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Abstract The vim- Restrictive Padé is modification of vim-Padé which we make truncation of series given by 

vim then we find the Padé approximation and Restrictive Padé approximation. the results between vim, vim- 

Padé, vim- Restrictive Padé are compered and show that vim- Restrictive Padé gives high accurate than the 

truncation series by vim and also better than vim- Padé. 
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1. Introduction 

The Riccati differential equation was introduced by the Italian Nobleman Count Jacopo Francesco Riccati 

(1676-1754). More than a quarter of a millennium ago, the Riccati equation has been widely studied in the last 

few decades. Bittanti  et al. [1] in 1992 introduced ahistorical survey and solution of both continuous and 

discrete Riccati equation. Reid [2] presents a brief survey of basic properties of scalar Riccati differential 

equations, Riccati matrix and described some occurrences of Riccati matrix differential equations in various 

applications.Since its introduction in control theory in the sixties, the Riccati equation has known an impressive 

range of applications  in both classical and  modern science and engineering ,such as random processes and  

optimal control[3-5], transmission line phenomena , optimization and robust stabilization, stochastic realization, 

synthesis of linear passive networks, calculus of variations[6-9] to name but a few. 

As it is well known, Riccati differential equations concerned with applications in pattern formation in dynamic 

games, linear systems with Markovian jumps, river flows, econometric models, stochastic control, theory, 

diffusion problems, and invariant embedding [10–13]. 

The general response expression contains a parameter describing the order of the fractional derivative that can 

be varied to obtain various responses. In the case of 𝛼 =  1, the fractional equation reduces to the classical 

Riccati differential equation. The importance of this equation usually arises in many engineering areas.  in the 

optimal control problems. The feedback gain of the linear quadratic optimal control depends on a solution of a 

Riccati differential equation which has to be found for the whole time horizon of the control process [14].  

The existing literature on fractional differential equations tends to focus on particular values for the order 𝛼. The 

value 𝛼 =
1

2
is especially popular. This is because in classical fractional calculus, many of the model equations 

developed used these particular orders of derivatives [15].Many studies have been conducted on solutions of the 

Riccati differential equations. Some of them, the approximate solution of ordinary Riccati differential equation 

obtained from homotopy perturbation method (HPM) [16,17], homotopy analysis method (HAM) [18, 19]. 

He in [20, 21] introduced thevariational iteration method (VIM)], was successfully applied for both ordinary and 

partial differential equations and other fields. He was starting to apply the variational iteration method to 

fractional differential equations[22]. In recent years Modification of the homotopy perturbation 

https://books.google.com.eg/books?op=lookup&id=6SzvCAAAQBAJ&continue=https://books.google.com.eg/books%3Fhl%3Dar%26lr%3D%26id%3D6SzvCAAAQBAJ%26oi%3Dfnd%26pg%3DPA1%26dq%3Dintroduction%2Bof%2BRiccati%2Band%2BDifferential%2BEquations%26ots%3D4Ta4azkD3d%26sig%3DSbvKfucnr5RK08f7bcKUx7Jc_bk%26redir_esc%3Dy&hl=ar
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method[23].Thevariational iteration method [24, 25] to solve quadratic Riccati differential equation of fractional 

order.and Modification on Decomposition method for solving fractional Riccati by transform the solution to 

Padé approximation  is done in [26],Chebyshev finite difference introduced by Khader in [27]. 

We consider here the following non-linear fractional order Riccati differential equation 

𝐷∗
𝛼𝑦 𝑡 = 𝐴 𝑡 + 𝐵 𝑡 𝑦 + 𝐶 𝑡 𝑦2      𝑡 > 0, 𝑛 − 1 ≤ 𝛼 ≤ 𝑛 (1) 

Subject to the initial conditions  

𝑦 k  0 = 𝑐𝑘       𝑘 = 0,1, … , 𝑛 − 1 (2) 

whereα is the fractional order derivative and  𝑛 is an integer. 𝐴 𝑡 , 𝐵 𝑡 , 𝐶 𝑡 are given real functions 𝑐𝑘       𝑘 =

0,1, … , 𝑛 − 1 is constant. 

 

2. Fractional Order Calculus  

Fractional calculus deals with derivatives and integrals of arbitrary order and conceder a generalization of 

classical calculus. Fractional calculus deals with derivatives and integrals of arbitrary orderprovides a more 

powerful tool for modeling the real live phenomena, and this is actually a natural result of the fact that in FC the 

integer orders are just special cases. 

