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Abstract In this paper a three dimensional semi-analytical model is developed to estimate the elastic limit 

capacity and distribution of displacement, stress and strain components of cylindrical panel subjected to 

uniformly pressure distribution on the external surface. The Flugge second-order approximation of thin shell 

theories in general form with Navier type formulations of equilibrium equations is considered. Governing 

equations of the cylindrical panel are solved using higher order finite difference technique that converts them to 

a system of linear equations. Furthermore, the Richardson extrapolation technique is used to improve the 

accuracy of results in the semi-analytical method. Results obtained by the semi-analytical method are compared 

and verified by the finite element method. Parametric studies are carried out for different values of the total 

angle, the mean radius and the wall thickness (
0 , ,R h ) of the panel by validated semi-analytical method. The 

results of semi-analytical method can be used for simulating contact pressure due to indentation process in both 

elastic and plastic deformations of panel with different indenter shape, boundary and geometry conditions. 

 

Keywords Thin cylindrical panel, elastic limit capacity, Navier method, Finite difference method, Richardson 

extrapolation technique, semi-analytical method 

Introduction 

Engineering equipment frequently rely on the integrity of components with interacting surfaces under the effect 

of high contact pressures and stresses. It is an engineering requirement to design components to withstand such 

high contact stresses [1-4]. The problems of cylindrical panels under external loadings have been treated 

extensively in the past due to their wide application in civil, mechanical, aeronautical and marine engineering 

[5]. As can be seen in the literature, the governing theories of thin cylindrical shells such as those presented by 

Sanders [6], Flugge [7], Love [8]-Timoshenko [9], Niordson [10], Donnell [11]-Mushtari [12], Vlasov[13]etc, 

are used for the analysis of thin cylindrical panels [5].  

In the field of cylindrical shells, Huble [14] worked on the analytical elastic-plastic solution of cylindrical shells 

under axisymmetric loading conditions. The analytical solution was reduced to an ordinary nonlinear differential 

equation of the order four. Yi et al. [15] investigated the elastic solution for a cylindrical shell subjected to a 

symmetric, partially distributed and self-balanced radial pressure loading by a dual series approach assuming the 

plane strain condition. Tooth et al. [16] examined the behavior of a cylindrical vessel loaded by a rigid 

attachment of rectangular form. Equilibrium equations according to the Sander’s theory for cylindrical shell 

were solved using double Fourier series expansion technique. The stresses induced by interfacial forces are 

found to be 37% higher than those of a uniformly distributed force on the external surface of the vessel. Alijani 

et al. [17] studied the bending problem of clamped cylindrical panels using the extended Kantorovich method to 

obtain highly accurate approximation to the closed form solution for uniform and non-uniform loading 

condition. Free vibration analysis of functionally graded (FG) curved thick panels under various boundary 

conditions based on the three-dimensional elasticity theory was studied by Zahedinejad et al [18]. In the field of 
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finite element analysis, Salahifar et al. [19] worked on the super convergent finite element solution for the 

steady state simulation of a circular cylindrical shell under general harmonic forces based on the thin shell 

theory. Weicker et al. [20, 21] investigated on the development of governing equilibrium equations and 

boundary conditions by principle of virtual work for a thin-walled pipe subjected to general loading. The 

founding of this paper was used to develop a finite element formulation for stress-deformation analysis of long 

pipes [20, 21].  

This paper presents a semi-analytical model to analyze the behavior of a thin cylindrical panel under the effect 

of pressure loading on the external surface. The distribution of pressure is assumed to be uniform in semi-

rectangular area and components of the deformation vector in the cylindrical panel are calculated using the 

Navier formulations of the thin shell theory. The von Mises yield criterion is assumed as the yield criterion of 

the material for prediction of the elastic limit load. Three dimensional equilibrium equations, strain-

displacement relations, force and moment resultants are described using the presented thin shell theories. Higher 

order finite difference method is proposed to solve the three dimensional Navier equilibrium equations. The 

Doolittle LU factorization inverse method is used to solve the linear system of equations. For verification 

presented semi-analytical method; the uniformly distributed pressure loading is applied to semi-rectangular area 

on one panel with specified geometric parameters until the plastic deformation starts. The convergence tests are 

done and the Richarson extrapolation technique is employed to reduce the computational time and size. The 

results obtained by the semi-analytical method are compared with those obtained by the finite element method. 

