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Abstract In this paper, a mathematical model of hepatitis B virus transmission dynamics, incorporating 

vaccination and treatment as control parameters is presented. Using published values of the model parameters, 

the stability properties of the disease-free and the endemic equilibrium states were numerically investigated. The 

numerical results show that if the basic reproduction number is less than unity, the disease-free equilibrium state 

is locally and asymptotically stable. The numerical results also show that the endemic equilibrium state is 

locally and asymptotically stable if the basic reproduction number is above one. The numerical results further 

show that the disease-free (respectively the endemic) equilibrium state is globally and asymptotically stable if 

the basic reproduction number is less than (is greater than) unity. Finally, this study suggests that effective 

vaccination and treatment in combination guarantees eradication within the shortest possible time. 

 

Keywords Hepatitis B, mathematical model, basic reproduction number, disease-free equilibrium state, 

endemic equilibrium state, stability 

1. Introduction 

Hepatitis B is a disease that is characterized by inflammation of the liver and is caused by infection by the 

hepatitis B virus [1-2]. Hepatitis B is a serious health challenge. More than a billion people across the globe 

have been infected with hepatitis B virus (HBV) and over 300 million people are carriers of the virus [3-7]. The 

modes of transmission of HBV are: mother to child (vertical), contact with an infected person, sexual contact 

with infected partners, exposure to blood or other infected fluids and contact with HBV contaminated 

instruments [1]. HBV control interventions include vaccination, education, screening of blood and blood 

products; and treatment [2]. 

As reported in Zou et al [8], mathematical models have been used to study the transmission dynamics of HBV 

in various communities, regions and countries. Anderson and May [9] used a simple deterministic, 

compartmental mathematical model to study the effects of carriers on the transmission of HBV. Anderson & 

May [10] and Williams et al [11] presented models of sexual transmission of HBV, which include 

heterogeneous mixing with respect to age and sexual activity. Edmunds et al [12] investigated the relation 

between the age at infection with HBV and the development of the carrier state. Medley et al [13] proposed a 

model to show that the prevalence of infection is largely determined by a feedback mechanism that relates the 

rate of transmission, average age at infection and age-related probability of developing carriage following 

infection. Thornley et al [14] applied the model of Medley et al [13] to predict chronic hepatitis B infection in 

New Zealand. The prevalence of HBV in developing countries is different from that in developed countries, 

since it appears that the rate of transmission in childhood is the major determinant of the level of HBV 

endemicity and little is known on the rates and patterns of sexual contact in developing countries [15]. Mclean 

and Blumberg [16] and Edmunds et al [17] studied models of HBV transmission in developing countries and 

Williams et al [11] described a model of HBV in UK. Zou et al [8] proposed a mathematical model to 
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investigate the transmission dynamics and prevalence of HBV in mainland China. The model is formulated from 

that of Medley et al [13] based on the characteristics of HBV in China. 

The model by Zou et al [8] forms the motivation for this study. Zou and his collaborators assumed that the 

newborns to carrier mothers infected at birth do not stay in a latent period, so that they instantaneously become 

carriers. However, as pointed out by Anderson and May [9] and White and Fenner [3], person infected with 

HBV must have harboured the virus in the blood for at least six months to become a carrier. By this newborns to 

carrier mothers infected at birth are latently infected individuals. Mehmood [18] supported the same view in his 

study and assumed that the proportion of the infected newborns to carrier mothers is latent. The role of treatment 

of HBV carriers as a measure of control was not considered in their model. 

In this paper, the above amendments and inclusion of the treatment parameter in their model have been effected.  

The analytical method of stability was earlier carried out by us in Kimbir et al [19]. We now dwell on numerical 

analysis. 

The plan of this paper is as follows. The model equations are presented in section 2. Section 3 is devoted to the 

numerical stability of the equilibria. Numerical simulations of the model are treated in section 4. Section 5 gives 

the discussion of the results. Conclusive remarks are passed in section 6. 

 

2.  The Model Equations 

2.1. The Existing Model 

We begin by introducing the model by Zou et al [8].  We, first, present the parameters of the existing model.  

2.2. Variables and Parameters of the Existing Model 

The population is partitioned into six compartments described as follows: 𝑆 𝑡 = proportion of the susceptible 

individuals at time 𝑡, 

𝐿 𝑡 = proportion of the latent individuals at time 𝑡, 

𝐼 𝑡 = proportion of the acutely infected individuals at time 𝑡, 

𝐶 𝑡 = proportion of the chronic carriers at time 𝑡, 

𝑅 𝑡 = proportion of the recovered individuals at time 𝑡, 

𝑉 𝑡 = proportion of the vaccinated individuals at time 𝑡. 

