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computation of an integer matrix. We show how to find a solution, when it exists. We define an equivalence 

relation and show how the set of all the solutions can be partitioned in a finite set of equivalence classes and find 

a set of solutions, one for each of these classes. We find a formula to express all the solutions and a formula to 
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1. Introduction 

In this paper we deal with the diophantine equation (which has been already introduced in [1]): 

d
X

A
                                 (1) 

where A and X are the matrices defined as follows:  

A is a matrix nr
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  with n columns and r rows, and ija , similarly  

 X  is a matrix 
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 with n columns and n-r rows, and, ijx
.
 

then we denote by 








X
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the nn
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Given any nn
 
 matrix M , in this paper we denote  by M  the determinant of M .  
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The equation  (1) generalizes  an equation studied by Smith [3] and, before him, by Hermite [8] in a more 

particular case. Smith analyzed the case  in which d=1 and the greatest divisor of A (see below) is 1, Hermite 

analyzed the case in which d=1 and A is a vector of relatively prime integer numbers. 

Recently some algorithms have been developed in order to solve efficiently some diophantine problems, such as 

systems of linear diophantine equations arising from linear programming problems. Some of these algorithms 

use the Hermite Normal Form of integer matrices and the euclidean reduction algorithm applied to a vector of 

integers [2, 5, 6, 7, 13]. In this paper we use and develop some of this ideas to shed some light on the previous  

equation (1). In this paper we are not interested in the efficiency of the computation but only at some theoretical 

facts. First we clear up some notations that we use in the paper. We are interested in the entries ijx which satisfy  

d
X

A


 

or  d
X

A
 , for this reason we use the notation d

 

in (1) . 

In this paper we give two main results: 

1. After having defined an equivalence relation for the solutions of (1), we show that the set S of all 

the solutions can be decomposed into a finite number of equivalence sets, which form a partition 

of S. We show how to find a solution for each of these sets. 

2. We give a formula which permits to write all the solutions of (1) in a convenient way. 

In Section 2 we recall some basic concepts, definitions and theorems that are used in the rest of the paper. 

In Section 3 we introduce the definition of solution of (1) and the notion of L-A-equivalence. 

In Section 4 we recall a necessary and sufficient condition for the solvability of equation (1). 

In Section 5, we use the concept of L-A-equivalence to build a partition of the set of all solutions of (1), and we 

give a formula to express the all the solutions. 

 

2. Some Preliminar Definitions and Results 

In this section we recall some basic (and well known) results which are used in the following sections.  

2.1 Elementary Operations and Unimodular Matrix 

We recall some definitions and facts which are usefull to understand what follows in the paper. 

Given an integer matrix M, an elementary row operation [12, p.12] is: 

- Multiply a row by -1; 

- Replace a row  iR

 

by ji nRR   , with ji 

 

and Zn  ;                    (2) 

- Swap two rows.  

The elementary column operations are defined in the same way by replacing the rows with the columns. Note, 

anyway, that the swapping of two rows (or two columns ), say iR and jR , can be obtained by using only the 

first two operations by the sequence of operations: jii RRR  ; jij RRR   ; jii RRR  .  

An integer matrix U, such that 1U , is called unimodular matrix [2]. It’s easy to prove that the inverse of 

an unimodular matrix is unimodular, the product of two unimodular matrices is unimodular, the identity matrix I 

is clearly unimodular. That is, the set of unimodular nn
 
 matrices, for a given n,  provided with the  matrices 

multiplication operation, is a group, the unimodular group, usually denoted by GL(n, Z). It is known that each 

of the above operations (2)  is equivalent respectively to: 

- pre-multiplying M  by an unimodular matrix U if we operate on the rows  

- post-multiplying M  by an unimodular matrix U if we operate on the columns 

A finite sequence of operations  (2) on the rows or, respectively, on the colums of M,  can be represented by an 

unimodular matrix, given by the product of all the matrices representing the elementary operations. 

2.2 Hermite Normal form of  a Matrix 

Definition 2.2.1 Given a full rank integer matrix M, we will  say it is in Hermite Normal Form (HFN in what 

follows),  if: 
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- The matrix M is of the form  ON

 

with N a nonsingular square matrix , and O is a matrix with all 

entries equal to 0; 

 

- N is lower triangular ; 

 

- All the entries of N are not negative and for every row of N the unique maximum is the diagonal entry 

which is greater than 0.          

Example 2.2.1:  

















00211

00030

00001

 

If M is a full rank matrix (let’s consider the number of columns greater or equal to the number of rows), then we 

can define two different forms of HNF: 

1. A first form defined as in Definition 2.2.1, which we refer to with notation RHNF (because, as claimed 

in the following Theorem 2.2.1, this form can be obtained by multiplying M on the right by an 

unimodular matrix ) .  

Example 2.2.2:  

















321

021

001

 

2. A second form defined as in Definition 2.2.1 but where for every column of  N the unique maximum is 

the diagonal entry which is greater than 0. We refer to this form with notation LHNF (because, as we 

claim in the following Theorem 2.2.2, this form can be obtained by multiplying M on the left by an 

unimodular matrix). 

Example 2.2.3:  

















220

030

001

 
Some of the following theorems can be proved by applying the algorithms which we explain in 2.3.  (see also [3, 

8, 9]):

 
Theorem 2.2.1 If M is a full rank integer matrix with r rows and c columns and cr  , then there exists an 

unimodular matrix U such that the matrix MU is RHNF. 

Theorem 2.2.2 If M is an integer square matrix, not singular,  then there exists an unimodular matrix U such 

that the matrix UM is LHNF. 

Definition 2.2.2 If two integer square matrices M and M’ are given and there exists an unimodular matrix U 

such that M=UM’, then we say that M and M’ are L-equivalent (left-equivalent). 
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Definition 2.2.3 If two integer square matrices M and M’ are given and there exists an unimodular matrix U 

such that M=M’U, then we say that M and M’ are R-equivalent (right-equivalent). 