Secondly and to carry out numerical calculations, different panel dimensions with constant arc length and 

different mean radii, total panel angles and wall thicknesses are considered for numerical calculation and 

parametric study. Two opposite edges of the panels are considered to be simply supported and the other two 

clamped. The panel is assumed to be made of 2024-T351 Aluminum alloy. The material properties of the panel 

under study in this research are shown in Table 1.  

Table 1: Material properties of the cylindrical panel 

E (GPa) 
tE (GPa)   

 (MPa)  (kg/m
3
) 

70 35 0.3 300 2800 

 

Governing equations 

A thin cylindrical panel with constant thickness ( h ) mean radius ( R ) axial length ( L ) Poisson’s ratio ( ) 

density (  ) and Young’s modulus of elasticity ( E ) is considered. The shell is assumed to be thin (i.e. / 1h R

). The panel geometry is defined in the cylindrical coordinate system ( , , )x z , where x and are the axial and 

circumferential directions of the shell and z is perpendicular to the middle surface pointing outward, i.e.

/ 2 / 2h z h    , as shown in Fig.1. The origin of the coordinate system is taken at one end of the cylindrical 

panel. A plane stress state for the thin cylindrical panel is considered, i.e the stress components in the z direction 

of the panel is assumed to be zero ( , , 0z zx z    ).The respective displacements in the axial, circumferential 

and radial directions are demonstrated by ( , )u x  , ( , )v x  and ( , )w x  . 

 
Figure 1: Panel dimensions and cylindrical coordinates 
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Equilibrium equations 

In order to carry out the analysis of the thin cylindrical panel under external loading condition, all equilibrium 

equations consisting of bending and shear stress components according to the general theory of the thin shell are 

considered. As it is well explained in [7, 10], the equilibrium equations are developed on the basis of the 

resultant forces and moments of the middle surface of the shell. By eliminating the transverse shear stresses 

from these equations, the equilibrium equations of a cylindrical shell under distributed radial loading, i.e. (

( , )zp x  ) based on the Flugge shell theory are given by [7, 10]: 
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0
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(4) 

 

where )( , , ,x x xN N N N  
are the force resultants, )( , , ,x x xM M M M  

are the moment resultants. It can be 

seen from above equations that in general for a cylindrical shell,
x xN N  and

x xM M  .  

Resultant forces and moments 

In the Flugge second-order approximation of thin shell theories, the non-dimensional term, / iz R (where

  , 1,2iR i  are the radii of curvature of the middle surface), is taken into account for computation of the resultant 

forces, moment integrals and strain relations. The internal force and moment resultants can be calculated by 

integrating the stress distribution through the shell thickness [8]. These resultants in the plane stress conditions 

are expressed in integral terms of the stress components through the thickness of the shell as reported in [5, 7, 

10]: 
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(5) 

where
x and

 are the axial and circumferential stresses,
x is the shear stress. By performing such 

integrations, the variations with respect to z  are eliminated and the three dimensional problem of the cylindrical 

shell reduces to a two degree problem of deformation of the middle surface of the shell.  

Stress-strain relations 

The stress-strain relations in an isotropic material under the elastic deformation are expressed with the help of 

two material constants namely the Poisson’s ratio and the Young’s modulus of elasticity. Hence, the stress- 

strain relations for the plane stress condition are [5, 7, 10]:  
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where
xε and ε are the total normal strains and 

xγ 
is the shear strain component. 
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Strain-displacement relations 

The total strain of an element of the shell located at a distance z  from the middle surface consists of two parts, 

namely the membrane strain and the strain due to the curvature [7, 10]. Hence, the total strain considering the 

term / iz R for the cylindrical panel is obtained as follow [5]: 
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(11) 

where xε and ε are the normal strains,
x

γ 
is the shear strain at the middle surface of the shell, and 

x x, ,   

are the curvatures. With considering curvature radii for the cylindrical panel as
1 2,R R R  , above relations 

can be redefined as follow [5]: 
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(14) 

It is observed that as the wall thickness of the cylindrical shell reduces, the ratio of / iz R  becomes smaller and 

its effect in strain relations approaches to zero. A quick review of research works on thin shells reveals that the 

same expressions are used for the membrane strains; however different expressions for the curvature strain are 

defined, depending on the simplifying assumptions and the solution treatment. In this research, the Niordson 

formulations of curvature strains are employed for analytical modeling of the cylindrical panel. According to the 