The following are the parameters of the existing model: 

𝜇 =birth rate, 

𝜇0=natural mortality rate, 

𝜇1 =HBV-related mortality rate, 

𝜔 =proportion of births without vaccination, 

 1 − 𝜔 =proportion of births vaccinated, 

𝑣 =proportion of births vertically infected, 

𝛹 =rate of waning vaccine-induced immunity, 

𝜎 =rate of moving from latent state to acute state, 

𝛽 =transmission coefficient, 

𝛾1 = 𝑟ate of moving from acute to other compartments, 

𝑞 = average probability that an individual fails to clear an acute infection and develops to carrier state, 

𝑞𝛾1 = rate of moving from acute to carrier, 

 1 − 𝑞 𝛾1 = rate of moving from acute to recovered class, 

𝛾2 = 𝑟ate of moving from carrier to immune, 

𝛾3 = vaccination rate of the susceptible individuals, 

𝜀 = reduced transmission rate relative to acute infection by carriers. 

2.3. The Equations of the Existing Model 

Using the earlier assumptions and parameters, Zou et al [8] derived the following model equations. 

𝑑𝑆

𝑑𝑡
= 𝜇𝜔 1 − 𝑣𝐶 + 𝛹𝑉 −  µ

0 
+ 𝛽𝐼 + 𝜀𝛽𝐶 + 𝛾3 𝑆     (1.1) 

𝑑𝐿

𝑑𝑡
=  𝛽𝐼 + 𝜀𝛽𝐶 𝑆 −  𝜎 + 𝜇0 𝐿                                         (1.2) 
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𝑑𝐼

𝑑𝑡
= 𝜎𝐿 −  µ

0
+ 𝛾1 𝐼                                                            (1.3) 

𝑑𝐶

𝑑𝑡
= µ𝑣𝜔𝐶 + 𝑞𝛾1𝐼 −  µ

0
+ µ

1
+ 𝛾2 𝐶                           (1.4)                  

𝑑𝑅

𝑑𝑡
=  1 − 𝑞 𝛾1𝐼 + 𝛾2𝐶 − µ

0
𝑅                                          (1.5) 

𝑑𝑉

𝑑𝑡
= µ 1 − 𝜔 + 𝛾3𝑆 −  𝜇0 + 𝛹 𝑉                                 (1.6) 

2.4. The Extended Model  

2.5. Assumptions of the Extended Model 

In addition to the assumptions by Zou et al [8], Kimbir, et al [20], make the following assumptions: 

i. The chronic carriers are treated at the rate 𝛼. Acute infections are not subjected to antiviral treatment 

because of possibility of relapse and resistance [21], 

ii. The newborns to carrier mothers infected at birth, first, enter the latent class [18], 

iii. The treated individuals recover [22].  

2.6. Equations of the Extended Model 

The infected newborns are now moved to the second equation instead of the fourth equation in the existing 

model. Also, chronic individuals are now treated at a rate 𝛼 and this is incorporated in the last term in the fourth 

equation. 

Based on the above assumptions and the parameters the extended model is as follows. 

𝑑𝑆

𝑑𝑡
= 𝜇𝜔 1 − 𝑣𝐶 + 𝛹𝑉 −  µ

0 
+ 𝛽𝐼 + 𝜀𝛽𝐶 + 𝛾3 𝑆                            (2.1) 

𝑑𝐿

𝑑𝑡
= µ𝑣𝜔𝐶 +  𝛽𝐼 + 𝜀𝛽𝐶 𝑆 −  𝜎 + 𝜇0 𝐿                                                (2.2) 

𝑑𝐼

𝑑𝑡
= 𝜎𝐿 −  µ

0
+ 𝛾1 𝐼                                                                                   (2.3) 

𝑑𝐶

𝑑𝑡
= 𝑞𝛾1𝐼 −  µ

0
+ µ

1
+ 𝛾2 + 𝛼 𝐶                                                          (2.4) 

 
𝑑𝑉

𝑑𝑡
= µ 1 − 𝜔 + 𝛾3𝑆 −  𝜇0 + 𝛹 𝑉                                                       (2.5) 

 
𝑑𝑅

𝑑𝑡
=  1 − 𝑞 𝛾1𝐼 + (𝛾2 + 𝛼)𝐶 − µ

0
𝑅                                                      (2.6)  

𝑆 0 ≥ 0, 𝐿 0 ≥ 0, 𝐼 0 ≥ 0, 𝐶 0 ≥ 0, 𝑉 0 ≥, 𝑅 0 ≥ 0. 

Because the model variables are in terms of proportions,  

𝑆 𝑡 + 𝐿 𝑡 + 𝐼 𝑡 + 𝐶 𝑡 + 𝑅 𝑡 + 𝑉 𝑡 = 1                                       (2.7) 

  for all time 𝑡.  

