Pregroups from Length Functions

Faisal H Nesayef

Department of Mathematics, Faculty of Science, University of Kirkuk, Kirkuk, Iraq

Abstract

Stallings [1] in 1971 introduced the concept of a pregroup. Subsequent work has been done by Hoare [2], Nesayef [3], Chiswell [4], and many others. Five axioms were originally introduced by Stallings [1], namely P1, P2, P3, P4, and P5. It has been proved in [5] that P3 is a consequence of the other axioms.Further development was conducted by Stalling in [6].

Keywords Archimedean Elements, Defined Product of Elements, Length Functions, Pregroup, Universal Group

1. Introduction

In section one, we introduce the concept of length function and list all the other axioms of Length Function which are needed in the latter sections. We introduce the definitions and some important properties of pregroups. In section two, we introduce a new axiom called P6 and proved that some axioms are equivalent to the other ones.
We also investigate some basic properties of Pregroups restricted to P6. Finally we showed that the universal group of a Pregroup satisfying P6 has a length function given by Lyndon [7].

Length Functions and Pregroups

Definition 2.1 : A Length Function | | on a group G, is a function given each element x of G a real number $|x|$, such that for all $x, y, z \in G$, the following axioms are satisfied.
$A 1^{\prime}|e|=0, e$ is the identity elements of G.
$A 2\left|x^{-1}\right|=|x|$
$A 4 d(x, y)<d(y, z) \Rightarrow d(x, y)=d(x, z)$, where $d(x, y)=\frac{1}{2}\left(|x|+|y|-\left|x y^{-1}\right|\right.$
Lyndon showed that A 4 is equivalent to $d(x, y) \geq \min \{d(y, z), d(x, z)\}$ and to
$d(y, z), d(x, z) \geq m \Rightarrow d(x, z) \geq m$.
$A 1^{\prime}, A 2$ and $A 4$ imply $|x| \geq d(x, y)=d(y, x) \geq 0$
Assuming, A2 and A4 only, it is easy to show that:
i. $e d(x, y) \geq|e|$
ii. $|x| \geq|e|$
iii. $d(x, y) \leq|x|-\frac{1}{2}|e|$.
$A 3$ state that $d(x, y) \geq 0$ is deductible from $A 1^{\prime}, A 2$ and $A 1^{\prime}$ is a weaken version of the axiom:
$A 1|x|=0$ if and only if $x=1$ in G .
$N 1^{*} G$ is general by $\{x \in G:|x| \leq 1\}$

Definition 2.2: A pregroup is a set P containing an element called the identity element of P , denoted by 1 , a subset D of, PXP and a mapping $D \rightarrow P$, when $(x, y) x$ y together with a map $i: P \rightarrow P$ where $i(x)=x^{-1}$, satisfying the following axioms: (we say that $x y$ is defined if $(x, y) \in D$, i.e. $x y \in P$)
$P 1$. For all $x \in P, 1 x$ and $x 1$ are defined and $1 x=x 1=x$.
P 2 . For all $\mathrm{x} \in \mathrm{P}, \mathrm{x}^{-1} \mathrm{x}=\mathrm{x}^{-1}=1$.
P3. For all $x, y \in P$, if $x y$ is defined, then $y^{-1} x$ is defined and $(x y)^{-1}=y x$.
P4. Suppose that $x, y, z \in P$. If $x y$ and $y z$ are defined, then $x(y z)$ is defined, is which case
$\mathrm{x}(\mathrm{yz})=(\mathrm{xy}) \mathrm{z}$.
P5. If $w, x, y, z \in P$, and if $w x, x y, y z$, are all defined them either $w(x y)$ or $(x y) z$ is defined.

2.1 The axiom P6

In this section we shall restrict our attention to a special type of pregroup, which satisfies a certain axiom. To do this we introduce the following theorem, which was introduced in [3].

Theorem 2.1: The following two statements are equivalent in P.
P6(1) if (x_{1}, x_{2}) is reduced and $x_{1} a, a^{-1} x_{2}$ are both defined, then $a \in A_{0}$
P6(2) if $\left(x_{1}, x_{2}\right)$ is reduced and $\left(a x_{1}\right) x_{2}$ is defined for $a \in P$ then $a x_{1} \in A_{0}$
Proof suppose $\left(x_{1}, x_{2}\right)$ is reduced and let $\left(a x_{1}\right) x_{2}$ is defined for some $a \in P$.
$x_{1}\left(a x_{1}\right)^{-1},\left(a x_{1}\right) x_{2}$ are both defined so $a x_{1} \in A_{0}$, so $\mathrm{P} 6(1) \rightarrow \mathrm{P} 6$ (2).
Conversely, suppose $\left(x_{1}, x_{2}\right)$ is reduced and $x_{1} a, a^{-1} x_{2}$ are both defined for some $a \in P$
Since (x_{1}, x_{2}) is reduced, then ($x_{1} a, a^{-1} x_{2}$) is reduced
Since $x_{1}^{-1}\left(x_{1} a\right)$ is defined and $=\mathrm{a}$, and $\left\{x_{1}^{-1}\left(x_{1} a\right)\right\} a^{-1} x_{2}$ is defined and $=x_{2}$, then by P6 (2) $x_{1}^{-1}\left(x_{1} a\right) \in A_{0}$, i .e. $a \in A_{0}$.

