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Abstract In this paper, we presented the differential forms method which is used in the linearization of second 

order non-linear differential equations. The differential forms used here is limited to 2-forms with their 

respective operations. After presentation of the method, an example is used to illustrate the procedure of the 
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Introduction 

A differential form is a quantity that can be integrated, including the differentials. In the integral  𝑓 𝑥 𝑑𝑥
𝑏

𝑎
, 

𝑓(𝑥)𝑑𝑥is a differential form. This differential form has degree one because it is integrated over a 1-dimensional 

region, or path. We call a differential form of degree one a one-form. 

Differential forms are an approach to multivariable calculus that is independent of coordinates. They provide a 

unified approach to defining integrands over curves, surfaces, volumes and higher dimensions. There are various 

differential forms, but in this paper, we shall consider1-form and 2-forms only in solving our problem. 

A smooth 1-form𝜙 on ℝ𝑛 is a real-valued function on the set of all tangent vectors to ℝ𝑛 , i.e. 

𝜙 ∶ 𝑇ℝ𝑛 → ℝ 

with the properties that 

 𝜙 is linear on the tangent space 𝑇𝑥ℝ
𝑛 for each 𝑥 ∈ ℝ𝑛 . 

 For any smooth vector field 𝑣 =  𝑣(𝑥), the function 𝜙 ∶ 𝑇ℝ𝑛 → ℝ is smooth. 

Let 𝑑𝑥𝑖, 𝑑𝑥𝑗be two forms, then we define 𝑑𝑥𝑗 ∧ 𝑑𝑥𝑖 =  −𝑑𝑥𝑖 ∧ 𝑑𝑥𝑗for 𝑖 ≠  𝑗and 0 if i = j. The 

expression 𝑑𝑥𝑖 ∧ 𝑑𝑥𝑗is an expression for the multiplication 𝑑𝑥𝑖𝑑𝑥𝑗 representing a 2-form. The 

operator ∧ is called a wedge. 

Almost all important governing equations in Physics take the form of nonlinear differential equations, and, in 

general, are very difficult to solve explicitly. While solving problems related to nonlinear ordinary differential 

equations, it is often expedient to simplify equations by a suitable change of variables. One of the fundamental 

methods of solving upon the transformation of a given equation to another equation of standard form. The 

transformation may be to an equation of equal order or of greater or lesser order. In particular, the possibility 

that a given equation could be linearized, Berkovich [1] that is, transformed to a linear equation, was a most 

attractive proposition due to the special properties of linear ordinary differential equations. The reduction of a 

nonlinear ordinary differential equation to a linear ordinary differential equation besides simplification, allows 
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constructing an exact solution of the original equation. Therefore, the linearization problem plays a significant 

role in the nonlinear problem. 

Many of the classical methods for solving ordinary differential equations work by applying a change of 

variables to produce another equation with known solutions. The simplest form of a differential equation is a 

linear form. It is of interest to provide general criteria for the linearizability of nonlinear ordinary differential 

equations, as they can then be reduced to easily solvable equations. Linearization criteria via invertible or 

point trans formations for ordinary differential equations have been of great interest and have been dealt with 

by many authors such as [2-6] over the years. 

The linearization problem presented in this paper can be stated as follows: find a change of variables such that 

a transformed equation becomes a linear equation. If the change of variables includes derivatives, this change 

is called a non-point transformation. If the change of variables only depends on the independent and dependent 

variables, then this change is called a point transformation. A non-point transformation that is defined by the 

change of the independent, dependent variables and the first-order partial derivatives is called a contact 

transformation. This thesis studied linearization problem by using point transformation via differential forms. 

The linearization problem for a second-orderordinary differential equation was also investigated with respect 

to differential forms by Harrison [7]. He looked at when and how can the second order ordinary differential 

equationy′′ = f(x, y, y′)be linearized with differential forms. 