The model is defined in the subset 𝐷 ×  0, ∞  of 𝑅+
7 , where 

𝐷 =   𝑆, 𝐿, 𝐼, 𝐶, 𝑉, 𝑅 ∈ 𝑅+
6 : 0 ≤ 𝑆, 𝐿, 𝐼, 𝐶, 𝑉, 𝑅 ≤ 1, 𝑆 + 𝐿 + 𝐼 + 𝐶 + 𝑉 + 𝑅 ≤ 1   

Table1: Parameter values used in numerical simulations 

Parameter/Variable Value Reference 

v
 0.11 [8] 


 0.1 [8] 


 6 per year [8] 


 0.95 [8] 


1  

4 per year [8] 

q
 0.885 [8] 


2  

0.025 [8] 


 0.16 [8] 

  0.0367 [23] 


0

 0.0166 [23] 



Abu O & Onalo SE                                  Journal of Scientific and Engineering Research, 2017, 4(9):295-310 

 

Journal of Scientific and Engineering Research 

298 

 

)0(S  0.7 Assumed 

)0(L  0.05 Assumed 

)0(I  0.05 Assumed 

)0(C  0.08 [24]
 

)0(R  0.12 Assumed 

 

3. Stability of Equilibria 

We now calculate the disease-free equilibrium state of the extended model. As done in Zou et al (2009), we 

begin this by setting the left hand sides of equations  2.1 − (2.5) to zero and get the disease-free equilibrium 

state as follows. 

The disease-free equilibrium state,  𝐸0 = (𝑆0 , 0, 0, 0,  𝑉0), where 𝑆0 =
𝜇(𝛹+𝜇0𝜔)

𝜇0(𝜇0+𝛾3+𝛹)
 and  𝑉0 =

𝜇 (𝜇0+𝛾3−𝜇0𝜔)

𝜇0(𝜇0+𝛾3+𝛹)
. 

Next generation method [25-28] gives the basic reproduction number as follows. 

𝑅0 = 𝜌(𝐹𝑥𝑉
−1) =

𝜎𝛽 𝑆0

 𝜎+𝜇0 (𝜇0+𝛾1)
+

𝑞𝛾1𝜎 µ𝑣𝜔+𝜀𝛽 𝑆0 

 𝜎+𝜇0 (𝜇0+𝛾1)(𝜇0+𝜇1+𝛾2+𝛼)
                                              (2.8)  

3.1. Existence and Local Stability Analysis of the Disease-free Equilibrium State (DFEs) 

We will now examine the existence and local stability of DFEs. We shall first compute the Jacobian matrix for 

the disease-free equilibrium state using equations  2.1 −  2.5  as done in Zou et al [8]. 

The Jacobian matrix for the disease-free state 𝐽𝐸0
 is given as 

 

𝐽𝐸0
=

 

 
 

− 𝜇0+𝛾3 +  𝛹 0 −𝛽𝑆0     − 𝜇𝑣𝜔 + 𝜀𝛽𝑆0                          𝛹

0 − 𝜎 + 𝜇0   𝛽𝑆0               µ𝑣𝜔 + 𝜀𝛽𝑆0                      0

0
0
0

𝜎
0
0

− 𝜇0+𝛾1 
𝑞𝛾1

−𝛽𝑆0

0
− 𝜇0+𝜇1+𝛾2 + 𝛼 

− 𝜇𝑣𝜔 + 𝜀𝛽𝑆0 

          0
           0
       −𝜇0  

 
 

 

 

We investigate the local stability of the disease-free equilibrium state for the following values of the control 

parameters. For  

Table 2 𝛾3=0 𝛼=0 𝜔 = 1 

  

𝐽𝐸0
=

 

 
 

−0.0166 0.0000 −2.2108 −0.3578 0.1000
0.0000 −6.0166 2.2108 0.3578 0.0000
0.0000
0.0000
0.0000

6.0000
0.0000
0.0000

−4.0166 0.0000 0.0000
3.5400 −0.0616 0.0000
0.0000 0.0000 −0.1166  

 
 

. 

Thus, the characteristic equation in 𝜆 becomes 

𝜆5 + 10.2280𝜆4 + 12.8658𝜆3 − 5.3737𝜆2 − 0.9005𝜆 − 0.0134 = 0                            (2.9)    

   Solving (2.9)    gives 𝜆1 = −0.0166, 𝜆2 = −8.6749, 𝜆3 = −1.8513, 𝜆4 = 0.4314, 𝜆5 = −0.1166  and 

𝑅0 = 5.6536. 
  For  

Table 3 𝛾3=0 𝛼=0 𝜔 = 0 

    

𝐽𝐸0
=

 

 
 

−0.0166 0.0000 −1.8961 −0.3034 0.1000
0.0000 −6.0166 1.8961 0.3034 0.0000
0.0000
0.0000
0.0000

6.0000
0.0000
0.0000

−4.0166 0.0000 0.0000
3.5400 −0.0616 0.0000
0.0000 0.0000 −0.1166  

 
 

. 

Thus, the characteristic equation in 𝜆 becomes 

𝜆5 + 10.2280𝜆4 + 14.7543𝜆3 − 3.8504𝜆2 − 0.7274𝜆 − 0.0109 = 0                          (2.10)    

 Solving (2.10)    gives   𝜆1 = −0.0166, 𝜆2 = −8.4233, 𝜆3 = −2.0061, 𝜆4 = 0.3347, 𝜆5 = −0.1166 and 

𝑅0 = 4.7993. 
For  
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Table 4 𝛾3=0.17 𝛼=0 𝜔 = 0 

       

𝐽𝐸0
=

 

 
 

−0.1866 0.0000 −.7714 −0.1234 0.1000
0.0000 −6.0166 0.7714 0.1234 0.0000
0.0000
0.0000
0.1700

6.0000
0.0000
0.0000

−4.0166 0.0000 0.0000
3.5400 −0.0616 0.0000
0.0000 0.0000 −0.1166 

 
 

. 