Niordson’s shell theory, strains and curvatures of the middle surface are related to the displacement components

( , , )w u v in the ( , , )x z  coordinate directions as follow [10]: 
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Curvatures: 
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(16) 

Finite element model 

A numerical procedure based on the finite element method is developed to estimate the elastic limit load and 

displacement, stress and strain components of the cylindrical panel subjected to uniformly pressure distribution 

on the external surface. It comprises of a nonlinear three dimensional shell type elastic-plastic model developed 
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employing the ANSYS suite of program [22]. Finite element method that used in this research is verified by the 

author in the previous papers by experimental results [23-27]. The cylindrical panel with diameter of the middle 

surface ( R ) the wall thickness ( h ) and the total angle (
0 ) is modeled and meshed using 4-noded shell 

element, namely SHELL181 with six degrees of freedom at each node. The von Mises yield criterion with 

isotropic hardening effect is assumed as the yield criterion of the material for prediction of the elastic limit load. 

The material is assumed to have bilinear strain hardening behavior that is defined according to the stress-strain 

data curve using the TB, BISO commands, as shown in Fig. 2. The loading condition is implemented on the 

outer surface of the panel with surface load command. The value of the applied load is increased until the 

equivalent von Mises stress of the panel reaches the yield strength of the material of the panel. Once the loading 

reaches the limit load, plastic flow begins and the plastic deformation occurs in the cylindrical panel. Simply 

supported-clamped boundary conditions are applied at the opposite edges of the panel, respectively.  

 
Figure 2: Idealized stress–strain curve for a linear hardening material 

Due to symmetry in the geometry and the loading of the cylindrical panel, it is desirable to model just a quarter 

of the panel in order to reduce both the model size and the solution timing. An example of the boundary, 

symmetry and loading conditions and the finite element meshing for the cylindrical panel is shown in Fig. 3. A 

convergence test is also carried out to obtain the appropriate number of elements for the analysis of the 

cylindrical panel.  

 
Figure 3: Finite element model of the cylindrical panel 

Semi-analytical method (SAM) 

In this section, the effective semi-analytical method for the analysis of the cylindrical panel under distributed 

pressure load is presented. 

Navier formulation 

The Navier type formulation is developed by substituting the components of the displacement of the middle 

surface and their derivatives in the equilibrium equations. The components of the displacement which are 

obtained by the Navier method satisfy the strain compatibility relations. The strain-displacement relations (15) 

and (16) are substituted in strain relations, (12-14) and the results are further substituted in the stress-strain 

relations (6-8). The force and moment resultants are computed with the help of Eq. (5) and the expressions are 

substituted into the equations of equilibrium that reduces the problem into a set of simultaneous linear 
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differential equations with respect to the x and  . The governing partial differential equation of the cylindrical 

shell in Navier form is shown in appendix A. As shown in the appendix A, the fourth equilibrium equation is 

automatically satisfied for the proposed constitutive relations and kinematic equations. Therefore, the number of 

governing differential equations of the cylindrical shell is reduced to a system of equations consisting of two 

second order and one fourth order equations with three unknown displacements components, i.e. , ,u v w . In the 

next section, the governing differential equations are solved with the help of higher order finite difference 

method. Distribution of the pressure is included in the third equilibrium of equation in Appendix A, for the 

specified range in x  and  directions of the cylindrical panel.  

Higher order finite difference method (HFDM) 

It is obvious that the system of differential equations for the thin cylindrical shell cannot be solved analytically. 

So the only possible way is to solve the problem using a numerical method, among which the finite difference 

method (FDM) is found to be one of the most effective. In FDM the derivatives appearing in the differential 

equation and boundary conditions are replaced by suitable finite difference approximations. The accuracy of the 

solution depends on the number of grid points. One can increase the accuracy of the solution to some desired 

degree by increasing the number of grid points. However, it involves increasingly tedious mathematical 

analysis. To obtain a sufficiently accurate solution of the problem under study, higher order finite difference 

formulations are used in this research. Li [28] and Ashok et al [29] presented a general explicit difference 

formula with arbitrary order of accuracy for approximating the first and higher order derivatives that can be used 

for both equally and unequally spaced grid nodes. In this research, the fourth-order FD approximations in two 

dimensions are used for difference approximations to the governing differential equations of the cylindrical 

panel. To achieve the constant error in computations ( 4( )O h ), 5 points for first and second order derivatives and 