It’s easy to prove that the previous definitions provide two equivalence relations.  

The following theorems can be proved by multiplying and using the definitions [3]: 

Theorem  2.2.3  If  M and M’ are two integer square matrices, both not singular and reduced to RHNF, and R-

equivalent , then M=M’. 

In a similar way we can prove the following: 

Theorem  2.2.4  If  M and M’ are two integer square matrices, both not singular and reduced to LHNF, and L-

equivalent , then M=M’. 

2.3 Greatest Divisor of a Matrix 

We can refer to Smith [3] to give the followings: 

Definition 2.3.1 If M is a matrix, the determinants of M are defined as the determinants of the greatest square 

matrices contained in M .  

Definition 2.3.2 If M is an integer matrix, the greatest divisor of M is defined as the greatest common divisor of 

the determinants of M. 

Note that if M is a full rank matrix, then its greatest divisor is well defined and different from 0. If M is not full 

rank, then all the determinants are 0, so the greatest divisor is not defined.  

Definition 2.3.3 If M is an integer matrix, then M is defined  prime matrix if its greatest divisor  is  1.  

Theorem 2.3.1  If M is a full rank integer matrix, then, by pre or post multiplying M  by an unimodular matrix, 

the greatest divisor of the resulting matrix is the same as the one of M. 

See [3] for a proof. 

If M is in HNF (RHNF or LHNF), that is  M=  ON , it’s clear that the greatest divisor of M can be obtained 

by the product of all the diagonal entries of the square matrix N. In fact this is the only square matrix contained 

in M with determinant not equal to 0. Hence, by using the previous theorems 2.4.1 and 2.2.1 we have the 

following: 

Theorem 2.3.2 If M is a full rank integer matrix with r rows and c columns and cr  , and M’=  ON  is the 

HNF of M, then the greatest divisor of M is equal to the greatest divisor of M’, which is equal to the product of 

all the diagonal entries of N. 

2.4 Algorithm to reduce a Matrix in HNF 

We show an algorithm which permits to reduce a matrix into RHNF by using the elementary operations (2) on 

the columns. Similar algorithms have been presented by various authors, [2, 4, 5, 6] differing from each other by 

the different complexity of computation. In this paper we are not interested in the efficiency of the computation 

but we only want to show a way to do it. The algorithm is based on the Extended Euclidean Algorithm (see [7, 

13]) which we can use to obtain an integer column (or row)  reduction in a integer matrix M. We explain the 

algorithm and use it to reduce into Right Hermite Normal Form a full rank integer matrix M with r rows and c 

columns, and cr  . 

Be M= 



















rcr

c

mm

m

mmm

........

............

..........

......

1

21

11211

 

If we consider the first row, all its entries cannot be all equal to 0 since the M is full rank, so the greatest 

common divisor 1d of its c elements im1  exists. We can reduce M  into the following form M’ by unimodular 

operations on the columns. 
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M’= 



















rcr mm

m

d

'........'

............

..........'

0......0

1

21

1

       

    

Algorithm 1

 

In order to obtain this form we can repeat the following algorithm until in the first row there is only one non-

zero entry, 1d : 

1. Find the value of the row that has the smaller absolute value different from zero, and we denote it by 

jm1  

2. For every ji  using the division algorithm we can write:  

ijii rmqm  11    with ji mr 10     

3. In each column iC , ji  , we operate the substitution:  jiii CqCC     

it can be proved that 1d  is the greatest common divisor of the entries of the first row (see [7]). It can be seen as 

a particular case of theorem 2.3.1 where the matrix has only one row. We can move 1d in the first position of 

the row, eventually by swapping two columns or changing the signs of one, to obtain a matrix in the form M’. 

Then we can continue this process starting from the matrix M’, without considering the first column and 

considering the entries of the second row. By this way we will be able to transform the matrix M’ in a matrix 

M’’ of the form: 

M’’= 



















rcrr mmm

dm

d

''......'''

............

0....0'

0......0

21

221

1

       

 

Going on, in this way we can transform the matrix into a lower triangular matrix. All the operations are 

equivalent to post-multiply M  by an unimodular matrix U. Note that for all the diagonal entries we have 

0id , because if 0id we can multiply the column by -1, and for every i , 0id  otherwise , for theorem 

2.3.1 and theorem 2.3.2, the greatest divisor of M cannot be defined and positive as required by the hypotesis 

that M is full rank. 

Algorithm  2 

In order to transform the matrix in the form M’’ in Hermite Normal Form we can apply the following algorithm 

: 

1. We start from i=2 ; 

2. For every ij   , by using the division algorithm we can write:  

ijijij Rdqm     with  iij dR 0  ;  

3. In each column jC , ij  , we operate the substitution: ijjj CqCC  ;  

4. Increase i and repeat form point 1 until i= r. 

At the end of algorithm 2 the matrix will be in the Right Hermite Normal Form, that is:  
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M’’’= 



















0....

............

0....0

0......0

21

221

1

rrr dRR

dR

d

        

 

We can obviously modify these algorithms to operate on rows instead of on columns, in order to place the full 

rank matrix M in LHNF. In this way we get a proof of theorems 2.2.1 and 2.2.2. 

Example 2.4.1 

Let’s consider the full rank matrix 






 

2122

4322
and let’s apply the previous algorithms. 