Therefore P6 (1) \Leftrightarrow P6 (2)
We denote the equivalent statements P 6 (1) and P 6 (2) in theorem 2.1 by P 6 , and the pregroup which satisfies P 6 , by P^{*}. Then we shall define a length function on $U\left(P^{*}\right)$, the universal group of the pergroup P^{*}.

Before defining length function on $U\left(P^{*}\right)$ we shall introduce the following result. The following theorem generalizes the condition P6 (2).

Theorem 2.2: Let a_{n-1}, \ldots, a_{1} be any sequence, and x_{1}, \ldots, x_{n} be reduced, both on P^{*}. If
$a_{n-1}, \ldots, a_{1} x_{1}, \ldots, x_{n}$ is defined, then $a_{n-1}, \ldots, a_{1} x_{1}, \ldots, x_{n} \in A_{0}, n \geq 2$
Proof The only way which $a_{n-1}, \ldots, a_{1} x_{1}, \ldots, x_{n}$ is defied is by $\left[a_{n-1}, \ldots, a_{1} x_{1}, \ldots, x_{n}\right] x_{n}$ being defined.
Then also by theorem 2.2 either $\left[\left(a_{n-1}, \ldots, a_{1} x_{1}, \ldots, x_{n-2}\right) x_{n-1}\right] x_{n}$ is defied, so by P6(2),
$\left(a_{n-1}, \ldots, a_{1} x_{1}, \ldots, x_{n-2}\right) x_{n-1} \in A_{0}$, or $\left[a_{n-1}\left(a_{n-2} \ldots a_{1} x_{1} \ldots x_{n-1}\right)\right] x_{n}$ is defined, where $x_{0}=1$.
Since $\left(a_{n-2}, \ldots, a_{1} x_{1}, \ldots, x_{n-1}\right) x_{n}$ is not defined by theorem 2.5 , then by P6(2)
$a_{n-1}\left(\begin{array}{lllll}a_{n-2} & \ldots & a_{1} x_{1} & \ldots & x_{n-1}\end{array}\right) \in A_{0}$.
Theorem 2.3: Let $U\left(P^{*}\right)$ be the universal group of a pergroup P^{*} and left $g, h \in\left(P^{*}\right)$ by given $g=x_{1} \ldots x_{n}, h=y_{1} \ldots y_{m}, m, n \geq 2$ in reduced forms. Let $a_{i}=x_{n-i+1} \ldots\left(x_{n} y_{m}^{-1}\right) \ldots y_{m-i+1}^{-1}$ be defined for $1 \leq i \leq s$ for some $s<m, s \leq n$. If $a_{s} y_{m-s}^{-1}$ is defined then $a_{i} \in A_{0}$ for all $\leq s$, hence by symmetry if $s<n$ and $x_{n-s} a_{s}$ is defined, then $a_{i} \in A_{0}$.

Proof $a_{i}=x_{n-i+1} a_{i-1} y_{m-i+1}^{-1}$ for $1 \leq i<s$, which $a_{0}=1$ then by theorem 2.5 either $x_{n-i+1}^{-1}\left(a_{i-1} y_{m-i+1}^{-1}\right)$ is defined
or $\left(x_{n-i+1}^{-1} a_{i-1}\right) y_{m-i+1}^{-1}$ is defined
If (1) holds , then $\left[x_{n-i+1}^{-1}\left(a_{i-1} y_{m-i+1}^{-1}\right)\right] y_{m-i}^{-1}$ is defined
Then $a_{i-1} y_{m-i+1}^{-1}, y_{m-i}^{-1}$ is reduced, so by P6 (2) $\left[x_{n-i+1}\left(a_{i-1} y_{m-i+1}^{-1}\right)\right]=a_{i} \in A_{0}$
If (2) holds, then $\left[\left(x_{n-i+1} a_{i-1}\right) y_{m-i+1}^{-1}\right] y_{m-i}^{-1}$ is defined.
Since $y_{m-i+1}^{-1}, y_{m-i}^{-1}$ is reduced, then by P6 (2), $\left(x_{n-i+1} a_{i-1}\right) y_{m-i+1}^{-1}=a_{i} \in A_{0}$
Corollary 2.1: In theorem 2.3, $x_{n-s} a_{s}\left(a_{s} y_{m-s}^{-1}\right)$ is defined if and only if ($\left.x_{n-s} a_{s}\right) a_{s} y_{m-s}^{-1}$ is defined.
Proof \quad Since $a_{s} \in A_{0}$ in either case. Then $x_{n-s} a_{s}$ and $a_{s} y_{m-s}^{-1}$ are both defined.
By P4, the result follows.
From theorems 2.1 and 2.2, with the same notation, we have shown that:
Corollary 2.2: $\quad g h^{-1}=x_{1} \ldots x_{n-s} a_{s} y_{m-s}^{-1} \ldots y_{m-s}^{-1}$ is reduced, if and only if $a_{s} \notin A_{0}$.
Proof: See [3].