7 points for the third and fourth orders are used for FD approximations. As an example, the fourth-order 

approximation of the first derivative of a function ( )x,u  with respect to x in the central difference form can 

be written as [29]: 
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(17) 

When higher-order approximations are used at and near the boundary, nodes outside of the domain would be 

needed. Therefore the forward and backward scheme of higher order FD form is included to differential 

equations for these nodes. The forward and backward formulation of the first derivative of a function ( )x,u 

with respect to x can be written as [29]: 
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(19) 

Implementation of HFDM   

A finite difference method for solving the differential equations basically involves four steps [28, 30]: 

1. Dividing the problem domain into grids of nodes by equally or unequally spaced scheme. 

2. Approximating the given differential equation by the finite difference equivalence that relates the solutions to 

grid nodes. 

3. Writing the difference equations for each grid nodes and to the prescribed boundary conditions and/or initial 

conditions. 

4. Solving the system of linear equations obtained by an appropriate method. 
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According to appendix A, the governing differential equations of the cylindrical panel have two dimensions, 

hence the panel is divided by N  nodes in the x-direction (  1,i N ) and M  nodes in  -direction (

 1,j M ). The higher order FD formulation corresponding to the developed Navier form of differential 

equilibrium equations can be found in Appendix B. For each grid node in the 2D domain of the cylindrical 

panel, the differential equations are written in the FD form. Also, the boundary conditions which are explained 

in the next section are written for boundary nodes in the FD scheme.  The number of interior nodes for which 

the set of differential equations can be written is    2 2N M   and the numbers of unknown interior 

displacements which must be calculated are   3 2 2N M  . The results of finite element simulations show 

that components of displacement in the cylindrical panel have symmetry conditions as shown in Fig. (4) [23-

27]. These symmetry conditions are due to the symmetry of the boundary conditions and distribution of the 

pressure in the cylindrical panel. These conditions can be used for developing semi-analytical model in the 

quarter model of the cylindrical panel. As seen in Fig. (4), the unknown components of displacement for 

considered quarter model of the cylindrical panel is proposed as 
, , ,, ,i j i j i jw u v  for  1,( 1) / 2i N  and

 1,( 1) / 2j M  .The values of displacement components for other quarters are defined on the basis of the 

assumed set, i.e. 
, , ,, ,i j i j i jw u v . Finally, the number of unknown displacements is reduced to 

  3 ( 1) / 2 ( 1) / 2N M   and the set of   3 ( 1) / 2 ( 1) / 2N M  linear algebraic equations can be obtained in 

the following matrix expression that must be solved using an appropriate method. 

A x b   (20) 

In this relation   , , 3 ( 1) / 2 ( 1) / 2p qA p q N M     is the coefficient matrix of the linear system of 

equations which is square and symmetric. The vector 
pb  corresponds to the value of distributed pressure 

loading for each node and 
qx  is the vector containing the displacement components

, , ,, ,i j i j i jw u v . The Doolittle 

LU factorization method is used to inverse the coefficient matrix A and solves the linear system of equations in 

FD form. This method is used to solve the equation with less number of required multiplications in comparison 

with other inverse methods.  More detailed information about Doolittle LU factorization method can be found in 

references [31]. The Richarson extrapolation technique is employed to reduce the size and time of computation 

with the expected order of accuracy that is described in the next section.  

 
 

Figure 4: Finite difference grid nodes and symmetry condition 
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Richardson extrapolation method 

Richardson's extrapolation is used to generate high accuracy results while using low order formulas grid nodes 

[32]. Improved accuracy can be obtained by solving the same problem with different grid sizes and 

extrapolating the results to zero order grid size. In order to apply the Richarson extrapolation in FD solution of 

differential equations the following stages must be considered [32-34]: 

1- First approximate the truncation error of FD formula: in the fourth-order FD the truncation error is 

4( )O h [33]. 

2- Create the coarse grid nodes with interval of h  and use finer grid nodes until the required convergence 

is achieved. Variation of the grid node distance at each step, i.e. step k , is shown below. 

1 1 2 1 3 2/ 2 , / 2, / 2,....k kh h h h h h h h      (21) 

3- Based on the truncation error of FD form which is used in the problem, the corresponding of 

Richardson formula is employed as [32-34]: 

, 1 1, 1 2

, , 1 1
( ( ), 1)

4 1

k j k j j

k j k j j

R R
R R O h j

  

 


  


 

(22) 

It is worth mentioning that the rate of convergence in this method is high and the solution algorithm is simple. 

