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Abstract In this paper we deal with a non-linear Diophantine equation which arises from the determinant
computation of an integer matrix. We show how to find a solution, when it exists. We define an equivalence
relation and show how the set of all the solutions can be partitioned in a finite set of equivalence classes and find
a set of solutions, one for each of these classes. We find a formula to express all the solutions and a formula to
compute the cardinality of the set of fundamental solutions. An algorithm to compute the solutions is proposed
and clarified with some examples.
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1. Introduction
In this paper we deal with the diophantine equation (which has been already introduced in [1]):

A
=+ 1)
X
where A and X are the matrices defined as follows:
& Ay . 4,
Aisamatrix rxn | .. with n columns and r rows, and a; € Z, similarly
arl ar2 " arn
Xr+11 Xr+12 " Xr+1n
X isamatrix | . with n columns and n-r rows, and, X € Z
an XnZ Xnn
fa, A, oAy, |
A - .
then we denote by X the Nxn matrix | a, a, . a,
Xr+11 Xr+12 Xr+1n
L an Xn2 . Xnn _

Givenany nxn matrix M | in this paper we denote by ||\/|| the determinant of M .
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The equation (1) generalizes an equation studied by Smith [3] and, before him, by Hermite [8] in a more
particular case. Smith analyzed the case in which d=1 and the greatest divisor of A (see below) is 1, Hermite
analyzed the case in which d=1 and A is a vector of relatively prime integer numbers.

Recently some algorithms have been developed in order to solve efficiently some diophantine problems, such as
systems of linear diophantine equations arising from linear programming problems. Some of these algorithms
use the Hermite Normal Form of integer matrices and the euclidean reduction algorithm applied to a vector of
integers [2, 5, 6, 7, 13]. In this paper we use and develop some of this ideas to shed some light on the previous
equation (1). In this paper we are not interested in the efficiency of the computation but only at some theoretical

facts. First we clear up some notations that we use in the paper. We are interested in the entries X which satisfy

A

X

In this paper we give two main results:

1. After having defined an equivalence relation for the solutions of (1), we show that the set S of all
the solutions can be decomposed into a finite number of equivalence sets, which form a partition
of S. We show how to find a solution for each of these sets.

2. We give a formula which permits to write all the solutions of (1) in a convenient way.

In Section 2 we recall some basic concepts, definitions and theorems that are used in the rest of the paper.
In Section 3 we introduce the definition of solution of (1) and the notion of L-A-equivalence.
In Section 4 we recall a necessary and sufficient condition for the solvability of equation (1).
In Section 5, we use the concept of L-A-equivalence to build a partition of the set of all solutions of (1), and we
give a formula to express the all the solutions.

=d or =—d , for this reason we use the notation +d in (1).

2. Some Preliminar Definitions and Results
In this section we recall some basic (and well known) results which are used in the following sections.
2.1 Elementary Operations and Unimodular Matrix
We recall some definitions and facts which are usefull to understand what follows in the paper.
Given an integer matrix M, an elementary row operation [12, p.12] is:
- Multiply a row by -1;
- Replacearow R; by R +nR; withi#jandneZ ; @)

- Swap two rows.
The elementary column operations are defined in the same way by replacing the rows with the columns. Note,

anyway, that the swapping of two rows (or two columns ), say R; and RJ- , can be obtained by using only the
first two operations by the sequence of operations: R, > R +R;; R, >R - R; ; Rk > R —R;.

An integer matrix U, such that |U| =21, is called unimodular matrix [2]. It’s easy to prove that the inverse of

an unimodular matrix is unimodular, the product of two unimodular matrices is unimodular, the identity matrix |
is clearly unimodular. That is, the set of unimodular Nx N matrices, for a given n, provided with the matrices
multiplication operation, is a group, the unimodular group, usually denoted by GL(n, Z). It is known that each
of the above operations (2) is equivalent respectively to:

- pre-multiplying M by an unimodular matrix U if we operate on the rows

- post-multiplying M by an unimodular matrix U if we operate on the columns
A finite sequence of operations (2) on the rows or, respectively, on the colums of M, can be represented by an
unimodular matrix, given by the product of all the matrices representing the elementary operations.
2.2 Hermite Normal form of a Matrix
Definition 2.2.1 Given a full rank integer matrix M, we will say it is in Hermite Normal Form (HFN in what
follows), if:
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- The matrix M is of the form [N O] with N a nonsingular square matrix , and O is a matrix with all
entries equal to O;

- Nis lower triangular ;

- All the entries of N are not negative and for every row of N the unique maximum is the diagonal entry
which is greater than 0.