 Column transformation Equivalent matrix post-multiplication 

 Algorithm 1  

T1 

 















1244

133

122

CCC

CCC

CCC

 

 

 































 








 

2302

0102

1000

0100

0010

2111

2122

4322
 

T2 

 

 

 33 CC   











































2302

0102

1000

0100

0010

0001

2302

0102
 

T3 

 

 

 3211 CCC   







































 2308

0100

1000

0102

0010

0001

2302

0102
 

T4 

 

 

 31 CC   






































 2803

0001

1000

0001

0010

0100

2308

0100
 

T5 

 

 

 4433 CCC   






































 2003

0001

1400

0100

0010

0001

2803

0001
 

T6 

 









24

42

CC

CC
 










































 0023

0001

0010

0100

1000

0001

2003

0001
 

 Algorithm 2  



Salvi M                                                      Journal of Scientific and Engineering Research, 2017, 4(7):275-298 

 

Journal of Scientific and Engineering Research 

281 

 

T7 

 

 

 2211 CCC   




































 0021

0001

1000

0100

0012

0001

0023

0001
 

 

Now, by multiplying all the unimodular matrices, we obtain : 










































 

0021

0001

0412

0201

1000

1523

2122

4322

    

              (3) 

 

3.  Equivalent Solutions of (1) 

In this section we introduce an equivalence relation between two solutions of (1), which we will use in the 

following  part of the paper. First we define a solution of (1):  

Definition 3.1 Let’s suppose that a set of integer entries ijx  satisfy the equation  d
X

A


 

or  d
X

A
 , then, 

by denoting with  X  the matrix of the entries ijx , that is  





















nnnn

nkkk

xxx

xxx

X

..

..

..

21

11211

, we will define X

 

as a  

solution of  (1).

 

 

Definition 3.2 If iS and u jS  are two solutions (we suppose that in the equation (1) the matrix A is given), we 

say that iS is L-A- equivalent to jS , if there exists an unimodular matrix U such that: 

















ji
S

A
U

S

A
 

It can be easily proved that the definition 3.2 provides an  equivalence relation: 

- Reflexivity:

 



















ii S

A
I

S

A
 ;  

- Simmetry: if  U exists satisfying 

















ji
S

A
U

S

A
 , then by multiplying by  

1U  , which is 

unimodular, we obtain 

















ji
S

A

S

A
U 1

 ;  

- Transitivity: if  U exists satisfying 

















ji
S

A
U

S

A
, and  U’ exists satisfying 


















kj S

A
U

S

A
'    , then 



















ki S

A
UU

S

A
' , where UU’ is unimodular.

 

 

 

4.  A necessary and sufficient Condition for Solvability of (1) 

In [1] it has been proven that, by denoting with  A

  

the greatest divisor of A, holds the following:  
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Theorem 4.1  If A is given, the equation (1) ( 0d ) has integer solutions if and only if  A is full rank and A

 
divides  d. If A is not given the equation (which becames dX   ) is always solvable, even if d=0 . 

The proof of this theorem is implicitly embedded in the following proof of Theorem 5.2.2. 

Corollary 4.1 If the matrix A is prime, then the equation (1) is always solvable.  

 

 

Example 4.1   

Be the equation to solve:

 

2
2110

4321

44434241

34333231





xxxx

xxxx

 

The greatest divisor of the matrix A is g.c.d  10,0,5,2,1,1   = 1, namely A is a prime matrix. This means, by 

theorem 4.1, that the equation is solvable. 

Example 4.2 

Be the equation to solve:

 

3
2122

4322

44434241

34333231





xxxx

xxxx

 

The greatest divisor of the matrix A is g.c.d  10,4,8,4,8,0   = 2. Clearly 2 does not divides 3, so, by 

theorem 4.1, the equation is not solvable. 

5.  The Solutions of d
X

A


 
We start by considering a simpler case which permits us to introduce the way we will operate to solve the 

general case. 

5.1 The case dX   

First let’s consider the simpler case in which there are no constants, namely the matrix A is not given.  

Theorem 5.1.1 Given the integers 0d and 0n , there is only a finite number of nn  integer matrices in 

LHNF (or RHNF)  with determinant equal to d. 

Proof.  Be iS  a matrix in LHNF such that dSi  . The matrix iS  is lower triangular and in the form :

 

















0..

0..0....

0..0011

iiij aa

a

   

where  0iia i  and  jjij aa 0 ji  ,                                       (4) 

from  dSi 

 

we have that  



n

j

jj da
1                                      

(5) 

since jja  and n are integers, the previous equation  (5) can be satisfyed only by a finite number of values for jja

. From condition (4) we have 0iia i  and  jjij aa 0 ji  , , therefore for every value of  jja , only a 

finite number of integer values is allowed for each ija . We can conclude that only a finite number of  matrices 
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of the form (4) exists with determinant equal to d. Similarly we can  prove the same results also for matrices in 

RHNF. □ 

Definition 5.1.1 If 0d and 0n  are integers, and iS is a nn  matrix in LHNF such that dSi  we 

define the class of  L-equivalence of iS as the set iC

 

of  all the matrices which are L-equivalent to iS .  

From theorem 5.1.1 it follows that, given the integers 0d and 0n , there is a finite number of classes iC
 

of  L-equivalence. 

Theorem 5.1.2 If 0d and 0n  are integers, and we denote with S the set of the all the solutions  of the 

equation dX  , where X  is a nn  integer matrix, then the set of classes of L-equivalence  , defined as in 

definition 5.1.1,  is a partition of S. 

Proof.  Given a solution  X, for theorem 2.2.2 there exists an unimodular matrix U such that iSUX  , where  

iS
 
is LHNF and dSi  , namely X  is L-equivalent to iS . This means that, by definition 5.1.1,  X  belongs to 

iC .  

If we suppose that X  belongs to two different classes, say iC  and jC , then there exist two unimodular matrices 

iU  and jU  such that ii SXU 
 
and jj SXU  . Hence we can write  ii SUX

1


 
and

 jj SUX
1

 , and 

therefore  

jjii SUSU
11 


 

jjii SUUS
1


 

The matrix  
1

ji UU is unimodular, hence iS
 
is L-equivalent to jS , but for theorem 2.2.4  we have ji SS    

and consequently ji CC  . □ 

5.2 The general case d
X

A
  

We generalize the previous theorem 5.1.2  by showing how to build a finite number of solutions iS of equation 

(1), which play the same role as in the simpler case dX 
 
analyzed in the previous section. 

