of AIDS and condom use. Dalal, et al [9] also studied a stochastic 

model for internal HIV dynamics. Ding et al [10] carried out risk analysis for AIDS control based on a 

stochastic model with treatment rate. Tuckwell and Le Corfec [11] studied a stochastic model for early HIV-1 

population dynamics. Waema and Olowofeso [12] studied a mathematical model for HIV transmission using 

generating function approach.  

These Classical epidemiological models ignore the importance of the complex patterns and structures of social 

interactions on the spread of diseases. So, most of the earlier epidemiological models trivialize the social aspects 

of disease transmission. However, since the middle of the twentieth century, sociologists, mathematicians have 

been studying social networks and have come up with a large literature spanning many different aspects of 

social networks from empirical, conceptual and methodological points of view [13]. 

Graphs used in the literature can be classified on the properties of interest. From the dynamism point of view, 

graphs or networks can be classified as static or dynamic depending on whether their structures change with 

time. From the field of application perspective, we have social networks, information networks, technological 

networks, epidemic networks, to mention a few. Each of these types of networks can be narrowed to specific 

networks. Graph classifications based on degree distribution exist. For instance, scale-free graphs, Poisson 

graphs. Graphs such as unipartite, bipartite or multipartite are based on the node types. For a general knowledge 

of graphs and their theory, refer to [14-24].  

Real world network are large, and in most cases it is virtually impossible to describe them in detail or to give an 

accurate model for how they came to be. To circumvent this problem, random graphs have been considered as 

network models. The field of random graphs was established in late 1950s and early 1960s. For detail, see 

Hofstad [14].      

In this article, our interest is in social networks and how they affect the epidemiology of diseases, especially, 

sexually transmitted infections. A social network is a social structure made up of individuals (or organizations) 

called nodes which are connected by some specific types of interdependency, such as friendship, enmity, 

common interest, financial exchange, dislike, sexual relationship or relationship of beliefs, knowledge or 

prestige. For detail of social network analysis, refer to Wasserman and Faust [25]. A sexual contact network is a 

set of individuals who are connected by sexual relationships (partnerships). 

 

2.1. Graph Models for Sexually Transmitted Infection 

We make a scanty review of graph models of interest, from where we pick our research question. For a review 

of graph or network-based models, refer to Quax [26] and Tolentino [27]. Bai et al [28] propose a network 

spreading model for HIV, wherein each individual is represented by a node of the transmission network and the 

edges are the connections between individuals along which infection may spread. The sexual activity of each 

individual, measured by its degree, is not homogeneous but obeys power law distribution. Sloot et al [29] did 
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stochastic simulation of HIV population through complex networks. The node-degrees obey power law 

distribution while the time evolution of the network is determined by a Markov process. Kretzchmar et al [30] 

did modeling prevention strategies for gonorrhea and chlamydia using stochastic network simulations. Their 

simulation model is discrete time Markov model describing pair formation and separation and disease 

transmission as stochastic processes. Morris and Kretzchmar [31] used stochastic simulations to investigate the 

effect of concurrent partnerships on transmission dynamics in networks. Quax [26] did modeling and simulation 

of propagation of infectious diseases in a homosexual population. The author constructed Kronecker graphs, 

with the node degrees obeying the power law distribution.  In most of these studies, it is found out that, in time 

steps, either an edge is formed or dissolved between nodes with equal probability or that a new random graph is 

regenerated at every time step. In practice, all the nodes have varying partnership durations. While some 

partnerships are stable relationships with long durations, others are casual relationships with short term 

durations. The assumption of equal probability for the dissolution of every relationship or equal probability for 

relationship formation may not be realistic. Althaus and Roellin [32] argue that sexual partnership durations are 

best described by a Weibull distribution, indicating increased robustness with ongoing duration. So, our graph 

model is based on the argument that the node-degrees may obey the power law or any other distribution and the 

partnership durations obey Weibull distribution. 

 

3. Model Description  

In this paper we consider a population that is divided into two types, namely, adult males and females, where 

each individual is in one of the states- susceptible, infected in the active, untreated infected, treated infected or 

AIDS stages. Initially susceptible individuals can become infected after contact with infected individuals. We 

adopt the recipe by Jaquet and Pechal [33] and represent each of the infected states by some arbitrary number L 

of states 𝐼𝑛  (𝑛 =  1, . . . , 𝐿), each corresponding to one “stage” of the disease. Each of these stages is 

characterized by a real parameter 𝛼𝑛which we call infectiousness and which determines the probability that an 

individual in that stage infects another susceptible individual. 