1 0000
Example221: (0 3 0 0 O
11200

If M is a full rank matrix (let’s consider the number of columns greater or equal to the number of rows), then we

can define two different forms of HNF:

1. Afirst form defined as in Definition 2.2.1, which we refer to with notation RHNF (because, as claimed
in the following Theorem 2.2.1, this form can be obtained by multiplying M on the right by an

unimodular matrix ) .

N N O
w O O

1
Example 2.2.2: |1
1

2. Asecond form defined as in Definition 2.2.1 but where for every column of N the unique maximum is
the diagonal entry which is greater than 0. We refer to this form with notation LHNF (because, as we
claim in the following Theorem 2.2.2, this form can be obtained by multiplying M on the left by an

unimodular matrix).
100

Example2.23: |0 3 0
0 2 2

Some of the following theorems can be proved by applying the algorithms which we explain in 2.3. (see also [3,
8, 9]):

Theorem 2.2.1 If M is a full rank integer matrix with r rows and ¢ columns and I < C, then there exists an
unimodular matrix U such that the matrix MU is RHNF.

Theorem 2.2.2 If M is an integer square matrix, not singular, then there exists an unimodular matrix U such
that the matrix UM is LHNF.

Definition 2.2.2 If two integer square matrices M and M’ are given and there exists an unimodular matrix U
such that M=UM’, then we say that M and M’ are L-equivalent (left-equivalent).
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Definition 2.2.3 If two integer square matrices M and M’ are given and there exists an unimodular matrix U
such that M=M"U, then we say that M and M’ are R-equivalent (right-equivalent).

It’s easy to prove that the previous definitions provide two equivalence relations.

The following theorems can be proved by multiplying and using the definitions [3]:

Theorem 2.2.3 If Mand M’ are two integer square matrices, both not singular and reduced to RHNF, and R-
equivalent , then M=M".

In a similar way we can prove the following:

Theorem 2.2.4 If M and M’ are two integer square matrices, both not singular and reduced to LHNF, and L-
equivalent , then M=M".

2.3 Greatest Divisor of a Matrix

We can refer to Smith [3] to give the followings:

Definition 2.3.1 If M is a matrix, the determinants of M are defined as the determinants of the greatest square
matrices contained in M .

Definition 2.3.2 If M is an integer matrix, the greatest divisor of M is defined as the greatest common divisor of
the determinants of M.

Note that if M is a full rank matrix, then its greatest divisor is well defined and different from 0. If M is not full
rank, then all the determinants are 0, so the greatest divisor is not defined.

Definition 2.3.3 If M is an integer matrix, then M is defined prime matrix if its greatest divisor is 1.

Theorem 2.3.1 If M is a full rank integer matrix, then, by pre or post multiplying M by an unimodular matrix,
the greatest divisor of the resulting matrix is the same as the one of M.

See [3] for a proof.

If M is in HNF (RHNF or LHNF), that is M=[N O], it’s clear that the greatest divisor of M can be obtained

by the product of all the diagonal entries of the square matrix N. In fact this is the only square matrix contained
in M with determinant not equal to 0. Hence, by using the previous theorems 2.4.1 and 2.2.1 we have the
following:

Theorem 2.3.2 If M is a full rank integer matrix with r rows and ¢ columnsand I < C, and M= [N O] is the

HNF of M, then the greatest divisor of M is equal to the greatest divisor of A7°, which is equal to the product of
all the diagonal entries of N.