 

Method 

Our starting point is a second order ordinary differential equation 

𝑦′′ = 𝑓(𝑥, 𝑦, 𝑦′).                                                                (1) 

We assume a point transformation given by the variables 

𝑋 = 𝐹 𝑥, 𝑦 , 𝑌 = 𝐺 𝑥, 𝑦 ,       (2)  

with a requirement that, 

𝑑2𝑌

𝑑𝑋2 = 0.                                                       (3) 

We first construct, using equation (2) 

𝑑𝑌

𝑑𝑋
=

𝐺𝑥+𝐺𝑦𝑦
′

𝐹𝑥+𝐹𝑦𝑦
′
                                             (4)  

where 𝐹𝑥 + 𝐹𝑦𝑦
′ ≠ 0 and the subscripts 𝑥 and 𝑦 denote partial differentiation. The second derivative equation 

may be written simply in terms of a differential 𝑑  
𝑑𝑌

𝑑𝑋
 = 0 which becomes  

 𝐹𝑥 + 𝐹𝑦𝑦
′  𝑑𝐺𝑥 + 𝑦′𝑑𝐺𝑦 + 𝐺𝑦𝑑𝑦

′ −  𝐺𝑥 + 𝐺𝑦𝑦
′  𝑑𝐹𝑥 + 𝑦′𝑑𝐹𝑦 + 𝐹𝑦𝑑𝑦

′ = 0.  (5) 

We can expand (5) and write it as  

𝑇𝑑𝑦′ + 𝜌𝑦′2 +  𝜆 + 𝛿 𝑦′ + 𝜎 = 0,                    (6) 

where  

𝑇 = 𝐹𝑥𝐺𝑦 − 𝐹𝑦𝐺𝑥 ,                                                         (7)  

and we have the 1-forms  

 𝜌 = 𝐹𝑦𝑑𝐺𝑦 − 𝐺𝑦𝑑𝐹𝑦 , 𝜆 = 𝐹𝑦𝑑𝐺𝑥 − 𝐺𝑦𝑑𝐹𝑥 ,

𝜎 = 𝐹𝑥𝑑𝐺𝑥 − 𝐺𝑥𝑑𝐹𝑥 , 𝛿 = 𝐹𝑥𝑑𝐺𝑦 − 𝐺𝑥𝑑𝐹𝑦 .
               (8)

 

We can rewrite equation (6) as  

𝑑𝑦′ = 𝛼 + 𝛽𝑦′ + 𝛾𝑦 ′2,                                                      (9)  

where  

𝛼 =
−𝜎

𝑇
, 𝛽 =

−(𝜆+𝛿)

𝑇
, 𝛾 =

−𝜌

𝑇
.       (10)  

For integrability of equation (9) we set 𝑑𝑑𝑦′ = 0, that is   

0 = 𝑑𝛼 + 𝑑𝑦′ ∧ 𝛽 + 𝑦′𝑑𝛽 + 2𝑦′𝑑𝑦′ ∧ 𝛾 + 𝑦′2𝑑𝛾.            (11) 

Substituting (9) into equation (11), we have: 

0 = 𝑑𝛼 +  𝛼 + 𝛽𝑦′ + 𝛾𝑦′2 ∧ 𝛽 + 𝑦′𝑑𝛽 + 2𝑦′ 𝛼 + 𝛽𝑦′ + 𝛾𝑦′2 ∧ 𝛾 + 𝑦′2𝑑𝛾.  (12) 

The 𝑦′3term in equation (12) vanishes because 𝛾 ∧ 𝛾 = 0, we expand equation (12) and equate the coefficients 

of the other powers of 𝑦′ to zero to have: 
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𝑑𝛼 = 𝛽 ∧ 𝛼, 𝑑𝛽 = 2𝛾 ∧ 𝛼, 𝑑𝑟 = 𝛾 ∧ 𝛽.                            (13) 

Now, we go back to equations (8) and expand the differentials, to have: 