The characteristic equation is 

𝜆5 + 10.3980𝜆4 + 23.2214𝜆3 + 4.7413𝜆2 − 0.3340𝜆 − 0.0067 = 0          2.11 .    
Thus,    𝜆1 = −0.2866, 𝜆2 = −0.0166, 𝜆3 = −7.3116, 𝜆4 = −2.8513, 𝜆5 = 0.0680  and 

𝑅0 = 1.9526. 
For  

Table 5 𝛾3=0.2 𝛼=0 𝜔 = 0 

        

𝐽𝐸0
=

 

 
 

−0.2166 0.0000 −0.6983 −0.1117 0.1000
0.0000 −6.0166 0.6983 0.1117 0.0000
0.0000
0.0000
0.2000

6.0000
0.0000
0.0000

−4.0166 0.0000 0.0000
3.5400 −0.0616 0.0000
0.0000 0.0000 −0.1166  

 
 

. 

𝜆5 + 10.4280𝜆4 + 23.9633𝜆3 + 5.7725𝜆2 − 0.2725𝜆 − 0.0060 = 0               (2.12)  is the characteristic 

equation,  

    𝜆1 = −0.3166, 𝜆2 = −0.0166, 𝜆3 = −7.2208, 𝜆4 = −2.9281, 𝜆5 = 0.0540  are the characteristic roots and 

𝑅0 = 1.7675. 
For  

Table 6 𝛾3=0.3 𝛼=0 𝜔 = 0 

        

𝐽𝐸0
=

 

 
 

−0.3166 0.0000 −0.5307 −0.0849 0.1000
0.0000 −6.0166 0.5307 0.0849 0.0000
0.0000
0.0000
0.3000

6.0000
0.0000
0.0000

−4.0166 0.0000 0.0000
3.5400 −0.0616 0.0000
0.0000 0.0000 −0.1166  

 
 

. 

𝜆5 + 10.5280𝜆4 + 25.9802𝜆3 + 8.9160𝜆2 − 0.0720𝜆 − 0.0035 = 0                  (2.13)    

    𝜆1 = −0.4166, 𝜆2 = −0.0166, 𝜆3 = −6.9975, 𝜆4 = −3.1207, 𝜆5 = 0.0234  are the characteristic roots and 

𝑅0 = 1.3433. 
For  

Table 7 𝛾3=0.4 𝛼=0 𝜔 = 0 

      

𝐽𝐸0
=

 

 
 

−0.4166 0.0000 −0.4280 −0.0685 0.1000
0.0000 −6.0166 0.4280 0.0685 0.0000
0.0000
0.0000
0.4000

6.0000
0.0000
0.0000

−4.0166 0.0000 0.0000
3.5400 −0.0616 0.0000
0.0000 0.0000 −0.1166  

 
 

. 

𝜆5 + 10.6280𝜆4 + 27.6077𝜆3 + 11.8085𝜆2 + 0.1244𝜆 − 0.0011 = 0                      (2.14)      
    𝜆1 = −0.5166, 𝜆2 = −0.0166, 𝜆3 = 0.0056, 𝜆4 = −3.2525, 𝜆5 = −6.8478  are the characteristic roots and 

𝑅0 = 1.0832. 
For  

Table 8 𝛾3=0.5 𝛼=0 𝜔 = 0 

       

𝐽𝐸0
=

 

 
 

−0.5166 0.0000 −0.3586 −0.0574 0.1000
0.0000 −6.0166 0.3586 0.0574 0.0000
0.0000
0.0000
0.5000

6.0000
0.0000
0.0000

−4.0166 0.0000 0.0000
3.5400 −0.0616 0.0000
0.0000 0.0000 −0.1166  

 
 

. 

𝜆5 + 10.7280𝜆4 + 29.0353𝜆3 + 14.5722𝜆2 + 0.3188𝜆 + 0.0014 = 0                 (2.15)    

    𝜆1 = −0.6166, 𝜆2 = −0.0166, 𝜆3 = −6.7396, 𝜆4 = −3.3491, 𝜆5 = −0.0061  are the characteristic roots 

and 

𝑅0 = 0.9076. 
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For  

Table 9 𝛾3=0.6 𝛼=0 𝜔 = 0 

      

𝐽𝐸0
=

 

 
 

−0.6166 0.0000 −0.3085 −0.0494 0.1000
0.0000 −6.0166 0.3085 0.0494 0.0000
0.0000
0.0000
0.6000

6.0000
0.0000
0.0000

−4.0166 0.0000 0.0000
3.5400 −0.0616 0.0000
0.0000 0.0000 −0.1166  

 
 

. 