2.2 $\quad P^{*}$ and Length Function

Theorem 2.4: | $\mid: U\left(P^{*}\right) \rightarrow \mathbb{R}$ given in definition [3] is a length function on $U\left(P^{*}\right)$.
Proof See [3].

3. Pregroups from Length Functions

We now consider the converse of theorem 2.4, that is, we have a length function on a group G such that G is generated by elements of length zero and one, then these elements, of length 0,1 from a Pregroup P^{*} satisfying P6, and $G \cong U\left(P^{*}\right)$ preserves length.
$P^{*}=\{x \in G:|x| \leq 1\}$
$|1|=0$, so1 $\in P^{*}$
For $x \in P^{*},|x|=0,1$ and by A2, $|x|=\left|x^{-1}\right|$
So $\left|x^{-1}\right|=0,1$ and $x^{-1} \in P^{*}$
The product xy of two elements x and y of P^{*} is defined if and only if $|x y| \leq 1$
$|x y| \leq 1 \Rightarrow x y=z$, where $|z|=0$ or 1
Thus $z \in P^{*}$
Hence we have $(x, y) \Rightarrow x y \in P^{*}$
P^{*} satisfies the following axioms for a pergroup.
P1. $|x .1|=|x .1|<1, \forall x \in P^{*}$ and
$x .1=1 . x=x$, for $x \in G$
P2. $\left|x x^{-1}\right|=\left|x^{-1} x\right|=0, \forall x \in P^{*}$, so $x x^{-1}$ and $x^{-1} x$ are both defined more over $x x^{-1}=x^{-1} x=1$ for $x \in G$.

P3. Suppose $x y$ is defined, then $|x y| \leq 1$
By A2 $\left|(x y)^{-1}\right| \leq 1$ then $(x y)^{-1} \in P^{*}$, and
$(x y)^{-1}=y^{-1} x^{-1}$ for $x, y \in G$
Hence $y^{-1} x^{-1}$ is defined
P4. Suppose $, y, z \in P^{*}$, such that xy and $y z$ are defined, and suppose $x(y z)$ is also defined.
Then $|x(y z)|=|(x y) z| \leq 1$, for $x, y, z \in G$
Hence $(x y) z \in P^{*}$, and
$x(y z)=(x y) z$
P5. Let $w, x, y, z \in P^{*} m$ with $w x, x y, y z$ all defined, i.e.
$|w x|,|x y|,|y z| \leq 1$
If one of $|w|$ or $|x y|$ or $|z|=0$, then at least one of $w(x y)$ and $(x y) z$ is defined
Suppose neither $|w|$ nor $|x y|$ nor $|z|$ is zero, and suppose neither $w(x y)$ nor $(x y) z$ is defined .
i.e. $|w(x y)|=|(x y) z|=2$
$|w .(x y) . z| \geq$ 3in G , by applying proposition 3 (page 2) on $w, x y, z$.
$|(w x) \cdot(y z)| \leq 2$ in G, but $w \cdot(x y) \cdot z=(w x) \cdot(y z)$ in G, which is a contradiction.
Therefore, either $w(x y)$ is defined or $(x y) \cdot z$ is defined, and hence P5 is satisfied [3].
P6. Suppose $\left(x_{1}, x_{2}\right)$ is a reduced sequence, for x_{1}, x_{2} in P^{*}, then $\left|x_{1}\right|=\left|x_{2}\right|=1$ and $d\left(x_{1}, x_{2}^{-1}\right)=0$
Suppose a is an element in P^{*} such that $x_{1} a$ and $a^{-1} x_{2}$ are both defined then
$2 d\left(x_{1}, a^{-1}\right)=\left|x_{1}\right|+|a|-\left|x_{1} a\right| \geq|a|$
i.e. $d\left(x_{1}, a^{-1}\right) \geq \frac{1}{2}|a|$.