𝜌 = 𝐹𝑦 𝐺𝑥𝑦𝑑𝑥 + 𝐺𝑦𝑦𝑑𝑦 − 𝐺𝑦 𝐹𝑥𝑦𝑑𝑥 + 𝐹𝑦𝑦𝑑𝑦 , 

𝜆 = 𝐹𝑦(𝐺𝑥𝑥𝑑𝑥 + 𝐺𝑥𝑦𝑑𝑦 − 𝐺𝑦 𝐹𝑥𝑥𝑑𝑥 + 𝐹𝑥𝑦𝑑𝑦 , 

𝜎 = 𝐹𝑥 𝐺𝑥𝑥𝑑𝑥 + 𝐺𝑥𝑦𝑑𝑦 − 𝐺𝑥 𝐹𝑥𝑥𝑑𝑥 + 𝐹𝑥𝑦𝑑𝑦 , 

𝛿 = 𝐹𝑥 𝐺𝑥𝑦𝑑𝑥 + 𝐺𝑦𝑦𝑑𝑦 − 𝐺𝑥 𝐹𝑥𝑦𝑑𝑥 + 𝐹𝑦𝑦𝑑𝑦 , 

which can simply be written as 

𝜌 = 𝐴𝑑𝑥 + 𝐵𝑑𝑦, 𝜆 = 𝐶𝑑𝑥 + 𝐴𝑑𝑦, 𝜎 = 𝐷𝑑𝑥 + 𝐸𝑑𝑦, 𝛿 = 𝐸𝑑𝑥 + 𝐻𝑑𝑦,   (14) 

where 

𝐴 = 𝐹𝑦𝐺𝑥𝑦 − 𝐺𝑦𝐹𝑥𝑦 , 𝐵 = 𝐹𝑦𝐺𝑦𝑦 − 𝐺𝑦𝐹𝑦𝑦  

𝐶 = 𝐹𝑦𝐺𝑥𝑥 − 𝐺𝑦𝐹𝑥𝑥 , 𝐷 = 𝐹𝑥𝐺𝑥𝑥 − 𝐺𝑥𝐹𝑥𝑥  

𝐸 = 𝐹𝑥𝐺𝑥𝑦 − 𝐺𝑥𝐹𝑥𝑦 , 𝐻 = 𝐹𝑥𝐺𝑦𝑦 − 𝐺𝑥𝐹𝑦𝑦 . 

Thus, 

𝛼 =
−(𝐷𝑑𝑥+𝐸𝑑𝑦 )

𝑇
, 𝛽 =

−(𝐶𝑑𝑥+𝐸𝑑𝑥+𝐴𝑑𝑦+𝐻𝑑𝑦 )

𝑇
, 𝛾 =

−(𝐴𝑑𝑥+𝐵𝑑𝑦 )

𝑇
.    (15)     

Substituting 𝛼, 𝛽 and 𝛾 into equation (9) and dividing by 𝑑𝑥 to convert the differential forms to functions, we 

have:  

𝑦′′ + 𝑓0 + 𝑓1𝑦
′ + 𝑓2𝑦

′2 + 𝑓3𝑦
′3 = 0,                                    (16) 

where the 𝑓𝑘  are given by  

𝑓0 =
𝐷

𝑇
, 𝑓1 =

(𝐶+2𝐸)

𝑇
, 𝑓2 =

(𝐻+2𝐴)

𝑇
, 𝑓3 =

𝐵

𝑇
.                           (17) 

We define 𝐾 and 𝐿 as  

𝐾 =
𝐸

𝑇
, 𝐿 =

𝐴

𝑇
,                                                                         (18)   

and replace 𝐷, 𝐶, 𝐻 and 𝐵 in the 1-forms in equation (15) in favour of the 𝑓𝑘 , 𝐾 and 𝐿, obtaining  

𝛼 = −𝑓0𝑑𝑥 − 𝐾𝑑𝑦, 𝛽 =  𝐾 − 𝑓1 𝑑𝑥 +  𝐿 − 𝑓2 𝑑𝑦, 𝛾 = −𝐿𝑑𝑥 − 𝑓3𝑑𝑦.   (19) 

We also note that 
𝑑𝑇

𝑇
=  3𝐾 − 𝑓1 𝑑𝑥 +  𝑓2 − 3𝐿 𝑑𝑦.                                     (20) 

We see that the 1-forms 𝛼, 𝛽, 𝛾 in (19)and 
𝑑𝑇

𝑇
in equation (20) are now expressed in terms of these four known 

functions 𝐾 and 𝐿. The first three of these 1-forms can now be substituted into equation (13) on the various 

functions. If we do that, the first equation for 𝑑𝛼, gives the equation  

𝑓0𝑦 − 𝐾𝑥 = −𝐾 𝐾 − 𝑓1 + 𝑓0(𝐿 − 𝑓2)                                   (21) 

which is nonlinear in K. The other equations give the results: 