𝜆5 + 10.8280𝜆4 + 30.3466𝜆3 + 17.2609𝜆2 + 0.5119𝜆 + 0.0039 = 0                    (2.16)    

    𝜆1 = −0.7166, 𝜆2 = −0.0166, 𝜆3 = −6.6574, 𝜆4 = −3.4231, 𝜆5 = −0.0143  are the characteristic roots 

and 

𝑅0 = 0.7809. 
For  

Table 10 𝛾3=0.7 𝛼=0 𝜔 = 0 

        

𝐽𝐸0
=

 

 
 

−0.7166 0.0000 −0.2707 −0.0433 0.1000
0.0000 −6.0166 0.2707 0.0433 0.0000
0.0000
0.0000
0.7000

6.0000
0.0000
0.0000

−4.0166 0.0000 0.0000
3.5400 −0.0616 0.0000
0.0000 0.0000 −0.1166  

 
 

. 

𝜆5 + 10.9280𝜆4 + 31.5844𝜆3 + 19.9022𝜆2 + 0.7043𝜆 + 0.0064 = 0                        (2.17)     

    𝜆1 = −0.8166, 𝜆2 = −0.0166, 𝜆3 = −6.5925, 𝜆4 = −3.4819, 𝜆5 = −0.0204  are the characteristic roots 

and 

𝑅0 = 0.6835. 
For  

Table 11 𝛾3=0.8 𝛼=0 𝜔 = 0 

       𝐽𝐸0
=

 

 
 

−0.8166 0.0000 −0.2412 −0.0386 0.1000
0.0000 −6.0166 0.2412 0.0386 0.0000
0.0000
0.0000
0.8000

6.0000
0.0000
0.0000

−4.0166 0.0000 0.0000
3.5400 −0.0616 0.0000
0.0000 0.0000 −0.1166  

 
 

. 

𝜆5 + 11.0280𝜆4 + 32.7728𝜆3 + 22.5116𝜆2 + 0.8962𝜆 + 0.0088 = 0                        (2.18)    

    𝜆1 = −0.9166, 𝜆2 = −0.0166, 𝜆3 = −0.0251, 𝜆4 = −3.5297, 𝜆5 = −6.5400  are the characteristic roots 

and 

𝑅0 = 0.6105. 
For  

Table 12 𝛾3=0.9 𝛼=0 𝜔 = 0 

       

𝐽𝐸0
=

 

 
 

−0.9166 0.0000 −0.2175 −0.0348 0.1000
0.0000 −6.0166 0.2175 0.0348 0.0000
0.0000
0.0000
0.9000

6.0000
0.0000
0.0000

−4.0166 0.0000 0.0000
3.5400 −0.0616 0.0000
0.0000 0.0000 −0.1166  

 
 

 

𝜆5 + 11.1280𝜆4 + 33.9263𝜆3 + 25.0985𝜆2 + 1.0876𝜆 + 0.0113 = 0                    (2.19)    

    𝜆1 = −1.0166, 𝜆2 = −0.0166, 𝜆3 = −0.0289, 𝜆4 = −3.5695, 𝜆5 = −6.4965 and 

𝑅0 = 0.5505. 

For  

Table 13 𝛾3=0 𝛼=0.2 𝜔 = 1 

  

𝐽𝐸0
=

 

 
 

−0.0166 0.0000 −0.2108 −0.3578 0.1000
0.0000 −6.0166 0.2108 0. .3578 0.0000
0.0000
0.0000
0.0000

6.0000
0.0000
0.0000

−4.0166 0.0000 0.0000
3.5400 −0.5616 0.0000
0.0000 0.0000 −0.1166  

 
 

. 

𝜆5 + 10.7280𝜆4 + 17.9490𝜆3 + 0.7461𝜆2 − 0.1647𝜆 − 0.0029 = 0                    (2.20)    

    𝜆1 = −0.0166, 𝜆2 = −8.6673, 𝜆3 = −2.0122, 𝜆4 = 0.0847, 𝜆5 = −0.1166 and 

𝑅0 = 1.1088. 
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For  

Table 14 𝛾3=0 𝛼=0.4 𝜔 = 1 

  

𝐽𝐸0
=

 

 
 

−0.0166 0.0000 −0.2108 −0.3578 0.1000
0.0000 −6.0166 0.2108 0. .3578 0.0000
0.0000
0.0000
0.0000

6.0000
0.0000
0.0000

−4.0166 0.0000 0.0000
3.5400 −0.4616 0.0000
0.0000 0.0000 −0.1166  

 
 

. 