Boundary conditions 

We assume that the shell is simply supported at the edges 0,x x L  and calmed at the edges
00,   

.For the simply supported edge, i.e. 0x  , the BC’s may be written as: 

(0, ) 0, (0, ) 0, (0, ) 0, (0, ) 0xw u v M        

Using the integral form of ( , )xM x   as defined in Eq. (5), the final form of ( , )xM x  is defined as: 

3 2 2
2

2 2 2 2

( , ) ( , ) ( , ) ( , )
( , ) 2 ( , )

12( 1)
x

Eh w x u x v x w x
M x R R w x

R x x

   
   

  

    
      

     

 
(23) 

Along the considered edges, x =constant, the corresponding derivatives with respect to   are zero. Thus, the 

above equation becomes: 

3 2
2

2 2 2

(0, ) (0, )
(0, ) 0

12( 1)
x

Eh w u
M R R

R x x

 




  
    

   

 
(24) 

The FD form of Eq. (25) can be obtained by using the ordinary FD relations as: 

1, , 1, 1, , 1, , 1, 1, ,2

2 2

2 2
(0, ) 0

i j i j i j i j i j i j i j i j i j i j

x

w w w u u w w w u u
M R R

x x x R x


          
     

   
 

(25) 

This set of boundary conditions is written for 0x  or 1i  in the FD form as follow: 

2, 1, 2, 2, 1,

2

2
(1, ) 0, (1, ) 0, (1, ) 0,

j j j j jw w w u u
w j u j v j

x R x

  
   

 
 

The simply supported BC of the edge x L  or i N is written in a similar manner of 0x  . For the clamped 

boundary condition of the edge 0  , one can write: 

( ,0)
( ,0) 0, ( ,0) 0, ( ,0) 0, 0

w x
w x u x v x




   


 

The FD form of boundary condition for ( ,0)
0

w x








can be obtained by using the ordinary FD as: 

, 1 , 1

, 1 , 10
2

i j i j

i j i j

w w
w w



 

 


  


 

(26) 

This set of boundary conditions is expressed for 0  or 1j  in FD form as follow: 

( ,1) 0, ( ,1) 0, ( ,1) 0, ( ,0) ( ,2)w i u i v i w i w i   
 

The clamped BC for the edge 
0   or j M is written in a similar manner as of 0  . 
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Numerical Results and Discussion 

The semi-analytical method outlined in the previous sections can be used to obtain highly accurate solutions for 

any type of pressure distribution and contact area on the cylindrical panel.  Dimensions of the panels for the 

numerical calculation and parametric study are presented in Table 2 indicating the constant arc length panels 

with different mean radius, total panel angle and wall thickness. As mentioned earlier, all models of the panel 

specified in Table 2, have two simply supported and two clamped boundaries. The opposite edges of the panel 

have the same boundary conditions. The von Mises yield criterion is considered for estimation of the elastic 

limit load at which plastic deformation occurs. 

The panel model 3P  in Table 2 has special geometric dimensions with maximum total angle and minimum wall 

thickness in comparison with other proposed models. The convergence test of FE simulation and semi-analytical 

method are concerned on determination of the elastic limit capacity, distribution of displacement components 

and the von Mises stress for this panel model. For better understanding of the verification process of the 

presented semi-analytical method, a uniformly distributed pressure is applied over a semi-rectangular area on 

the external surface of the panel model 3P  as specified in Table 3.The value of the uniformly distributed 

pressure on the considered small area that causes the von Mises stress reaching the yield strength of the material 

( 300e MPa  ) is considered as eP . 

Table 2: Geometric dimensions of the proposed cylindrical panel model 

Model 


0S R  0  R  (m) h  (m) /h R
 

L  (m) 

1P  0.1950 30
 

0.37225 0.015 0.04 1 

2P
 

0.1950 30
 

0.37225 0.012 0.032 1 

3P  0.1950 30
 

0.37225 0.01 0.026 1 

4P  0.1950 22.5
 

0.4963 0.01 0.02 1 

5P  0.1950 15
 

0.7445 0.01 0.013 1 

Table 3: Pressure distribution for different panel models 

Model ( , )zp x   Range of loading along the x : x   Range of loading along the  : 
 

1P  
0p  0.4 0.6x   12 18  

 

2P
 0p  0.4 0.6x   12 18  

 

3P  
0p  0.4 0.6x   12 18  

 

4P  
0p  0.4 0.6x   9 13.5  

 

5P  
0p  0.4 0.6x   6 9  

 

All results in this research are compared for the paths defined in the axial and circumferential directions as 

shown in the Table 4. 