Also $d\left(a^{-1}, x_{2}^{-1}\right) \geq \frac{1}{2}|a|$
Then by A4, $|a|=0$, i.e. $a \in A_{0}$.
Therefore, if G is a group with length function such that G is generated by element of length zero and one , then these elements from a pregroup satisfying P6, where the product xy of two elements x and y of P^{*} is defined if and only if $|x y| \leq 1$.

Theorem 3.1: If G is a group with length function such that G is generated by elements of length zero and one, and P^{*} is the pregroup consisting of these elements, then $\cong U\left(P^{*}\right)$, This was also observed in [3].

Proof G is generated by elements of P^{*}, so let $\emptyset: P^{*} \rightarrow G$ be the inclusion.
Then by [3], there exists a specific morphism: $P^{*} \rightarrow U\left(P^{*}\right)$, such that, for any group G and any mprphim $\emptyset: P^{*} \rightarrow G$, there exist unique homomorphism $\widetilde{\varnothing}: U\left(P^{*}\right) \rightarrow G$ such that $\varnothing=\widetilde{\emptyset} i$.

Figure 1: Unique homomorphism diagram

Since $\emptyset\left(P^{*}\right)$ generates G , then \emptyset is onto.
Suppose $w=x_{1}, \ldots, x_{n}$ is a word in $U\left(P^{*}\right)$ for minimum n such that

$$
\widetilde{\varnothing}(w)=e \in G, \quad \widetilde{\varnothing}(w)=\varnothing\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}, \ldots, x_{n}=e \text { in } G
$$

When $\mathrm{n}=1, \emptyset\left(x_{1}\right)=x_{1}=e \in G$, then $x_{1}=1 \in U\left(P^{*}\right)$.
Suppose $\mathrm{n}>1$, then $x_{i} x_{i+1}=x_{j}$ for same $i, 1 \leq i \leq n-1$ where $\left|x_{j}\right|=0,1$; otherewise $\left|x_{i} x_{i+1}\right|=2$, i.e. $d\left(x_{i}, x_{i+1}\right)=0, \mathrm{I}=1, \ldots, \mathrm{n}-1$ in which case by [3], $\left|x_{1} \ldots x_{n}\right|=n$ and so $x_{1} \ldots x_{n} \neq e$ contradicting $\widetilde{\varnothing}(w)=$ e.

Thus w contains a subword of the form $x_{i} x_{i+1}$ where $\left|x_{i} x_{i+1}\right|=0,1$ and $x_{i} x_{i+1}=x_{j}$
i.e. n is not the minimum, which is a contradiction. Hence $\mathrm{n}=1$.

Therefore $w=e . S o ~ \emptyset$ is an isomorphim.

4. Conclusion

We have now concluded that there are two new stronger versions of P6. These are P6(1) and P6(2) which are equivalent to each other. The equivalent version is denoted by P6* and those pregroups satisfying this condition is dented by P^{*}. Considering the universal group of P^{*} in the normal way we get $\mathrm{U}\left(\mathrm{P}^{*}\right)$ which we have proved that this group satisfies length function defined by Lyndon.

The final conclusion is that the universal group $\mathrm{U}\left(\mathrm{P}^{*}\right)$ is equivalent to G where G is a group generated by element of length zero and one as defined in [3].

References

[1]. Stallings, J. R. (1971).Group theory and three dimensional manifolds, New Haven. (12), University Press.
[2]. Hoare, A. H. M. (1981). Nielson methods in groups with length functions, Math. Scan, $153-164$.
[3]. Nesayef, F. H. (1983). Groups generated by element of length zero and one, Ph. D. Thesis, University of Birmingham, UK.
[4]. Chiswell, I. M. (1987). Length Function and Pregroups, Proceedings of Edinburgh Mathematical Society, 30, 57-67.
[5]. Nesayef, F. H. (2016).Pregroups with Length Functions, International Journal of Mathematical and Physical Sciences Research, Vol. 4, Issue 1, 126-130.
[6]. Stallings, J. R. (1966). A remark about the description of free products of group, Proc. Cam. Phil. Soc. 62, 129 - 134.
[7]. Lyndon, R. C. (1963). Length Functions in Groups, Math. Scand. 12, 209 - 234.
[8]. Nesayef, F. H. (2017). Classifications of Some groups with Length Functions, American Journal of Mathematics and Computer Sciences, 1, (3), 2016, 89-93.