2.4 Algorithm to reduce a Matrix in HNF

We show an algorithm which permits to reduce a matrix into RHNF by using the elementary operations (2) on
the columns. Similar algorithms have been presented by various authors, [2, 4, 5, 6] differing from each other by
the different complexity of computation. In this paper we are not interested in the efficiency of the computation
but we only want to show a way to do it. The algorithm is based on the Extended Euclidean Algorithm (see [7,
13]) which we can use to obtain an integer column (or row) reduction in a integer matrix M. We explain the
algorithm and use it to reduce into Right Hermite Normal Form a full rank integer matrix M with r rows and ¢

columns,and I <C.

m, m, . . . m
m

BeM=|
m, . . . . m

If we consider the first row, all its entries cannot be all equal to 0 since the M is full rank, so the greatest
common divisor d, of its ¢ elements M,; exists. We can reduce M into the following form M’ by unimodular

operations on the columns.

N

L'/“'I\ N
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d o0 0
ml
M= 21
m, . . . . m,
Algorithm 1

In order to obtain this form we can repeat the following algorithm until in the first row there is only one non-
zero entry, d, :
1. Find the value of the row that has the smaller absolute value different from zero, and we denote it by
mlj
2. For every | # ] using the division algorithm we can write:

My =gm,; +1 with 0< K, <|my|
3. Ineachcolumn C;, i# |, we operate the substitution: C; —C; —q,C;

it can be proved that d1 is the greatest common divisor of the entries of the first row (see [7]). It can be seen as

a particular case of theorem 2.3.1 where the matrix has only one row. We can move dl in the first position of

the row, eventually by swapping two columns or changing the signs of one, to obtain a matrix in the form A"
Then we can continue this process starting from the matrix A£°, without considering the first column and
considering the entries of the second row. By this way we will be able to transform the matrix M in a matrix
M’ of the form:

d1 0 v o .0

m' d o .. . 0
M= 21 2

m'rl m”r2 e I’T'I”IrC

Going on, in this way we can transform the matrix into a lower triangular matrix. All the operations are
equivalent to post-multiply M by an unimodular matrix U. Note that for all the diagonal entries we have

d, >0, because if d, <Owe can multiply the column by -1, and for every i , d, # O otherwise , for theorem

2.3.1 and theorem 2.3.2, the greatest divisor of M cannot be defined and positive as required by the hypotesis
that M is full rank.

Algorithm 2

In order to transform the matrix in the form A7 in Hermite Normal Form we can apply the following algorithm

1. We start from i=2 ;
2. Forevery j<Ii _ by using the division algorithm we can write:

m; =q;d; +R; with 0<R; <d;
3.Ineach column C;, j<i,we operate the substitution: C; —C; —q,;C;;

4. Increase i and repeat form point 1 until i=r.
At the end of algorithm 2 the matrix will be in the Right Hermite Normal Form, that is:

N

L'/“'I\ N
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dl 0 0

R d 0 0
Moo |2 2

R, R, . dr 0

We can obviously modify these algorithms to operate on rows instead of on columns, in order to place the full
rank matrix M in LHNF. In this way we get a proof of theorems 2.2.1 and 2.2.2.

Example 2.4.1
2 2 -3 4
Let’s consider the full rank matrix |: 5 1 2:| and let’s apply the previous algorithms.
Column transformation Equivalent matrix post-multiplication
Algorithm 1
C2—»C2-C1 1 -1 1 2
T1 C3—»>C3+C1 2 2 -3 410 1 0 O 3 2 0 -1 0
C4—C4-2C1 {2 2 1 2] 00 10 {2 0 3 —2}
0 0 01
1 0 0 O
- {C3—)—C3 {2 0 -1 O'lO 1 0 0 :{2 0 1 0}
2 0 3 -2/|00 -10 2 0 -3 -2
0 0 0 1
1 0 0 O
13 {C1—>C1—2C3 {2 0 1 0] 0 1 0 O :{0 0 1 0}
2 0 -3 -2(|-2 0 -10 8 0 -3 -2
10 0 0 1
[0 0 1 O]
- {C1<—>C3 [00 1 0]0 100=[1 00 O}
8 0 -3 -2{|{1 0 0 Of |[-3 0 8 -2
10 0 0 1)
1 0 0 O]
5 | caocaca Lo oloroe oo o)
-3 08 -2(|0 0 10 -3 0 -2
10 0 4 1
1 0 0O
. {C2—>—C4 {1 00 o]o 0 01:{1 ooo}
C4—>C2 300 -2/|0 0 10/ [-3200
0 -1 00
Algorithm 2
;4@; Journal of Scientific and Engineering Research
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1 000
1 0 0 0|21 00 1000
17 | {C1>Cl+2C2 : =
-3 2 0 0|0 0 10 1200
0 001
Now, by multiplying all the unimodular matrices, we obtain :
3 2 -5 -1
22—340001_1000 )
2 2 1 2{|-1 0 2 0| 1200
-2 -1 4 O