5.2.1 Construction of a Set of  Solutions 

Let’s consider the equation d
X

A
 , and suppose it’s solvable. For theorem 4.1 we have that A

 
is defined , 

not equal to 0, it divides d, and A is full rank. For theorem 2.2.1 there exists an unimodular matrix U such that 

AU is in RHNF. We can write more explicitly such form as follows : 

AU= 

















0..

0..0....

0..0011

iiij aa

a

 where  0iia i  and  iiij aa 0 ji  ,  , ij     

                                                  (7)  

In order to proceed in the construction we need the following: 

Theorem 5.2.1 If a full rank matrix A is in  the form  ON , where N is a square lower triangular matrix and 

O is a matrix with all entries equal to 0, then it is possible to find an unimodular matrix U’ such that U’A is in 

the form : 
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 ON ' = 

















0..''

0..0....

0..00'11

iiij aa

a

 where  0' iia i  and iiji aa ''0  ji  , , ij                          (8)  

(That is, in (8) for each column the maximum is the diagonal entry, whereas in (7) it is true for each row).   

Proof. The square matrix N’ in (8) is not singular, hence we can apply theorem  2.2.2 and find an unimodular 

matrix U’ such that U’ N’ is in LHNF. Then, if we consider the product, we obtain: 

U’A=  OUNU ''' =  ONU '' =

















0..''

0..0....

0..00'11

iiij aa

a

  

and the conditions (8) are satisfyed since  the matrix U’ N’ is in LHNF. □ 

Now we take into consideration the matrix U’AU, where U and U’ are defined as in (7) and (8):  

U’AU =

















0..''

0..0....

0..00'

1

11

iii aa

a

        

            (9)

 

From theorems 2.3.1 and 2.3.2 we have that the greatest divisor of the matrix in (9),  

is equal to the greatest divisor of A: 

AAUUa
i

ii  ''
                     (10) 

 

from  (10) it follows that  
i

iia' divides d. Therefore we can consider the integer k : 

A

d
k                        (11)  

Now let’s consider the set of  nn  matrices in LHNF in which kb
j

jj  :                            (12)  

 








iB

AUU '
= 



























nnn

llll

rrr

bb

bbb

aa

a

1

21

1

11

0......

0....

0..0''

0....0....

0......0'

                  (13)  

Note that, by construction, the determinant of such matrices is  dba
n

rj

jj

r

i

ii 
 11

, where r and n are, 

respectively, the number of row and of column of U’AU (the same as A).  

Note also that, from theorem 5.2.1,  the matrix U’AU is already in the correct form to give rise to a LHNF. 

Since we suppose the matrices  in (13) are in LHNF, the entries of iB  have to satisfy : 

jjij ab '0 
 
 i  j , ij 

  
if   rj     

jjij bb 0
 
 i j , ij 

    
if   rj                                            (14)   
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From the previous conditions (12) and (14) it follows that there exists only a finite number of matrices iB  (see 

theorem 5.1.1). 

The next step is to build, starting from the matrices (13), a set of solutions of (1). 

Theorem 5.2.2 For each matrix iB , defined as in (12), (13) and (14), and given the unimodular matrix 
1U , 

where U  is defined as in (7), the matrix 
1UBi is a solution of the equation d

X

A
 .  

Proof. Starting from the unimodular rr matrix U’ , as in (9),  let’s define an unimodular nn  matrix U’’ as 

follows: 

U’’= 






 

IO

OU 1'
                     (15)  

where I is an unit )()( rnrn 
 
matrix, and O is a matrix with all entries equal to 0. 

Now let’s consider the product:  

1
'

'' 







 U

B

AUU
U

i

=                 

      

 (16) 








 

IO

OU 1' 1
'









U

B

AUU

i

= 






 

IO

OU 1'












1

1'

UB

AUUU

i

= 






 

IO

OU 1'








1

'

UB

AU

i

    (17)

 

note that the dimensions of the inner blocks of the matrices allow a block multiplication, hence the expression 

(17) is equal to: 

= 















1

11

'

''

UIBAOU

UOBAUU

i

i
= 








1UB

A

i

                        (18) 

As we have shown in (13), the determinant of the matrix 








iB

AUU '
is d, the matrix defined in 5.2.9 is clearly 

unimodular and its determinant is 1 or -1, therefore the determinant of matrix (18) is d or -d . We can conclude 

that the matrix  
1UBi is a solution of equation (1). □ 

Note that, from (16), the sign of the determinant of the matrix 








iB

AUU '
 is the same for every possible iB  .  

In what follows we define 
1 UBS ii                       (19)  

We will refer to this set of solutions as fundamental solutions of the equation d
X

A
  

Now, similarly to what we have done in the simpler case previously analyzed (definition 5.1.1), we can give the 

following: 

Definition 5.2.3  If  iS
 
is a solution of d

X

A
 , 0d , defined as in theorem 5.2.2, we define as class of 

L-A-equivalence of iS
 
the set iC

 

of  all the matrices which are L-A-equivalent to iS .  

We have seen that there exists only a finite number of iB , therefore there exists only a finite number of iS and 

of classes iC . 

5.2.2 A Generalization of Theorem 2.2.4 
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We need a generalization of theorem 2.2.4, which is given by the following: 

Theorem 5.2.3  If the square integer matrix 








B

A

 

is L-equivalent to a square integer and not singular matrix R, 

which is in LHNF, and A is a full rank matrix with r rows in  the form: 

 ON =

















0..

0..0....