Table 4: Path range for displacing results on the proposed panel models. 

Path number Range of path along the x
direction 

Range of path along the 

direction 

1 0 x L   
0 / 2   

2 / 2x L  
00     

 

The convergence test of Finite element method  

The FE simulations are carried out for the quarter model of the panel on the basis of symmetry of the loading 

and boundary conditions. The uniformly distributed pressure on the outer surface of the panel model 3P  , is 

applied for the range of 0.4 0.6x  and 12 18   , as shown in Table 3. The FE convergence results of von 
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Mises stress is shown in Table 5 at the elastic limit load of 9.8eP MPa . The maximum value of the von Mises 

stress for the current loading, boundary and symmetry conditions occurs at the central node of the cylindrical 

panel at 0.5x  and 15   . As shown in this table, the optimum number of element considering the converged 

result and duration of calculation is 7500N  . This optimum number of elements is found to be valid for other 

panel models as defined in Table 2. 

Table 5: FEM Convergence test for the quarter panel model 3P with no. of elements, 9.8eP MPa . 

Number of element in FE mesh von Mises stress at 0.5x  and 15  
 (MPa) 

N=200 288.1 

N=400 295.5 

N=900 296.7 
N=1600 297.9 

N=2500 299.1 

N=4900 299.9 

N=7500 300 

The convergence test of semi-analytical method 

In order to verify the semi-analytical method, the results of the convergence test obtained by the higher order 

FDM for the components of displacement and von Mises stress of the panel model 3P at 9.8eP MPa and 

various number of grid nodes along the axial and circumferential directions is shown in Fig.(5). The results of 

the radial and axial displacement and von Mises stress for the panel model 3P is shown for the path 1. Due to the 

symmetry of boundary conditions and applied load, the values of circumferential displacement in path 1are very 

small and close to zero. Hence, the circumferential displacement for path 2 is shown in Fig. (5). It is shown that 

the optimum number of grid nodes for the quarter model of the cylindrical panel considering the converged 

result and the duration of the calculation is 3721N  . As mentioned earlier, the optimum number of gird nodes 

can be used for the semi-analytical model of other panel models as shown in Table 2. 

  

(a) Radial displacement (b) Axial displacement 

  

(c) Circumferential displacement (d) Von Mises stress 

Figure 5: Convergence test for higher order FDM with no. of grid nodes for the panel model 3P  at 9.8eP MPa  
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For final validation, converged results of the semi-analytical method are compared with the corresponding 

results of FE simulation. Values of the radial, axial, circumferential displacements and von Mises stress at

9.8eP MPa , for the panel model 3P  are illustrated in Fig. (6). Results are plotted for the same paths and 

optimum number of elements and nodes for FEM and semi-analytical methods used in Fig. (5). As shown in 

Fig. (6), two methods can very well describe the elastic behavior of the cylindrical panel under distributed 

pressure loading and are in good agreement. It can be observed that the von Mises stress 
e  reaches its 

maximum value at the center node of the cylindrical panel where the yielding begins. The agreement observed 

between results obtained by these two methods, indicates the ability of these methods to simulate the elastic 

deformation of the cylindrical panel in its general form. Moreover, this comparison can be made for other 

proposed panel models as listed in Table 2.  

In the following, the Richardson extrapolation method is employed to increase the accuracy and reduce the 

computation time of semi-analytical method. For this, the number of nodes in x  and  directions must be 

defined in a manner that Eq. (21) is satisfied. The required grid nodes with special interval in x and 

directions for the panel model 3P are shown in Table 6. As an example, the relation governing the Richardson 

extrapolation for radial displacement (
,i jw ) is shown in Eq. (27). By carrying out the extrapolation, the order of 

truncation error is increased from 4 to8. The results of Richardson extrapolation is obtained on the basis of 

lower number of grid nodes. For internal points, the results can be estimated by an appropriate interpolations 

formula. 