Definition:Let 𝛼 ∈ 𝑅+ . The operator 𝐽𝑎
𝛼  defined on 𝐿1[𝑎,  𝑏] by 

𝐽𝑎
𝛼𝑓 𝑡 =

1

𝛤 𝛼 
  𝑡 − 𝜏 𝛼−1

𝑡

𝑎

𝑓 𝜏 𝑑𝜏 (3) 

for 𝑎 ≤  𝑡 ≤  𝑏, is called the Riemann-Liouville fractional integral operator of order α 

Definition:   Let 𝛼 ∈  𝑅+ and 𝑛 =   𝛼 . The operator Da
α defined as 

𝐷𝑎
𝛼𝑓 𝑡 = 𝐷𝑛 𝐽𝑎

𝑛−𝛼𝑓 𝑡  (4) 

 

𝐷𝑎
𝛼𝑓 𝑡 =

 
 

 𝐷𝑛
1

𝛤 𝑛 − 𝛼 
  𝑡 − 𝜏 𝑛−𝛼−1𝑓 𝜏 

𝑡

𝑎

𝑑𝜏  𝑛 − 1 < 𝛼 < 𝑛

𝑑𝑛

𝑑𝑡𝑛
 𝑓 𝑡                                                                     𝛼 = 𝑛

      (5) 

 

for 𝑎 ≤ 𝑡 ≤ 𝑏, is called the Riemann-Liouville differential operator of order α.  

the Riemann-Liouville differential operator is the left-inverse operator of  the Riemann-Liouville fractional 

integral operator  

i.e 

𝐷𝑎
𝛼 𝐽𝑎

𝛼 = 𝐼 

 

by convention  

𝐷𝑎
0𝑓 𝑡 = 𝑓 𝑡          𝑖. 𝑒       𝐷𝑎

0 = 𝐼 

 

Definition: Let 𝛼 ∈  𝑅+ and 𝑛 =   𝛼 . The operator 𝐷∗𝑎
𝛼  defined by 

𝐷𝑥
𝛼

𝑎
𝑐 𝑓 𝑡 =  𝐷∗𝑎

𝛼 =

 
 

 
1

𝛤 𝑛 − 𝛼 
  𝑡 − 𝜏 𝑛−𝛼−1𝑓(𝑛)(𝜏)

𝑡

𝑎

𝑑𝜏       𝑛 − 1 < 𝛼 < 𝑛

𝑑𝑛

𝑑𝑡𝑛
 𝑓 𝑡                                                                     𝛼 = 𝑛

  (6) 

for 𝑎 ≤ 𝑡 ≤ 𝑏, is called the Caputo differential operator of order α 

3. Analysis of the Variational Iteration Method 

Consider the differential equation 

𝐿𝑦 + 𝑁𝑦 =  𝑔(𝑡)    (8) 

Where L and N are linear and nonlinear operators respectively, and g(t) is the source inhomogeneous term. 

Apply the variational iteration method to equation (8) to find the correction functional on the form: 

𝑦𝑛+1 𝑡 = 𝑦𝑛 𝑡 +  𝜆 𝜉  𝐿𝑦𝑛 𝜉 + 𝑁𝑦 𝑛 𝜉 − 𝑔 𝜉  
𝑡

0

𝑑𝜉 
(9) 
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Taking the fractional differential equation in the form: 

𝐷∗
𝛼y t = A t + B t 𝑦 + 𝐶 t 𝑦2 , 0 < 𝛼 ≤ 1, (10) 

with initial condition 𝑦 0 = 0, where 𝐷𝛼 =  𝑑𝛼/𝑑𝑡𝛼 . According to the variational iteration method [9], we 

construct a correction functional for (10) which reads 

𝑦𝑛+1 = 𝑦𝑛 + 𝐼𝛼𝜆 𝜉  
𝑑𝛼𝑦𝑛
𝑑𝜉𝛼

− A t − B t 𝑦𝑛 − 𝐶 t 𝑦𝑛
2  

(11) 

To identify the multiplier, we approximately write (11) in the form 

𝑦𝑛+1 = 𝑦𝑛 +  𝜆 𝜉  
𝑑𝛼𝑦𝑛
𝑑𝜉𝛼

− A t − B t 𝑦 𝑛 − 𝐶 t 𝑦 𝑛
2 

𝑡

0

𝑑𝜉 
(12) 

Where λ is a general Lagrange multiplier, which can be identified optimally via the variational theory, and  𝑦 𝑛 is 

a restricted variation, that is, 𝛿𝑦 𝑛 = 0. The successive approximation 𝑦𝑛+1 , 𝑛 ≥ 0 of the solution y t will be 

readily obtained upon using Lagrange’s multiplier, and by using any selective function 𝑦0. The initial value 

y 0 and y𝑡 0 are usually used for selecting the zerothapproximation 𝑦0. To calculate the optimal value of λ, we 

have 

𝛿𝑦𝑛+1 = 𝛿𝑦𝑛 + 𝛿 𝜆 𝜉 
𝑑𝑦𝑛
𝑑𝜉

𝑡

0

𝑑𝜉 = 0 
(13) 