0..00

1

11

rrr aa

a

 

in which O is a matrix with all entries equal to 0 and N is a square matrix in LHNF,  

then  the matrix A is equal to the matrix obtained by the first r rows of the matrix R. 

Proof. Let’s consider the matrix B: it is full rank, because the matrix 








B

A

 
is L-equivalent to R, hence its 

determinant is not 0. We first show, by applying on the rows of B the algorithm yet explained in 2.4, that an 

unimodular matrix  H exists, such that H is in the form : 

H= 








'HL

OI
                      (20)  

and the following product is in LHNF 

H 








B

A
= 









'HN

OI









B

A
= 









 BHNA

A

'
                  

 (21) 

Given the matrix B=

















knk

n

bb

bb

......

..........

......

1

111

 

the first step is to apply the algorithm 1 (section 2.4) to the first k rows of B. By representing these operations by 

the unimodular matrix 1U , we can write: 

















knk bb

b

'......'

0........

0......'

1

11

= 1U B                               (22)  

then we can apply again the algorithm to the first k-1 rows of the matrix 1U B. We can represent these 

operations by another unimodular matrix 2U , to obtain a new matrix in the form: 



















knk

nk

bb

b

b

'......'

0......

00....''

1

11

11

= 2U 1U B                             (23)  

so, going on, in this way we obtain a matrix in the form  

B’ =  21 BB = rU .. 2U 1U B                              (24)  

in which 2B is square lower triangular . 

The second step is to apply the algorithm 2 on the rows of B’; we can represent these operations by the 

unimodular  matrix U’, to obtain a matrix in the form: 

 B’’=U’B’ =  '' 21 BB =U’ rU .. 2U 1U B                             (25)  

in which the matrix '2B
 
is in LHNF. 
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The third  step is to consider the matrix 








''B

A

 

and apply the algorithm 2 on the rows of  B’’ and using the rows 

of A to obtain, finally, a matrix in LHNF. Also in this case we can represent the algorithm by pre-multiplying by 

an unimodular matrix U’’: 










21 '''' UU

OI









''B

A
= 









 '''''' 21 BUAU

A

                           

(26) 

If we denote  the product in (25) by U, that is: 

U=U’ rU .. 2U 1U                                (27)   

we can synthetize all the operations with a unique unimodular matrix given by the product: 










21 '''' UU

OI









UO

OI









B

A
= 









UUU

OI

21 '''' 








B

A

    

                       (28) 

The matrix H in (20) coincides with the one in the previous (28) after having set  

L= ''1U  and  H’= UU ''2  

Now, going back to the hypotesis of the theorem, an unimodular matrix W exists such that: 










B

A
=WR                                  (29)   

and R is in LHNF. 

From (21) we obtain: 










B

A
= 













BHNA

A
H

'

1

        

                        (30) 

by comparing  (30) with  (29 ) we can write: 

WR= 












BHNA

A
H

'

1

       

                          (31) 

and then 

R= 












BHNA

A
HW

'

11

                              

 (32) 

In the previous (32) the matrices R and 








 BHNA

A

'
are both in LHNF and the matrix  

11  HW is 

unimodular, therefore, by using theorem 2.2.4, the two matrices are equal, in particular A is equal to the first r 

rows of the matrix R. □ 

5.2.3 A Partition of the Set of Solutions  

Theorem 5.2.4 Given the integers 0d and 0n , and by denoting with S the set of  all the solutions  of the 

equation (1), d
X

A
 , where A is a full rank integer matrix, we have that the set of classes iC

 

of  L-A-

equivalence  defined as in definition 5.2.3 is a partition of S. 

Proof. The first step is to prove that any solution of equation (1) is L-A-equivalent to one of the iS . 

If X is a solution, that is : 
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 d
X

A


                         

                                  (33) 

by using the unimodular matrices U and U’, defined as in (7) and theorem 5.2.1, we can consider the matrix: 

U
X

A

IO

OU
















 '
 = 









XU

AUU '
                    (34)

       

 

in which the the determinant is +d or -d and the matrix U’AU satisfies the conditions (8). 

 

The matrix (34) is a solution of the equation , dX '
 
hence, by using theorem 5.1.2, there exists an 

unimodular matrix W, such that: 

 








XU

AUU '
= W iR                      (35)  

where iR
 
is LHNF and dRi   

Since the matrix (34) satisfies the conditions (8), for theorem 5.2.3, we have that the matrix iR , can be written 

as: 










iR

AUU

'

'

                      
(36) 

in which the entries ijr ' of the matrix iR' satisfy the conditions (similarly to (14)):  

jjij ar ''0 
 
 i

  
if   rowj       

jjij rr ''0 
 
 i

  
if   rowj 

                    (37) 

in which  we denoted by “row”  the number of rows, and jja' are the diagonal entries of the matrix U’AU . 

Now, for what we have proven in theorem 5.2.2, in particular from (16) to (18), the matrix  










B

AUU '
, introduced in (13) is exactly one of  the iR  (is LHNF and its determinant is d); it means that we 

can find  a iB such that iR = 








iB

AUU '
                                                          (38)

 

therefore, by using theorem 5.2.2 and by defining U’’ as in (15), there exists a solution iS
 
of d

X

A
  such 

that:  

1
'

'' 







 U

B

AUU
U

i

= U’’
1URi = 









iS

A

 
  (for (38))                                (39)  

hence from (39) we can write: 

iR  = U
S

A
U

i








1''                           (40) 

by substituting in (35) we obtain: 










XU

AUU '
= W iR =W U

S

A
U

i








1''                       (41)  
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 and post-multiplying by 
1U  










X

AU '
= W iR =W 









iS

A
U 1''                       (42) 

the first member of (42) can be written, by using the definition  5.2.9 :  










X

AU '
= 


















X

A

IO

OU '
= 










X

A
U 1''

                                  

(43) 

so we obtain: 











X

A
U 1'' = 









iS

A
WU 1''

                                     

(44) 

and then:   










X

A
= 









iS

A
WUU 1''''

                                                   

(45)

 

in which the matrix 
1'''' WUU is unimodular. 