 
, , 641 21

, , 3 1411
, ( )

4 1

i j i jN M N M
i j i j N M

w w
w w O h   

 

      
    
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4 1

i j i j

i j i j

w w
w w O h




 

  
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The comparison of results obtained by the FEM and semi-analytical method with and without the Richardson 

extrapolation technique is made in Fig. (6). As shown in this figure, the results of semi-analytical method with 

Richardson extrapolation appropriately converges to the results of other method. Therefore, one can conclude 

that this method can be used for parametric study of the elastic limit load and distribution of components of the 

displacement, stress and strain fields for panel with different type of geometric parameters, loading and 

boundary conditions. 

  
(a) Radial displacement (b) Axial displacement 
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(c) Circumferential displacement (d) Von Mises stress 

Figure 6: Comparison of results of FEM, SAM without and with Richardson extrapolation, Panel model 3P ,

9.8eP MPa  

Table 6: Number of grid nodes used for the convergence test for panel model 3P  

No. of division in x  

direction 
No. of division in  

direction 

No. of nodes for quarter model of 

panel 3P  
x  (m)  (Radian) 

N=21 M=21 121 0.05 0.02617 

N=41 M=41 441 0.025 0.01308 

N=81 M=81 1681 0.0125 0.006544 

 

Parametric study 

The main object of this section is to carry out a parametric study on effects of the geometric parameters
0, ,R h

on the elastic behavior of the cylindrical panel.  Results of the parametric study are obtained from the verified 

semi-analytical method with Richardson extrapolation technique as presented in the previous section. The 

uniform pressure is considered to be distributed over the semi-rectangular area for all panel models listed in 

Table 3. Variations of the elastic limit load for proposed panel models are demonstrated in Table 7. It is found 

from the table that for the first three models with constant value of R and 
0 and different values of h (

1, 2, 3P P P ), as the thickness of the panel decreases, the value of the elastic limit load decreases for the same 

loading range. For the last three panel model ( 3, 4, 5P P P ), the value of h  is constant and values of R and 
0

are varied in such a way that


0 constantS R  . For these panel models, values of 
0  and the range of 

loading along the  direction becomes lower with the same aspect ratio. As 
0 decreases or R increases, the 

value of the elastic limit load decreases. This means that despite reducing the range of loading along the 

direction, as total angle of the panel decreases the plastic flow begins at an earlier loading step. 

Table 7: Elastic limit load for different panel models 

Model ( , )zp x   Elastic limit load ( )eP MPa  

1P  
0p  

19.22 

2P
 0p  

13.2 

3P  
0p  

9.8 

4P  
0p  

8.6 

5P  
0p  

7.72 
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Variations of radial, axial and circumferential displacements for considered cylindrical panel models in the 

elastic limit load are shown in Fig. (7). Radial and axial components of displacement for path 1 and 

circumferential displacement for path 2 are shown. It is found for the first three models with different thickness (

1, 2, 3P P P ) that as the thickness of the panel decreases, the radial displacement of the panel increases with 

lower value of the elastic limit load. For the panel model with constant thickness ( 3, 4, 5P P P ), as 
0 decreases 

or R increases, the radial displacement increases, despite decrease in the value of the elastic limit load. 

According to Figs. (5 and 6), maximum von Mises stress occurs in the middle point of panel ( / 2x L ,

0 / 2   ). This point can be considered as critical point in the cylindrical panel that in which yielding begins. 

As shown in Fig. (7), at this point axial and circumferential component of displacement have small values and 

close to zero but radial displacement has maximum values. 

It is observed that variation of the displacement components of all panel models are approximately in the same 

range. However, the panel model 5P with lower value of 
0 has the lowest and the panel model 3P with 

higher value of
0  and lower value of h has the highest value of axial displacement. It is also observed that the 

circumferential displacement of every point on all panel models increases as the thickness of the panel ( h ) 

decreases. For panel models with different total angle, as 
0 decreases, the value of circumferential displacement 

decreases. The symmetry condition for displacement components which were implemented for simplicity of the 

semi-analytical method can be observed in Fig. (7). As seen in this figure, the proposed boundary conditions are 

in good agreement with the introduced semi-analytical method. 