This yields the stationary conditions 

𝜆′ 𝜉 =  0 

1 + 𝜆 𝜉 =  0 

which gives 

𝜆 =  −1 (14) 

Substituting this value of Lagrangian multiplier in (11), we get the following iteration formula 

𝑦𝑛+1 = 𝑦𝑛 − 𝐼𝛼  
𝑑𝛼𝑦𝑛
𝑑𝜉𝛼

− A t − B t 𝑦𝑛 − 𝐶 t 𝑦𝑛
2  

(15) 

and finally the exact solution is obtained by 

y t = lim
𝑛→∞

𝑦𝑛(𝑡) (16) 

 

4. Padé and restrictive Padé 

The Padé approximants are a particular type of rational fraction approximation to the value of the function [29-

30]. 

The Padé approximant often given as:  

𝐻 𝑠 =  
𝐴 𝑠 

𝐵 𝑠 
 

(17) 

The Padé approximation can be written in the form 

𝑃𝐴[𝑀 𝑁 ]𝑓(𝑥) 𝑥 =
 𝑎𝑖𝑥

𝑖𝑀
𝑖=0

1 +  𝑏𝑖𝑥
𝑖𝑁

𝑖=1

 (18) 

where𝑀 and𝑁 are positive integers 

There are 𝑀 + 1 independent numerator coefficients and 𝑁 denominator coefficients making 𝑀 +  𝑁 +  1 

unknown coefficients. 

The 𝑀 +  𝑁 +  1 unknown suggests that normally the   𝑃𝐴 [𝑀/𝑁] ought to fit the power series 𝑓(𝑥)  =

  𝑐𝑖𝑥
𝑖∞

𝑖=0 . 

Ismail et al. [31-35] applied Restrictive Padé approximation to solve many differential equations. Function 

approximation that meet Taylor approximation was done by Ismail et al.  in [36] . 

The restrictive Padé approximation is a rational function in the form: 

𝑅𝑃𝐴[𝑀 + 𝛼 𝑁] 
𝑓 𝑥 

 𝑥 =
 𝑎𝑖𝑥

𝑖𝑀
𝑖=0 +  𝜀𝑖𝑥

𝑀+𝑖𝛼
𝑖=1

1 +  𝑏𝑖𝑥
𝑖𝑁

𝑖=1

                                       (19) 

where the positive integer 𝛼 does not exceed the degree of the numerator, 𝛼 = 0 1 𝑛  Such that 

𝑓 𝑥 = 𝑅𝑃𝐴[𝑀 + 𝛼 𝑁] 
𝑓 𝑥 

 𝑥 + 𝑂(𝑋𝑀+𝑁+1)                                             (20) 
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5. Steps of Solution using Vim -restrictive Padé 

The VIM gives a semi analytical solution in series form the accuracy of this method depend on two main 

restrictions the first is the order of series that main when we stop the iteration and make the truncation the 

second is the region of convergence where the solution of VIM gives high accurate at t=0 which meet the talor 

series expantion of the exact solution but  it has very slow convergence rate in the wider region , for this reasons 

many researchers make some modifications on VIM [37]. 

We present a modification of VIM by using the Pade' approximation and then apply this modification to solve 

the fractional Riccati differential equations. When we obtain the truncated series solution of order at least L + M 

in t by VIM, we will use it to obtain Pade' approximation PA[L/M](t) for the solution y(t) ,then we use this series 

to calculate the restrictive Pade' approximation  

Algorithm 

Step 1 Apply the  VIM to solve our Equation : 

Using equation (9) to find the iterative process for equation (1) after that construct the correction function (11) 

then identify the Lagrangian multiplier, finally  we have the iteration formula (15) 

Step 2 Truncate the obtained sequence solution by using VIM: 

The approximate solution can be obtained as series solution of n degree 𝑦 𝑡 ≅ 𝑦𝑛 𝑡  for n=1,2,3,.. 

Step 3 Find the Pade' approximation of the previous step: 

We find the Pade' approximation using the series solution that given by VIM 

Step 4 Find the restrictive Pade' approximation of the step3:  

We find the Pade' approximation using the series solution that given by VIM 

Note: in case of fractional order series we make transformation in order to achieve step 3 and step 4 then we 

reverse the transformation. 