The previous (45) means exactly that the solution X is L-A-equivalent to one of the fundamental solutions iS

defined in theorem 5.2.2.  

The second step is to prove that a solution X cannot be L-A-equivalent to two different fundamental solutions, 

say iS and jS .  

If a solution X is L-A-equivalent to iS and jS , we have that: 



















iS

A
W

X

A

                 

        (46) 



















jS

A
W

X

A
'

                        

(47) 

and from the previous (46) and (47) it follows: 



















ji
S

A
W

S

A
W '

                         

(48) 

















 

ji
S

A
WW

S

A
'1

           

(49) 

namely, iS is L-A-equivalent to jS . From (19), it means that  iB  and jB exist, such that: 






















 1

1

1
'

UB

A
WW

UB

A

ji                        

(50) 

where U is defined as in (7) and iB  and jB are defined as in (13) and (14). If we post-multiply by the matrix U, 

we obtain: 

U
UB

A
WWU

UB

A

ji






















 1

1

1
'

                    

(51) 

















 

ji
B

AU
WW

B

AU
'1

                      

(52) 
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Now we consider the matrix U’ defined as in theorem 5.2.1 and define the matrix U’’’ as follows: 

U’’’= 








IO

OU '
                     (53) 

and then we pre-multiply (52) by U’’’  

























 

ji
B

AU
WWU

B

AU

IO

OU
''''

'
1

                   

(54) 

















 

ji
B

AU
WWU

B

AUU
''''

'
1

                    

 (55) 

We note that the matrix 








iB

AUU '
is in LHNF. From (55), multiplying by the inverses, we obtain: 



















ji
B

AU

B

AUU
WUW

'
'''' 11

                  

(56) 

we pre-multiply again by U’’’: 



























ji
B

AU

IO

OU

B

AUU
WUWU

''
''''''' 11

                 

 (57) 

hence we obtain: 



















ji
B

AUU

B

AUU
WUWU

''
''''''' 11

                  

 (58) 

where both the matrices 








jB

AUU '
and 









iB

AUU '
are in LHNF and the product 

11 '''''''  WUWU is an 

unimodular matrix. This means that the matrix 








jB

AUU '
is L-A-equivalent to  









iB

AUU '
 and therefore, by 

using theorem 2.2.4, they must be equal, so iB = jB and consequently iS = jS . This means that the solution  X  

belongs  to one and only one of the classes  iC
 
defined in 5.2.3, therefore the set of  iC

 
is a partition of  S.   □ 

5.2.4 A Formula to Express all the Solutions  

Let’s suppose that A is given in the equation (1), then we can express all the solutions of (1) in a way that allows 

us to put in evidence the free parameters and reduce the number of unknowns. The formula that we obtain 

reduces the initial problem to the problem of finding the values of a unimodular matrix in which the number of 

unknowns is lower than that of the equation (1).We will prove the following: 

Theorem 5.2.4.1 If iX and jX are two L-A-equivalent solutions of  d
X

A
 , then the unimodular matrix W 

such that 

















ji
X

A
W

X

A
, is in blocks lower triangular form :

 










 'W

OI

 
 

in which I is an unit matrix, Λ is a matrix with integer entries, O is a matrix with all entries equal to 0, and W’ is 

an unimodular matrix. 
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Proof.  We first recall some facts concerning the matrices in blocks lower triangular form. Let’s consider the set 

of the real square non singular matrices in block lower triangular form, in which there are two blocks of fixed 

dimension, that is, of the form : 








2

1

BR

OB

                                                                       (59)  

1.The determinant of a matrix in this form is given by the product of the block determinants [10, 11] 

2.The product of two matrices of this form is in the same form, in fact:  








































22

11

2221

2111

2

1

2

1

'''

'

'''

''

''

'

BBR

OBB

BBRORBRB

OBOBBB

BR

OB

BR

OB

   
           (60) 

3.The inverse of a matrix of this form is in the same form (we consider values in the real field), in fact given a 

non singular matrix, is known that the inverse is unique, and the following product shows that the inverse has 

the same form (Note that from 1 it follows that none of the blocks is singular): 











































IO

OI

IRBBBRB

OI

BRBB

OB

BR

OB
1

1

1

22

1

12
11

1

1

2

1
1

2

1

   
            (61) 

(Since the identity matrix is in the same form, it follows that the set of this kind of matrices is a group) 

Be U the unimodular matrix defined in (7), if we consider the two matrices:  





























21

'

iiii

i
XX

OA

UX

AU
U

X

A
M

                  
 (62)

 





























21

'

jjjj

j XX

OA

UX

AU
U

X

A
M

 

The two matrices are clearly in blocks lower triangular form, then we can consider the equation 



















ji
X

A
W

X

A

                     
(63)

 

and, by multiplying by  U 

U
X

A
WU

X

A

ji



















                    
 (64)

 

WMMWMM jiji  1

                    (65)
 

therefore, by using the previous facts 2 and 3,  the matrix W  is in blocks lower triangular form (but its entries 

are integers!). Hence we can write: 






































jji
XWAW

AW

X

A

WW

OW

X

A

32

1

32

1

                 
 (66)

 

It means, since the matrix A is full rank,  that the matrix W1 is the identity I, and the determinant of W3 is 1 or -1, 

that is, W3 is unimodular. □ 

If we consider that every solution X is L-A-equivalent to one of the Si, we can write 





















































ii

i

i SWA

A

SWA

OSIA

S

A

W

OI

X

A

'''
     

            (67)
 

therefore all  the solutions of (1) can be expressed by the formula:
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iSWAX '
                                (68) 

The matrix W is unique, since the matrices iX and jX are full rank. Therefore every possible matrix Λ and every 

unimodular matrix W’ gives a solution of (1), and for each solution we can find a unique Si, a unique unimodular 

matrix W’ and a unique Λ which, by formula (68), give the solution. From formula (68), and by denoting with r 

the number of rows of the matrix A and with n the dimension of the matrix 








X

A
, we can see that the number of 

new unknowns (the entries of the unimodular matrix W’) is given by )()( rnrn  , and the number of free 

parameters (the entries of the integer matrix Λ) is given by nr   . The number of unknowns in (1) is given by 

)( rnn  , so the number of new unknowns in (68) is lower, since )()()( rnnrnrn  . 