−𝐾𝑦 + 𝑓1𝑦 + 𝐿𝑥 − 𝑓2𝑥 = 2𝐾𝐿 − 𝑓0𝑓3                                    (22) 

and  

𝐿𝑦 − 𝑓3𝑥 = −𝐿 𝐿 − 𝑓2 + 𝑓3(𝐾 − 𝑓1)                                   (23) 

which are also nonlinear. However, we can simplify the situation by defining new variables:  

𝑇 =
1

𝑊3 , 𝐸 =
𝑈

𝑊4 , 𝐴 =
𝑉

𝑊4,                                  (24) 

so that from (18) 

𝐾 =
𝑈

𝑊
, 𝐿 =

𝑉

𝑊
,                                                              (25) 

and from (20) 

3
𝑑𝑊

𝑊
=  𝑓1 − 3𝐾 𝑑𝑥 +  3𝐿 − 𝑓2 𝑑𝑦.                                 (26) 

We now have this situation. The 𝑑𝑊equation (26) gives expressions for 𝑊𝑥  and 𝑊𝑦 . The equation (21) gives, 

after substitution for 𝑊𝑥 , an expression 

𝑈𝑥 = 𝑊𝑓0𝑦 −
2

3
𝑈𝑓1 − 𝑉𝑓0 + 𝑊𝑓0𝑓2                                  (27) 

which is linear in 𝑈, 𝑉and 𝑊. The equation (23) gives an expression 

𝑉𝑦 = 𝑊𝑓3𝑥 +
2

3
𝑉𝑓2 + 𝑈𝑓3 −𝑊𝑓1𝑓3                                (28)     
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which is also linear. The equation (22) gives a linear expression 

𝑉𝑥 − 𝑈𝑦 =
𝑈

3
𝑓2 +

𝑉

3
𝑓1 −𝑊𝑓1𝑦 +𝑊𝑓2𝑥 − 2𝑓0𝑓3𝑊.                (29) 

The integrability condition on (26) gives a linear expression  

𝑉𝑥 + 𝑈𝑦 =
𝑈

3
𝑓2 +

𝑉

3
𝑓1 +

𝑊

3
𝑓2𝑥 +

𝑊

3
𝑓1𝑦 .                         (30) 

Equations (29) and (30) can be solved for 𝑉𝑥and 𝑈𝑦 . Thus we have expressions for all derivatives of 𝑈, 𝑉 and 

𝑊, all of which are linear and homogeneous in the same variables. That is  

𝑑𝑈 =
1

3
 −2𝑈𝑓1 − 3𝑉𝑓0 +𝑊 3𝑓0𝑦 + 3𝑓0𝑓2  𝑑𝑥 +

1

3
 −𝑈𝑓2 + 𝑊 2𝑓1𝑦 − 𝑓2𝑥 + 3𝑓0𝑓3  𝑑𝑦,   (31) 

𝑑𝑉 =
1

3
 𝑉𝑓1 +𝑊 2𝑓2𝑥 − 𝑓1𝑦 − 3𝑓0𝑓3  𝑑𝑥 +

1

3
 3𝑈𝑓3 + 2𝑉𝑓2 + 𝑊 3𝑓3𝑥 − 3𝑓1𝑓3  𝑑𝑦,   (32) 

𝑑𝑊 =
1

3
 −3𝑈 + 𝑊𝑓1 𝑑𝑥 +

1

3
 3𝑉 −𝑊𝑓2 𝑑𝑦.     (33) 

We summarize all these relations in a nice matrix equation  

𝑑𝑟 = 𝑀𝑟,         (34) 

where  

𝑟 =  
𝑈
𝑉
𝑊
 and 𝑀 = 𝑃𝑑𝑥 + 𝑄𝑑𝑦, 

𝑃 =  
1

3
  

−2𝑓1 −3𝑓0 3𝑓0𝑦 + 3𝑓0𝑓2

0 𝑓1 2𝑓2𝑥 − 𝑓1𝑦 − 3𝑓0𝑓3

−3 0 𝑓1

  

    

𝑄 =  
1

3
  

−𝑓2 0 2𝑓1𝑦 − 𝑓2𝑥 + 3𝑓0𝑓3

3𝑓3 2𝑓2 3𝑓3𝑥 − 3𝑓1𝑓3

0 3 −𝑓2

 . 