 

6. Numerical example 

Example: Consider the following fractional riccati equation 

𝑑𝛼𝑦

𝑑𝑡𝛼
= 2𝑦 𝑡 − 𝑦2 𝑡 + 1,                        0 < 𝛼 ≤ 1 

Subject to initial condition 

𝑦 0 = 0 

The exact solution, when 𝛼 = 1, is 

𝑦 𝑡 = 1 +  2 tanh   2𝑡 +
1

2
log  

 2 − 1

 2 + 1
   

By starting with 𝑦0 𝑡 =
𝑡𝛼

Γ[1+𝛼]
, then by applying the iteration formulation we can obtain directly the other 

components as  

𝑦1 𝑡 =
𝑥𝛼

Γ[1 + 𝛼]
− 𝑥1+𝛼(

𝑥𝛼

(1 + 2𝛼)Γ[1 + 𝛼]2
−

2

Γ[2 + 𝛼]
) 

𝑦2 𝑡 = −𝑡2 −
𝑡3+4𝛼

 1 + 2𝛼 2 3 + 4𝛼 Γ 1 + 𝛼 4
−

𝑡1+2𝛼

 1 + 2𝛼 Γ 1 + 𝛼 2
+

𝑡𝛼

Γ 1 + 𝛼 

− 𝑡1+𝛼  
𝑡𝛼

 1 + 2𝛼 Γ 1 + 𝛼 2
−

2

Γ 2 + 𝛼 
 +

2𝑡2+3𝛼 1 + 𝛼  3 1 + 𝛼 2 + 𝑡 4 + 6𝛼  

3 2 + 7𝛼 + 6𝛼2 Γ 2 + 𝛼 3

−
𝑡2+2𝛼(9 + 21𝛼 + 10𝛼2 + 𝑡(4 + 8𝛼))

(3 + 8𝛼 + 4𝛼2)Γ[2 + 𝛼]2
+

2𝑡1+𝛼

Γ[2 + 𝛼]
+

21+2𝛼𝑡2+𝛼Γ[
1
2

+ 𝛼]

 𝜋Γ[3 + 𝛼]2

+
34𝛼𝑡2+𝛼𝛼Γ[

1
2

+ 𝛼]

 𝜋Γ[3 + 𝛼]2
+

4𝛼𝑡2+𝛼𝛼2Γ[
1
2

+ 𝛼]

 𝜋Γ[3 + 𝛼]2
+

4𝑡2+𝛼

Γ[3 + 𝛼]
 

At 𝛼 = 1 

𝑦1 𝑡 = 𝑡 + 𝑡2 −
𝑡3

3
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𝑃𝐴  
2

2
 =

𝑥

1 − 𝑥 +
2𝑥2

3

, 

𝑅𝑃𝐴  
2

2
 =

𝑥 − 0.10256410256410256𝑥2

1.0 − 1.1025641025641026𝑥 + 0.66667𝑥2
 

𝑦2 𝑡 = 𝑡 + 𝑡2 +
𝑡3

3
−

2𝑡4

3
−
𝑡5

15
+
𝑡6

9
−
𝑡7

63
 

 
Figure 1: Comparison between exact solution, VIM, Padé -VIM and Restrictive Padé -VIM for 𝑦1 𝑡  𝑎𝑡 𝛼 = 1 

 
Figure 1:  Error between solution, VIM, Padé -VIM and Restrictive Padé -VIM for 𝑦1 𝑡  𝑎𝑡 𝛼 = 1 

At 𝛼 = 0.5 

𝑦1 𝑡 = 1.1283791670955126𝑡0.5 + 1.5045055561273502𝑡1.5 − 0.6366197723675813𝑡2 
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For integer power to approximate Padé and restrictive Padé Let  𝑡
1

2 = 𝑥, then 

𝑦1 𝑡 = 1.1283791670955126 𝑥 + 1.5045055561273502 𝑥 3 − 0.6366197723675813 𝑥4 

𝑃𝐴 2/2 =
1.1283791670955126𝑥 + 0.4774648292756859𝑥2

1 + 0.4231421876608171𝑥 − 1.3333333333333335𝑥2
 

𝑝𝑢𝑡    𝑥 =  𝑡
1
2 

Calculating the [2/2] Pade´ approximants and recalling that x = t1/2, we get 

𝑃𝐴 2/2 =
1.1283791670955126 𝑡

1
2 + 0.4774648292756859 t

1 + 0.4231421876608171 𝑡
1
2 − 1.3333333333333335 t

 

 

 
Figure 3: Comparison between VIM,Padé -VIM and Restrictive Padé -VIM for 𝑦1 𝑡  𝑎𝑡 𝛼 = 0.5 

𝑦2 𝑡 = 1.1283791670955126𝑡0.5 + 3.0090111122547007𝑡1.5 − 𝑡2 − 1.2732395447351625𝑡2

+ 1.5867236387689023𝑡2.5 − 1.5561816657874212𝑡3 + 0.4104848505718093𝑡3.5

− 0.5658842421045168𝑡4 + 0.42568799318558𝑡4.5 − 0.0810569469138702𝑡5 

 

7. Results and Conclusion 

Most of engineering applications can be model as rational function called transfer function ,this function 

describe the relation between input and output this is the main reason that Padé approximation gives more 

accurate result than semi analytical solutions. 

From figures of both result and error we can claim that Padé -VIM is more better than VIM but restrictive Padé -

VIM is the best result and less error 
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