  
(a) Radial displacement (b) Axial displacement 

 
(c) Circumferential displacement 

Figure 7: Variation of radial, axial and circumferential displacement for different paths on cylindrical panel at 

eP in path 2. 
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Variations of axial and circumferential elastic strains for path 1 of the panel under uniformly distributed 

pressure in the elastic limit load 
eP are shown in Fig. (8). As shown in this figure, the axial elastic strain along 

the length of the cylindrical panel have a different distribution. According to Eq. (15) definition of the axial 

stain is directly related to the distribution of axial and radial displacements. For the first three models with 

different thickness, as the thickness of the panel decreases, the axial elastic strain in the range of 0.4 0.6x 

of panel increases with lower value of the elastic limit load. For panel model with constant thickness, as 
0

decreases or R increases, the axial elastic strain decreases with lower value of the elastic limit load. It is also 

observed that variation of the circumferential elastic strain of all panel models are approximately in the same 

range. The destitution of relative stress along the path 1 can be found from the distribution of elastic strains 

shown in Fig. (8). 

 

  
(a) Axial elastic strain (b) Circumferential elastic strain 

Figure 8: Variation of axial and circumferential elastic strain for definted path 1 on cylindrical panel at ep  

The variation of von Mises stress in the cylindrical panel under uniform distributed pressure load for proposed 

panel models and loadings in the elastic limit load 
eP are shown in Fig. (9). The results are plotted for path 1 on 

the cylindrical panel. Since the results are obtained for the elastic limit load, the value of maximum von Mises 

stress in all panel models have the same value equal to yield strength of proposed panel material. The maximum 

value of von Mises stress occurs at the center point of defined path or the panel in general. 

 

Figure 9: Variation of von Mises stress for definted path 1 on cylindrical panels at eP  

Variations of axial and circumferential stresses in the cylindrical panel under uniform distributed pressure for 

proposed panel models and loading ranges in the elastic limit load eP  are shown in Fig. (10). For more 
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clarification, results of components of the stress tensor are shown in the circumferential direction, i.e. path 2. As 

shown, the circumferential stress is a larger stress component for panel models in Table 3. For panel models 

with different thickness ( 1, 2, 3P P P ), as h decreases the value of the axial and circumferential stress also 

decrease. However, the distribution of the axial and circumferential stress for panel models with constant 

thickness ( 3, 4, 5P P P ), as 
0 decreases, is approximately in the same range.  As shown in Tables 2 and 3, 

values of 
0  and the range of loading along the  direction becomes lower with the same aspect ratio for this 

panel models. The result of this manner is identified in Fig. (10), which has led to sharper stress distribution in 

loading area. It is also interesting to note that both stresses have highest values at the center of the panel.  

 
 

(a) Axial stress (b) Circumferential stress 

Figure 10: Variation of axial and circumferential stresses for path 2 on cylindrical panel at 
eP  

 

Conclusion 

Semi-analytical solutions have been presented for the elastic behavior of a thin cylindrical panel under 

uniformly pressure distribution.  In this work, Navier method has been successfully employed to obtain the 

elastic limit load and distribution of displacements, stress and strain tensors in the cylindrical panel. The thin 

cylindrical panel is modeled using the appropriate thin shell theory. The unknown components of displacement 

tensor are obtained by solving the governing differential equations using the higher order finite difference 

method. The symmetry condition of boundary and loading of the proposed cylindrical panel is employed to 

efficiently reduce the size and time of computations in both finite element and semi-analytical methods. 

Furthermore, the Ricahrdson extrapolation technique is used to improve the accuracy and reduce the 

computational timing of the semi-analytical method. The verification analysis is done between FE and semi-

analytical methods for uniformly pressure distribution in semi-rectangular area. Results of two methods show 

good agreement which validates the correctness of the presented semi-analytical model with the Richardson 

extrapolation technique. The parametric study is done with the semi-analytical solution employing the 

Richardson extrapolation technique for different values of 
0,R  and h  of the cylindrical panel. The results 

show that geometric parameter plays an important role in the deformation characteristics of cylindrical panels 

under the lateral pressure load. It can be concluded that the presented semi-analytical model can successfully 

handle the elastic analysis of the cylindrical panel and is capable of being extended into other forms of 

boundary, geometric and loading conditions in elastic-plastic deformations. The results of this study can be used 

for different pressure distribution and contact area for simulating contact that occurs between two bodies with 

arbitrary shape. 
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Governing equilibrium differential equations in Navier form: 
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Appendix B 

Required fourth-order finite difference formula [35]: 
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