For integrability of (34), 𝑑𝑑𝑟 = 0 giving 

𝑑𝑀 = 𝑀 ∧𝑀                                                            (35) 

which is not zero since 𝑀 is a matrix. Substitution for 𝑀 in terms of 𝑃 and 𝑄 gives the condition  

𝑄𝑥 − 𝑃𝑦 + 𝑄𝑃 − 𝑃𝑄 = 0.        (36) 

This matrix condition in (36) reduces to two equations:   

𝑓0𝑦𝑦 + 𝑓0 𝑓2𝑦 − 2𝑓3𝑥 + 𝑓2𝑓0𝑦 − 𝑓3𝑓0𝑥 +  
1

3
  𝑓2𝑥𝑥 − 2𝑓𝑥𝑦 + 𝑓1𝑓2𝑥 − 2𝑓1𝑓1𝑦 = 0 (37) 

and
 

𝑓3𝑥𝑥 + 𝑓3 2𝑓0𝑦 − 𝑓1𝑥 + 𝑓0𝑓3𝑦 − 𝑓1𝑓3𝑥 +  
1

3
  𝑓1𝑦𝑦 − 2𝑓2𝑥𝑦 + 2𝑓2𝑓2𝑥 − 𝑓2𝑓1𝑦 = 0. (38) 

To summarize, we note that the original differential equation is cubic in 𝑦′, with the coefficients satisfying 

equations (37) and (38). 

Now, we shall construct the point transformations proper. We will need 𝑈, 𝑉  and 𝑊therefore we need to solve 

equations (34). Once the equations are solved, we construct 𝐾 and 𝐿 from equation (25). 

In order to find the 𝐹 𝑥, 𝑦 and 𝐺 𝑥, 𝑦 for which we are seeking, we revert to equations (8) and solve for 

𝑑𝐹𝑥 , 𝑑𝐹𝑦 , 𝑑𝐺𝑥and 𝑑𝐺𝑥 . Solution for 𝑑𝐹𝑥and 𝑑𝐹𝑦gives  

𝑑𝐹𝑥 =
 𝐹𝑦𝜎 − 𝐹𝑥𝜆 

𝑇
, 𝑑𝐹𝑦 =

 𝐹𝑦𝛿 − 𝐹𝑥𝜌 

𝑇
. 

Solution for 𝑑𝐺𝑥and 𝑑𝐺𝑦 , shows that they satisfy the same equation, so we will write only equations for the 

derivatives of 𝐹. We note that  

𝛿 + 𝜆 = −𝑇𝛽 and 𝛿 − 𝜆 = 𝑑𝑇, 

so we can solve these equations for 𝛿 and 𝜆.We can also substitute for 𝜎 and 𝜌 in terms of 𝛼  and 𝛾. We get 

finally  

𝑑𝐹𝑥 = −𝐹𝑦𝛼 + 𝐹𝑥
 𝛽 +

𝑑𝑇
𝑇
 

2
, 𝑑𝐹𝑦 = 𝐹𝑥𝛾 + 𝐹𝑦

 −𝛽 +
𝑑𝑇
𝑇
 

2
. 
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We substitute for 𝛼, 𝛽, 𝛾 and dT/T from equations (19) and (20) respectively in terms of the expressions 

obtained above, with the fk, K and L.
 

We now have two equations which can be expressed in matrix form as follows; 

𝑑𝑅 = 𝑍𝑅, 𝑑𝑆 = 𝑍𝑆
                                                    (39) 

where  

𝑍 =  
 2𝐾 − 𝑓1 𝑑𝑥 − 𝐿𝑑𝑦 𝑓0𝑑𝑥 + 𝐾𝑑𝑦

−𝐿𝑑𝑥 − 𝑓3𝑑𝑦 𝐾𝑑𝑥 +  𝑓2 − 2𝐿 𝑑𝑦
 ,  

𝑅 =  
𝐹𝑥
𝐹𝑦
  and  𝑆 =  

𝐺𝑥
𝐺𝑦
 . 