𝜆5 + 10.6280𝜆4 + 16.9324𝜆3 − 0.4778𝜆2 − 0.3119𝜆 − 0.0050 = 0                 (2.21)    

    𝜆1 = −0.0166, 𝜆2 = −8.6689, 𝜆3 = −1.9758, 𝜆4 = 0.1499, 𝜆5 = −0.1166  and 

𝑅0 = 1.2301. 
   For  

Table 15 𝛾3=0 𝛼=0.5 𝜔 = 0 

 

𝐽𝐸0
=

 

 
 

−0.0166 0.0000 −1.8961 −0.3034 0.1000
0.0000 −6.0166 1.8961 0.3034 0.0000
0.0000
0.0000
0.0000

6.0000
0.0000
0.0000

−4.0166 0.0000 0.0000
3.5400 −0.5616 0.0000
0.0000 0.0000 −0.1166  

 
 

 

𝜆5 + 10.6280𝜆4 + 16.9324𝜆3 − 0.4778𝜆2 − 0.3119𝜆 − 0.0050 = 0                    (2.22)    

    𝜆1 = −0.0166, 𝜆2 = −8.4160, 𝜆3 = −2.1377, 𝜆4 = −0.1411, 𝜆5 = −0.1166 and 

𝑅0 = 0.9455. 
For  

Table 16 𝛾3=0.1 𝛼=0.2 𝜔 = 0 

  

𝐽𝐸0
=

 

 
 

−0.1166 0.0000 −1.0207 −0.1633 0.1000
0.0000 −6.0166 1.0207 0.1633 0.0000
0.0000
0.0000
0.1000

6.0000
0.0000
0.0000

−4.0166 0.0000 0.0000
3.5400 −0.2616 0.0000
0.0000 0.0000 −0.1166  

 
 

. 

𝜆5 + 10.5280𝜆4 + 23.0711𝜆3 + 6.1075𝜆2 + 0.3661𝜆 + 0.0045 = 0                  (2.23)    

    𝜆1 = −0.0166, 𝜆2 = −0.2166, 𝜆3 = −7.5956, 𝜆4 = −2.6367, 𝜆5 = −0.0625  and 

𝑅0 = 0.8021. 
 

3.2. Existence and Local Stability Analysis of the Endemic Equilibrium State (EEs) 

We investigate the stability of EEs for the following values of the control parameters. 

For  

Table 17 𝛾3=0 𝛼=0 𝜔 = 1 

  

𝐽𝐸𝐸
=

 

 
 

−0.0938 0.0000 −0.3723 −0.0636 0.1000
0.0772 −6.0166 0.3723 0.0636 0.0000
0.0000
0.0000
0.0000

6.0000
0.0000
0.0000

−4.0166 0.0000 0.0000
3.5400 −0.0616 0.0000
0.0000 0.0000 −0.1166  

 
 

 

𝜆5 + 10.3052𝜆4 + 24.6858𝜆3 + 5.0288𝜆2 + 0.3819𝜆 + 0.0134 = 0                          (2.24)    

    𝜆1 = −6.7647, 𝜆2 = −3.3245, 𝜆3 = −0.0497 + 0.0514𝑖, 𝜆4 = −0.0497 − 0.0514𝑖, 𝜆5 = −0.1166  and 

𝑅0 = 5.6536. 
For  

Table 18 𝛾3=0 𝛼=0 𝜔 = 0 

  

𝐽𝐸𝐸
=

 

 
 

−0.0797 0.0000 −0.3951 −0.0632 0.1000
0.0631 −6.0166 0.3951 0.0632 0.0000
0.0000
0.0000
0.0000

6.0000
0.0000
0.0000

−4.0166 0.0000 0.0000
3.5400 −0.0616 0.0000
0.0000 0.0000 −0.1166  

 
 

. 

𝜆5 + 10.2911𝜆4 + 24.4045𝜆3 + 4.6424𝜆2 + 0.3195𝜆 + 0.0109 = 0                       (2.25)    
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    𝜆1 = −6.8031, 𝜆2 = −3.2867, 𝜆3 = −0.0423 + 0.0491𝑖, 𝜆4 = −0.0423 − 0.0491𝑖, 𝜆5 = −0.1166  and 

𝑅0 = 4.7993 
For  

Table 19 𝛾3=0.2 𝛼=0 𝜔 = 0 

  

𝐽𝐸𝐸
=

 

 
 

−0.2512 0.0000 −0.3951 −0.0632 0.1000
0.0346 −6.0166 0.3951 0.0632 0.0000
0.0000
0.0000
0.2000

6.0000
0.0000
0.0000

−4.0166 0.0000 0.0000
3.5400 −0.0616 0.0000
0.0000 0.0000 −0.1166  

 
 

 

𝜆5 + 10.4626𝜆4 + 26.1360𝜆3 + 8.4195𝜆2 + 0.2693𝜆 + 0.0060 = 0                      (2.26)    

    𝜆1 = −6.8006, 𝜆2 = −3.2912, 𝜆3 = −0.3379, 𝜆4 = −0.0164 + 0.0229𝑖, 𝜆5 = −0.0164 − 0.0229𝑖 and 

𝑅0 = 1.7675. 
Table 20 𝛾3=0.3 𝛼=0 𝜔 = 0 

 𝐽𝐸𝐸
=

 

 
 

−0.3370 0.0000 −0.3951 −0.0632 0.1000
0.0204 −6.0166 0.3951 0.0632 0.0000
0.0000
0.0000
0.3000

6.0000
0.0000
0.0000

−4.0166 0.0000 0.0000
3.5400 −0.0616 0.0000
0.0000 0.0000 −0.1166  

 
 

. 