 

3.1. Modeling of sexual contact networks 

We construct a network model as a dynamical bipartite graph, where a population is compartmentalized into 

male and female susceptible subpopulations, wherein each individual is represented by a node and the edges are 

the links between the individuals. First, we use the power-law distribution to generate degree sequences for the 

subpopulations and the graph constructed using the mechanism of configuration model. The power law 

distribution can be mathematically represented by 

p(k) = k−γ, k ≤ kmax  where k is the number of sexual partners per year and γ is a parameter of the distribution. 

Small γ denotes more limited sexual contact behaviour and corresponds to a smaller value of kmax indicating 

the promiscuity and vice versa. Latora et al [1] reports that the sexual contact network in Burkina Faso is a 

scale-free network. They estimated the exponent γ in the distribution for the numbers of partners for the male 

population to be 2.9(0.1). The survey in Sweden has shown that the values of the exponent γ in the distributions 

of the numbers of female and male populations were 3.1(0.2) and 2.6(0.3) respectively. For a review of sexual 

contact network models and other standard epidemiological models, refer to Liljeros et al [13]. 

Secondly, we generate a degree sequence where every node has one link (partner) and generate the bipartite 

graph by the same mechanism of configuration model 

 

3.2. Modeling the spread of HIV/AIDS on Graphs 

The emphasis is on HIV/AIDS heterosexual contact network, wherein compartments of males and females are 

each subdivided into five states, comprising the susceptible, active infected phase, untreated, treated and AIDS  

individuals. We adopt the recipe by Bai et al (2007) with modification to reflect the realism of HIV transmission 

dynamics. As in their article, our model is implemented by computer simulation with a time step equal to one 

year. The simulation processes are in the sequel: 

(1) We set the number of susceptible individuals and select a number of infected nodes randomly. 
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(2)  At each time step for each susceptible node 𝑖, denote 𝑚1 , 𝑚2, 𝑚3 𝑎𝑛𝑑 𝑚4  for the numbers of its 

neighbouring infected nodes in the initial active phase, not in the process of antiretroviral (ARV), in the 

process of ARV and having AIDS respectively. If the node 𝑖 is a male, then the probability that 𝑖 will 

become infected in the next time step is 

𝑝1 = 1 − (1 − 𝛽1)𝑚1 (1 − 𝛽2)𝑚2 (1 − 𝛽3)𝑚3 (1 − 𝛽4)𝑚4   

𝛽 is the transmission probability per sexual partners. Similarly, for each susceptible female node i 

𝑝2 = 1 − (1 − 2𝛽1)𝑚1 (1 − 2𝛽2)𝑚2 (1 − 2𝛽3)𝑚3 (1 − 2𝛽4)𝑚4 , 

because the male-female transmission is about two times as successful as female-to-male transmission. 

As adopted by Bai et al [28], 𝛽2 𝑎𝑛𝑑 𝛽3 are below 0.5 and since the ARV reduces transmission 

probability to as much as 60%, we set 𝛽3 = 0.4𝛽2  

(3) At each time step, each infected node may die with probability 𝜀1 (for the infected in the active phase), 

𝜀2 (for the infected not on ARV), 𝜀3 (for the infected on ARV) and 𝜀4 (for AIDS patient). We set 

𝜀1=0.108 (corresponding to about 9 years to live), 𝜀2 = 0.15 (about 7 years), 𝜀3 = 0.08 (about 12.5 

years) and 𝜀4 = 1 (about one year). 

(4) At each time step, each susceptible node die with probability 𝜀5 . We set 𝜀5 = 0.015 (which 

corresponds to a life expectancy of about 65 years. 

(5) At each time step, the dead nodes are replaced each with probability 𝜉 (𝜉 = 0.27). This choice is made 

based on the assumption of constant population, with 𝜉 equal to the average of 𝜀𝑖 , 𝑖 = 1, . . , 5. 

(6) At each time step, infected nodes in the active phase proceed for ARV with probability 𝜆1 = 0.6 or 

remain untreated with probability 𝜆2 = 0.4.  Infected nodes not on ARV progress to AIDS with 

probability 𝜆3 = 0.16 (about 6 years to live) while the infected nodes on ARV progress to AIDS with 

probability 𝜆4 = 0.09 (about 11.5 years to live. AIDS patients , on  average, die within 1 year with 

probability 𝜆5 = 1. 

(7) At each time step, each sexual partnership is dissolved based on the probability distribution of 

partnership durations. To be specific, we use Weibull distribution. Also, all the nodes that have lost 

partnerships, randomly re-connect to other disconnected nodes. This is common among casual partners 

like prostitutes and promiscuous men. 