If the matrix A is not given, then the equation (1) becomes dX  ,  the formula (68) becomes iSWX ' , 

where the iS
 
are the solutions already defined in theorem 5.1.1. In this case the number of unknowns is the 

same, since r = 0.  

5.3 An Example 

Let’s suppose that the equation to solve is 

 

4
2122

4322

44434241

34333231





xxxx

xxxx

             

 (69)

 

In the example 4.2 we have seen that the greatest divisor of A is 2, it divides 4, hence the equation is solvable. 

To find a set of solutions, we have to find the matrix U defined in (7),  which we have already found in example 

2.4.1 : 



























0412

0201

1000

1523

U

 
then we have to compute the inverse matrix  



























0010

2111

1200

4322

1U

                 

 (70) 

now we consider all the matrices iB , defined in (13) and satisfying conditions (12) and (14). Then, considering 

that  










































 


0021

0001

0412

0201

1000

1523

2122

4322
AU

 

and  2
2

4


A

d
k

             

 (71) 

 all the possibile matrices iB  are the following: 











2000

0100
1B  ; 










1000

0200
2B

 

;  









1100

0200
3B

 

;   
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









2000

0110
4B

 

;  









1000

0210
5B ;  










1100

0210
6B

        

        (72) 

 









2010

0110
7B

 

;  









1010

0210
8B ;  










1110

0210
9B  











2010

0100
10B

 

;  









1010

0200
11B ;  










1110

0200
12B

  

 

then we can find the set of fundamental solutions by applying the formula (19)  

1 UBS ii  








 




































0020

2111

0010

2111

1200

4322

2000

0100
1S                  (73) 

  

By operating similarly with all the iB , we obtain all the fundamental solutions: 








 


0020

2111
1S

     








 


0010

4222
2S

     















2121

4222
3S  











0020

1111
4S

       











0010

3022
5S

        













2121

3022
6S  













1220

1111
7S

     













1210

3022
8S

      











1121

3022
9S

                          

(74) 















1220

2111
10S

  















1210

4222
11S

  








 


1121

4222
12S  

For each of the iS  a class iC of  L-A-equivalence  is defined, and any solution X can be  

obtained, by the formula  (68): 

 iS
ww

ww

xxxx

xxxx
















 


















2221

1211

2221

1211

44434241

34333231

''

''

2122

4322




   

           

(75)
 

where 1
''

''

2221

1211


ww

ww
, iS  takes value in the set (74) and the ij  can take any integer value. 

5.4 The Number of  L-A-Equivalence Classes
 

We take into consideration the total amount of  the different  iS , the fundamental solutions given A, in §5.4. 

Let’s suppose that the equation d
X

A
 is solvable, i.e A divides d , and set Apppd ln

l

nn
..21

21 , in which 

the  ip are different prime numbers, and k is the number of rows of the matrix X. We will  prove the following:  
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Theorem 5.4 The number N of L-A-equivalence classes  is given by:  

)..()..)(..(
1

..

1

..

2

1

..

1

0 01 1

10

120 01 122

2102

120 01 111

1101

12

   
  



  



  



 


k

j

k

jj

k

jj

jjjkn

l

k

jj

k

j

k

jj

k

jj

jjjkn
k

jj

k

j

k

jj

k

jj

jjjkn
k

jj

k

lnnl

lnl

nn

n

nn

n pppAN

                       (76)

  

Proof.   

Let’s start proving the factor 
k

A : 
 

if we take into consideration the hermitian form of  








X

A

 

:

 


























nnn

llll

rrr

bb

bbb

aa

a

1

21

1

11

0......

0....

0..0''

0....0....

0......0'

 

every  ijb , with rj  , can take iia possible integer values from 0 to 1iia . Since in every column there are k 

possible entries, all the possibilities are given by 
kk

rr

k

rr

kk
Aaaaaaa  )...(... 22112211 . 

Now if we consider the entries iib , with nir  ,  we have: 



n

ri

n

l

nn

ii
lppp

A

d
b ...21

21  

If we consider the square matrix B (lower triangular) with the diagonal entries iib  , all the possible integer 

values of the column i are given by 
ik

iib )(  so, for all the diagonal entries iib , the number N  of possible 

matrices will be the product 
02

22

1

11 )()()( kk

kk bbbN  
. If we take into consideration the primes 

factorization can write:  

0

2

0

1

3

2

3

1

2

2

2

1

1

2

1

1 )()()()()()()()( 21323122211211 kk eekekekekekeke
ppppppppN  

 

by reordering the terms: 

  3213

2

2

2

1

2

3

1

2

1

1

1 )()()()()()()()()( 321322212312111 ke

l

ke

l

ke

l

kekekekekeke lll pppppppppN

 

It means that in order to find the total number of the possible matrices B we can find for each factor  
in

ip the 

number of possible square lower triangular matrices of order k, with determinant equal to 
in

ip  and then we 

multiply all these numbers. 