This linear equation set can be solved for𝑅. There will be two independent solutions, which can be taken as 𝑅 

and 𝑆 as seen in equation (39). Integrability is guaranteed by setting 𝑑𝑑𝑅 = 0. Finally, one can solve  

𝑑𝐹 =  𝑑𝑥 𝑑𝑦 𝑅, 𝑑𝐺 =  𝑑𝑥 𝑑𝑦 𝑆                        (40) 

for 𝐹 and 𝐺. 

We can summarize the procedure as follows: 

1. Make sure that the original differential equation is a cubic in 𝑦′as in equation (16) 

2. Test the coefficients 𝑓𝑘 to see whether they satisfy equations (37) and (38). 

3. Construct the 3 × 3 matrix 𝑀 and solve equation (34) (linear) for the three components of 𝑟 −a special 

solution is usually sufficient and construct 𝐾  and𝐿. 

4. Construct the 2 × 2  matrix 𝑍 and solve equation (39) (linear) for 𝑅 or 𝑆. 

5. Solve equation (40); the two independent solutions may be taken as 𝐹 and 𝐺. 

 

 

Results 

Let us consider the equation 

𝑦′′ −
𝑥

𝑦2 𝑦
′3 −

1

𝑦
𝑦′2 +

2

𝑥
𝑦′ = 0                                     (41) 

as presented in Mahomed and Quadir [8]. This equation has the coefficients 

𝑓0 = 0, 𝑓1 =
2

𝑥
, 𝑓2 = −

1

𝑦
, 𝑓3 = −

𝑥

𝑦2
 

Which satisfy the linearizability conditions (37) and (38). We therefore proceed to construct the 3 × 3 matrix 

𝑀 = 𝑃𝑑𝑥 + 𝑄𝑑𝑦 to have  

𝑀 =

 

 
 

−
4

3𝑥
𝑑𝑥 +

1

3𝑦
𝑑𝑦 0 0

−
𝑥

𝑦2 𝑑𝑦
2

3𝑥
𝑑𝑥 −

2

3𝑦
𝑑𝑦

1

𝑦2 𝑑𝑦

−𝑑𝑥 𝑑𝑦
2

3𝑥
𝑑𝑥 +

1

3𝑦
𝑑𝑦
 

 
 

. 

Now, equation (34) becomes 

𝑑𝑟 =

 

 
 

𝑈  −
4

3𝑥
𝑑𝑥 +

1

3𝑦
𝑑𝑦 

−𝑈
𝑥

𝑦2 𝑑𝑦 + 𝑉  
2

3𝑥
𝑑𝑥 −

2

3𝑦
𝑑𝑦 + 𝑊

1

𝑦2 𝑑𝑦

−𝑈𝑑𝑥 + 𝑉𝑑𝑦 +𝑊  
2

3𝑥
𝑑𝑥 +

1

3𝑦
𝑑𝑦  

 
 

.  

We now have that 𝑑𝑈 = 𝑈  −
4

3𝑥
𝑑𝑥 +

1

3𝑦
𝑑𝑦  and if 𝑈 = 0, then 𝑑𝑈 = 0. In addition, 

𝑑𝑉 =
2

3𝑥
𝑉𝑑𝑥 +  

𝑊

𝑦2 −
2𝑉

3𝑦
 𝑑𝑦                                       (42) 

and 

𝑑𝑊 =
2

𝑥
𝑊𝑑𝑥 +  𝑉 +

𝑊

𝑦
 𝑑𝑦                                  (43) 

so that from equation (43), 𝑊𝑥 =
2𝑊

𝑥
 and 𝑊𝑦 = 𝑉 +

𝑊

𝑦
. We can integrate 𝑊𝑥 =

2𝑊

𝑥
 to have 

𝑊 = 𝑥2𝑎(𝑦)         (44) 

for some function 𝑎 𝑦 . We also have that  
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𝑉 = 𝑥2𝑎′ 𝑦 −
𝑥2𝑎 𝑦 