 

4. Simulation 

We perform the following simulation experiments. In all the experiments, it is assumed that the partnership 

durations follow the Weibull distribution. We fix the initial population size at 3000 with the number of males 

equal to the number of females and also the female and male degree sequences come from the same distribution. 

First, we consider a situation where there is no usage of condoms and only two individuals are randomly 

infected initially, with the degree sequence following the power law distribution. The result is displayed in 

Figure 1. Secondly, we consider a situation where 80% of the population imbibes the use of condoms and only 

two individuals are randomly infected initially, with the degree sequence following the power law distribution. 

The result is shown in Figure 2. 

In the third experiment, we consider a situation where 99% of the population adopts the use of condoms and 

only two individuals are randomly infected initially, with the degree sequence following the power law 

distribution. The result is shown in Figure 3. In the fourth experiment we consider a situation where 80% of the 

population imbibes the use of condoms and only 300 individuals are randomly infected initially, with the degree 

sequence following the power law distribution. The result is shown in Figure 4. In the fourth experiment we 

consider a situation where 99% of the population imbibes the use of condoms and only 300 individuals are 

randomly infected initially, with the degree sequence following the power law distribution. The result is shown 

in Figure 5. In the sixth episode, we consider a situation where there is no usage of condoms and only two 

individuals are randomly infected initially, with the relationships being monogamous. The result is displayed in 

Figure 6. In the seventh experiment, we consider a situation where 99% of the population adopts usage of 

condoms and only 300 individuals are randomly infected initially, with the relationships being monogamous. 

The result is displayed in Figure 7. Lastly, in the eighth episode, we consider a situation where 99% of the 
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population adopts usage of condoms and only two individuals are randomly infected initially, with the 

relationships being monogamous. The result is displayed in Figure 8. 

 

5. Results 

The results of the simulation experiments are shown in the sequel. 

 
Figure 1: HIV prevalence under power-law and Weibull distributions without condom; S0=3000, I=2 

 
Figure 2: HIV prevalence under power-law and Weibull distributions with condom (80%); S0=3000, I=2 

 
Figure 3: HIV prevalence under power-law and Weibull distributions with condom (99%); S0=3000,I=2 
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Figure 4: HIV prevalence under power-law and Weibull distributions with condom (80%); S0=3000, I=300 

 
Figure 5: HIV prevalence under power-law and Weibull distributions with condom (99%); S_0=3000, I=300 

 
Figure 6:HIV prevalence under monogamy and Weibull distribution without condom; S0=3000,I=2 

 
Figure 7: HIV prevalence monogamy and Weibull distribution with condom (99%); S0=3000, I=300 
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Figure 8: HIV prevalence monogamy and Weibull distribution with condom (99%); S0=3000, I=2 

 

6. Discussion 

In this article, we have developed a graph-based model and simulated the transmission dynamics of HIV under 

different scenarios on it. The main results are shown in Figures 1 through 8. The result in Figure 1 shows that 

two index cases that randomly invade a population can cause an exponential increase in the spread of HIV under 

power law distribution of the degree sequence in the long run. The result in Figure 2 shows that, with 80% 

condom usage, two index cases that randomly invade a population precipitate a low prevalence of HIV in the 

long run.  Figure 3 shows that, with 99% condom usage, there cannot be a take –off of epidemic. Figure 4 shows 

the prevalence of HIV when there is a level of endemicity in the population before 80% condom coverage is 

applied. The result show that HIV prevalence increases slowly under this scenario. In the extreme, Figure 5 

shows that, with 99% condom coverage reduces the HIV prevalence rapidly. The result in Figure 6 shows that 

under monogamy and a few index cases, the HIV prevalence increases slowly, even without condom usage. This 

emphasizes the importance of behavioural change from multiple partnerships. Figure 7 shows that in a 

population where HIV is endemic, behavioral change from multiple partnerships to monogamy and effective 

condom usage can eliminate the prevalence. Figure 8 shows that with effective condom usage in monogamous 

relationships, there cannot be any epidemic take off. The findings in this study suggest that behavioural change 

from multiple partnership and effective condom usage is important for the control of HIV/AIDS. 

 

7. Conclusion 

In this article, we have developed and simulated the transmission dynamics of HIV on a complex graph. The 

partnership structures under power-law distribution of the degree sequence; and under monogamy were used. 

We assumed that the partnership durations obey the Webull distribution. The results emphasize the importance 

of monogamy and condom usage. We therefore, recommend that  to ensure speedy recovery from HIV burden, 

the members of highly endemic population are urged to desist from multiple partnership; and should apply 

condoms during intercourse.  
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