𝜆5 + 10.5484𝜆4 + 27.0017𝜆3 + 10.3080𝜆2 + 0.2441𝜆 + 0.0035 = 0                     (2.27)    

    𝜆1 = −6.7993, 𝜆2 = −3.2937, 𝜆3 = −0.4311, 𝜆4 = −0.0121 + 0.0148𝑖, 𝜆5 = −0.0121 − 0.0148𝑖 and 

𝑅0 = 1.3433 

Table 21 𝛾3=0.4 𝛼=0 𝜔 = 0 

  

𝐽𝐸𝐸
=

 

 
 

−0.4227 0.0000 −0.3951 −0.0632 0.1000
0.0061 −6.0166 0.3951 0.0632 0.0000
0.0000
0.0000
0.4000

6.0000
0.0000
0.0000

−4.0166 0.0000 0.0000
3.5400 −0.0616 0.0000
0.0000 0.0000 −0.1166  

 
 

. 

𝜆5 + 10.6341𝜆4 + 27.8675𝜆3 + 12.1966𝜆2 + 0.2190𝜆 + 0.0011 = 0                   (2.29)    

    𝜆1 = −6.7980, 𝜆2 = −3.2963, 𝜆3 = −0.5214, 𝜆4 = −0.0093 + 0.0023𝑖, 𝜆5 = −0.0093 − 0.0023𝑖 and 

𝑅0 = 1.0832. 
For  

Table 22 𝛾3=0.5 𝛼=0 𝜔 = 0 

  

𝐽𝐸𝐸
=

 

 
 

−0.5085 0.0000 −0.3951 −0.0632 0.1000
−0.0081 −6.0166 0.3951 0.0632 0.0000
0.0000
0.0000
0.5000

6.0000
0.0000
0.0000

−4.0166 0.0000 0.0000
3.5400 −0.0616 0.0000
0.0000 0.0000 −0.1166  

 
 

 

𝜆5 + 10.7199𝜆4 + 27.7333𝜆3 + 14.0851𝜆2 + 0.1939𝜆 − 0.0014 = 0                (2.30)    

    𝜆1 = −6.7966, 𝜆2 = −3.2990, 𝜆3 = −0.6099, 𝜆4 = −0.0196, 𝜆5 = 0.0052 and 𝑅0 = 0.9076. 
For  

Table 23 𝛾3=0.45 𝛼=0 𝜔 = 0 

  

𝐽𝐸𝐸
=

 

 
 

−0.4656 0.0000 −0.3951 −0.0632 0.1000
−0.0010 −6.0166 0.3951 0.0632 0.0000
0.0000
0.0000
0.5000

6.0000
0.0000
0.0000

−4.0166 0.0000 0.0000
3.5400 −0.0616 0.0000
0.0000 0.0000 −0.1166  

 
 

.   

𝜆5 + 10.6770𝜆4 + 28.3004𝜆3 + 13.1408𝜆2 + 0.2065𝜆 − 0.0002 = 0                (2.31)    

    𝜆1 = −6.7973, 𝜆2 = −3.2976, 𝜆3 = −0.5658, 𝜆4 = −0.0171, 𝜆5 = 0.0008 and 𝑅0 = 0.9876. 
   For  

Table 24 𝛾3=0.42 𝛼=0 𝜔 = 0 
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𝐽𝐸𝐸
=

 

 
 

−0.4399 0.0000 −0.3951 −0.0632 0.1000
−0.0033 −6.0166 0.3951 0.0632 0.0000
0.0000
0.0000
0.4200

6.0000
0.0000
0.0000

−4.0166 0.0000 0.0000
3.5400 −0.0616 0.0000
0.0000 0.0000 −0.1166  

 
 

. 

𝜆5 + 10.6513𝜆4 + 28.0407𝜆3 + 12.5743𝜆2 + 0.2140𝜆 + 0.0006 = 0                  (2.32)    

    𝜆1 = −6.7977, 𝜆2 = −3.2968, 𝜆3 = −0.5392, 𝜆4 = −0.0143, 𝜆5 = −0.0033 and 𝑅0 = 1.0429. 
For  

Table 25 𝛾3=0.43 𝛼=0 𝜔 = 0 

  

𝐽𝐸𝐸
=

 

 
 

−0.4485 0.0000 −0.3951 −0.0632 0.1000
0.0019 −6.0166 0.3951 0.0632 0.0000
0.0000
0.0000
0.4300

6.0000
0.0000
0.0000

−4.0166 0.0000 0.0000
3.5400 −0.0616 0.0000
0.0000 0.0000 −0.1166  

 
 

. 