𝑦
.                                                      (45) 

We consider the special solution 𝑎 𝑦 = 𝑦2 to have equations (44) and (45) as 𝑉 = 𝑥2𝑦 and 𝑊 = 𝑥2𝑦2 , so that 

𝐾 =
𝑈

𝑊
= 0 and 𝐿 =

𝑉

𝑊
=

1

𝑦
. We now construct the 2 × 2 matrix 𝑍 as  

𝑍 =

 

 
 
−

2

𝑥
𝑑𝑥 −

1

𝑦
𝑑𝑦 0

−
1

𝑦
𝑑𝑥 +

𝑥

𝑦2
𝑑𝑦 −

3

𝑦
𝑑𝑦
 

 
 

 

and have that 

𝑑𝑅 =

 

 
 

𝑏  −
2

𝑥
𝑑𝑥 −

1

𝑦
𝑑𝑦 

𝑏  −
1

𝑦
𝑑𝑥 +

𝑥

𝑦2
𝑑𝑦 −

3

𝑦
𝑐𝑑𝑦

 

 
 

, 

where 𝑅 =  
𝑏
𝑐
 , 

𝑑𝑏 = −𝑏  
2

𝑥
𝑑𝑥 +

1

𝑦
𝑑𝑦 ,                                                    (46) 

and 

𝑑𝑐 = −
𝑏

𝑦
𝑑𝑥 +  

𝑥

𝑦2 𝑏 −
3

𝑦
𝑐 𝑑𝑦.                                (47) 

Integrating equation (46), we have 

𝑏 =
𝑘

𝑥2𝑦
                                                                   (48) 

where 𝑘 = ln 𝑗 is a constant. 

From equation (47), on substitution of (48) we have that  

𝑐𝑥 = −
𝑘

𝑥2𝑦2.                                                             (49) 

We can integrate the above equation to have 

𝑐 =
𝑘

𝑥𝑦2 + 𝑔 𝑦 .                                                          (50) 

Differentiating the above with respect to 𝑦, one obtain 

𝑐𝑦 = −
2𝑘

𝑥𝑦3 + 𝑔′ 𝑦 .                                                       (51) 

From equation (46), on substitution of the values of 𝑏 and 𝑐 and simplifying, we arrive at 

𝑔′ 𝑦 +
3

𝑦
𝑔 𝑦 = 0                                                     (52) 

which we can use the integrating factor to get 

𝑔 =
𝑚

𝑦3,                                                                                       (53)   

where 𝑚 is also a constant. Therefore equation (50) becomes 

𝑐 =
𝑘

𝑥𝑦2 +
𝑚

𝑦3 .                                                         (54) 

That is 𝑏 = 𝐹𝑥 =
𝑘

𝑥2𝑦
 and 𝑐 = 𝐹𝑦 =

𝑘

𝑥𝑦2 +
𝑚

𝑦3. Consider 𝐹𝑥 , on integration, we have 

𝐹 = −
𝑘

𝑥𝑦
+ 𝑕 𝑦 .                                         (55) 

Differentiating equation (55) with respect to 𝑦, equating the result with equation (54) and rearranging, we have 

𝑕′ 𝑦 =
𝑚

𝑦3.                                                                        (56) 

Integrating equation (56), substituting the result into equation (55) and simplifying, we have 

𝐹 +
𝑘

𝑥𝑦
+

𝑚

2𝑦2 = 0.                                                        (57) 

Taking the inverse of the coefficients of the constants 𝑘 and 𝑚 we have 

𝐹 + 𝑘 𝑥𝑦 + 𝑚 2𝑦2 = 0, 

we therefore take  

𝑋 = 𝐹 𝑥, 𝑦 = 𝑥𝑦,       𝑌 = 𝐺 𝑥, 𝑦 = 2𝑦2 
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as the linearizing point transformation of equation (41). 

 

Conclusion 

We can see in this paper how differential forms make the problem of linearization simple for understanding. 

Other tools for linearization such as contact transformation, reduction of order, differential substitution, and 

generalized Sundman transformation Thailert and Suksern [9] are not easy to go by. 
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