Now, if we consider the factor 
in

ip , and consider a lower triangular matrix of order k and  determinant  
in

ip , 

for each  ip set in the diagonal on the column (or row) number j, we have a contribution (by multiplication) of 

jk

ip 
, so, by extending to all possible disposition on the diagonal, we obtain that the total number of such 
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matrices is given by    
  



 


k

j

k

jj

k

jj

jk

i

jk

i

jk

i

k

jj nin

inppp
10 01 11

10

12

.. , which can be written as : 

  
  



 

k

j

k

jj

k

jj

jjjjkn

i

k

jj nin

inip
1

...

0 01 11

210

12

..

 

Finally, by considering all the factors 
in

ip ,  we can write the formula which gives the number of all the 

possible L-A-equivalence classes: 

)..()..)(..(
1

..

1

..

2

1

..

1

0 01 1

10

120 01 122

2102

120 01 111

1101

12

   
  



  



  



 


k

j

k

jj

k

jj

jjjkn

l

k

jj

k

j

k

jj

k

jj

jjjkn
k

jj

k

j

k

jj

k

jj

jjjkn
k

jj

k

lnnl

lnl

nn

n

nn

n pppAN

 □ 

5.4.1 Example  

If we consider the equation (69), we have that  , 2A ,  2k

 
clearly we have 21 p  and 11 n . By applying the formula (76) we obtain:  

1234)22(2)2( 012
2

1

2  




j

jk
AN  

 

6. Generation of Unimodular Matrices  

If we consider the equation (68), it’s clear that in order to find explicitly all the solutions we need a way to build 

all the possible unimodular matrices.  Some known results on the 
),( nGL

group of 
nn

integral matrices 

can be useful. It’s known that 4 matrices suffice to generate this group [14]. 

The number of generators can be reduced to the following 2, as Trott has proven [15]: 

 





























10..000

01........

0....0....

0..0100

0....011

0....001

1U

 
  






























00..001

10........

0....0....

0..1000

0....100

0....010

n

U

   

 

Hence, going back to the formula (68), that gives the general solutions of equation 
d

X

A


 ,   

iSWAX '
 

we can write any unimodular matrix W’ as product of U and U1 , 




k

i

ba iiUUW
1

1 )('

       
 

where k is natural and ai , bi are integers. Therefore the general solution can be written as: 

i

k

j

ba
SUUAX jj














 

1

1                                          
(77)   

6.1 Example  

We can consider the expression (75): 
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 iS
ww

ww

xxxx

xxxx
















 


















2221

1211

2221

1211

44434241

34333231

''

''

2122

4322




   

     

 where 1
''

''

2221

1211


ww

ww
 and write the unimodular matrix as product of the generators. In this case the 

generators are: 









01

10
U and 










11

01
1U  

therefore we can obtain all solutions of equation (69) by the formula (77): 

 i
k

j

ba

S
xxxx

xxxx jj









































 

















 1

2221

1211

44434241

34333231

11

01

01

10

2122

4322





 

where  the fundamental solutions Si take values in the set (74), k is a natural number ij  , aj, bj are integers.  

 6.2 Another Example 
 

Let’s solve the equation : 
4

10311

00221

5554535251

4544434241

3534333231 



xxxxx

xxxxx

xxxxx
 

1- First we compute the gcd to establish if it’s solvable: gcd (3, 5, 0, 1, 4, 0, 2, 0, 2, 0)=1, 1 divides 4, 

hence the equation is solvable. 

 

2- Then we find the RHNF of A , the matrix U  and U-1 :  

 
















































 00010

00001

301022

01000

00100

10511

20821

10311

00221

 





























































10020

01000

00100

10311

00221

301022

01000

00100

10511

20821
1

1U

 

3- Find the fundamental solutions   

The cardinality of the fundamental solutions set is given by 

351)24()4816()2()22()222()2(1 336326226316216116
3

1

3
63

0 01

10  

 




j jj

jj
N

 

The 35 Bi matrices are: 
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















40000

01000

00100

















10000

04000

00100

















11000

04000

00100

















12000

04000

00100

















13000

04000

00100

 

















10000

01000

00400

















10000

01100

00400

















10000

01200

00400

















10000

01300

00400

















10100

01000

00400

 

















10100

01100

00400

















10100

01200

00400

















10100

01300

00400

















10200

01000

00400

















10200

01100

00400

 

















10200

01200

00400

















10200

01300

00400

















10300

01000

00400

















10300

01100

00400

















10300

01200

00400

 

















10300

01300

00400

















20000

02000

00100

















21000

02000

00100

















20000

01000

00200

















20000

01100

00200

 

















20100

01100

00200

















20100

01000

00200

















10000

02000

00200

















11000

02000

00200

















10000

02100

00200

 

















11000

02100

00200

















10100

02000

00200

















11100

02000

00200

















10100

02100

00200

















11100

02100

00200

 

Therefore the set of fundamental solutions is given by Si=BiU
-1 

4. Write all the solutions: 

































































































































 

10020

01000

00100

10311

00221

001

100

010

100

011

001

10311

00221

1

3231

2221

1211

5554535251

4544434241

3534333231

i

k

j

ba

B

xxxxx

xxxxx

xxxxx

jj







where  k is a natural number ij  aj, bj are integer. 
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7. Concluding Remarks  

In this paper we have considered the diophantine equation d
X

A
 where A is full rank and d is not zero. The 

equation is solvable if and only if the gcd of the matrix A divides d . If the equation is solvable we have shown 

how to build a set of solutions Si , which we have defined fundamental solutions. Then we have defined an 

equivalence relation which gives rise to a partition of the set of all solutions, in which each Si belongs to a 

different class. We have given a formula to express all the solutions in which the two generators U and U1 of 

GL(n, Z) are used:  
 

i

k

j

ba
SUUAX jj














 

1

1  

Finally we have given a formula to compute the number of the equivalence classes. In this paper we considered 

0d and much of what we proved is valid only if the matrix 








X

A
is not singular. 
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