𝜆5 + 10.6599𝜆4 + 28.1272𝜆3 + 12.7631𝜆2 + 0.2115𝜆 + 0.0003 = 0                   (2.33)    

    𝜆1 = −6.7975, 𝜆2 = −3.2968, 𝜆3 = −0.5392, 𝜆4 = −0.0143, 𝜆5 = −0.0033 and 𝑅0 = 1.0238. 

   For  

Table 26 𝛾3=0.44 𝛼=0 𝜔 = 0 

  

𝐽𝐸𝐸
=

 

 
 

−0.4570 0.0000 −0.3951 −0.0632 0.1000
0.0004 −6.0166 0.3951 0.0632 0.0000
0.0000
0.0000
0.4400

6.0000
0.0000
0.0000

−4.0166 0.0000 0.0000
3.5400 −0.0616 0.0000
0.0000 0.0000 −0.1166  

 
 

. 

𝜆5 + 10.6684𝜆4 + 28.2138𝜆3 + 12.95201𝜆2 + 0.2090𝜆 + 0.0001 = 0               (2.34)    

    𝜆1 = −6.7974, 𝜆2 = −3.2974, 𝜆3 = −0.5569, 𝜆4 = −0.0164, 𝜆5 = −0.0004 and 𝜆0 = 1.0054. 
For  

Table 27 𝜆3=0.6 𝛼=0 𝜔 = 0 

  

𝐽𝐸𝐸
=

 

 
 

−0.5942 0.0000 −0.3951 −0.0632 0.1000
−0.0224 −6.0166 0.3951 0.0632 0.0000
0.0000
0.0000
0.6000

6.0000
0.0000
0.0000

−4.0166 0.0000 0.0000
3.5400 −0.0616 0.0000
0.0000 0.0000 −0.1166  

 
 

. 

𝜆5 + 10.8056𝜆4 + 29.5990𝜆3 + 15.9737𝜆2 + 0.1688𝜆 − 0.0039 = 0                (2.35)    

    𝜆1 = −6.7951, 𝜆2 = −3.3020, 𝜆3 = −0.6972, 𝜆4 = −0.0224, 𝜆5 = 0.0111 and 𝑅0 = 0.7809. 

   For  

Table 28 𝛾3=0.7 𝛼=0 𝜔 = 0 

  

𝐽𝐸𝐸
=

 

 
 

−0.6800 0.0000 −0.3951 −0.0632 0.1000
−0.0366 −6.0166 0.3951 0.0632 0.0000
0.0000
0.0000
0.7000

6.0000
0.0000
0.0000

−4.0166 0.0000 0.0000
3.5400 −0.0616 0.0000
0.0000 0.0000 −0.1166  

 
 

. 

𝜆5 + 10.8914𝜆4 + 30.4648𝜆3 + 17.8622𝜆2 + 0.1436𝜆 − 0.0064 = 0                (2.36)    

    𝜆1 = −6.7937, 𝜆2 = −3.3052, 𝜆3 = −0.7838, 𝜆4 = −0.0239, 𝜆5 = 0.0151 and 𝑅0 = 0.6853. 

4. Global Stability of the Equilibria 

We carry out the following numerical simulations to investigate global stability of both the disease-free and the 

endemic equilibrium states. 
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Figure 1: Impact of vaccination and treatment on the net reproduction number 

 
Figure 2: γ3=0; ω=1; α=0 

 
Figure 3: γ3=0.2; ω=0; α=0 
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Figure 4: γ3=0.4; ω=0; α=0 

 
Figure 5: γ3=0.44; ω=0; α=0 

 
Figure 6: γ3=0.5; ω=0; α=0 
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Figure 7: γ3=0.8; ω=0; α=0 

 
Figure 8: γ3=0.0; ω=1; α=0.2 

 
Figure 9: γ3=0.0; ω=1; α=0.3 
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Figure 10: γ3=0.0; ω=1; α=0.4 

 
Figure 11: γ3=0.0; ω=1; α=0.5 

 
Figure 12: γ3=0.0; ω=1; α=0.8 
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Figure 13: γ3=0.1; ω=0.5; α=0.15 

 
Figure 14: γ3=0.8; ω=0; α=0.8 
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Thirdly, some numerical simulations of the model were performed. These were to investigate the global stability 

properties of the equilibria. The numerical results show that values of  𝑅0 < 1 are sufficient for global stability 

of the disease-free equilibrium state. Furthermore, the values of  𝑅0 > 1 are sufficient for the global stability of 

the endemic equilibrium state. These are depicted by figures 2 through 14. 

 

6. Conclusion 

In this paper, we carried out numerical analysis of a mathematical model of HBV considering vaccination and 

treatment parameters. The model was earlier formulated in our article [19-20] and the analytical method as well 

as the sensitivity analysis of the control parameters to the basic reproduction number was done. Here we carried 

out numerical analysis of the local and global properties of the disease-free and the endemic equilibria. The 

numerical results show that the values of  𝑅0 < 1 guarantee both local and global stability of the disease-free 

equilibrium state. The numerical results also reveal that values of  𝑅0 > 1  are adequate for both the local and 

global stability of the endemic equilibrium state. 
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