3. Equivalent Solutions of (1)
In this section we introduce an equivalence relation between two solutions of (1), which we will use in the
following part of the paper. First we define a solution of (1):

A A
Definition 3.1 Let’s suppose that a set of integer entries X;; satisfy the equation X =d or X =—d, then,
Xk+11 Xk+12 " Xk+ln
by denoting with X the matrix of the entries X;; , that is X =| .. , we will define X asa
an Xn2 " Xnn

solution of (1).
Definition 3.2 If Si and u SJ- are two solutions (we suppose that in the equation (1) the matrix A is given), we

A A
say that S is L-A- equivalent to S, if there exists an unimodular matrix U such that: L} } =U [S }
: _

j
It can be easily proved that the definition 3.2 provides an equivalence relation:

A A
- Reflexivity: =1 :
|:Si } |:SI:|

A A
- Simmetry: if U exists satisfying {S}:UL } , then by multiplying by U™ | which is

i ]

A A
unimodular, we obtain U - = ;
Si SJ

A A A A
- Transitivity: if U exists satisfying =U ,and U’ exists satisfying =U" , then
S, S, S S,

j j
A A

=Uu’ , where UU’ is unimodular.
S S,

4. A necessary and sufficient Condition for Solvability of (1)

In [1] it has been proven that, by denoting with |A| the greatest divisor of A, holds the following:
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Theorem 4.1 If A is given, the equation (1) (d > Q) has integer solutions if and only if A is full rank and |A|

divides d. If A is not given the equation (which becames |X| =+d ) is always solvable, even if d=0 .

The proof of this theorem is implicitly embedded in the following proof of Theorem 5.2.2.
Corollary 4.1 If the matrix A is prime, then the equation (1) is always solvable.

Example 4.1
1 2 -3 4

o 1 1 2

Be the equation to solve: =12
X3l X32 X33 X34

Xio Xyp Xyg Xy
The greatest divisor of the matrix A is g.c.d {1,L2,5,0,—10} =1, namely A is a prime matrix. This means, by

theorem 4.1, that the equation is solvable.
Example 4.2

2 2 -3 4

2 2 1 2
Be the equation to solve: =43

X31 X32 X33 X34

X41 X42 X43 X44
The greatest divisor of the matrix A is g.c.d {0,8,—4,8,—4,—10} = 2. Clearly 2 does not divides 3, so, by
theorem 4.1, the equation is not solvable.

5. The Solutions of =+d

We start by considering a simpler case which permits us to introduce the way we will operate to solve the
general case.

5.1 The case |X| =+d

First let’s consider the simpler case in which there are no constants, namely the matrix A is not given.
Theorem 5.1.1 Given the integers d > Qand n > 0, there is only a finite number of Nx N integer matrices in
LHNF (or RHNF) with determinant equal to d.

Proof. Be S; a matrix in LHNF such that |Si| =d . The matrix S, is lower triangular and in the form :

a, 0 0 . 0

0 .. O] where a;>0Viand 0<a; <a; Vi,Vj 4
a; a .. O
from |Si|=d we have that Hajj =d (5)
j=1

since a;; and n are integers, the previous equation (5) can be satisfyed only by a finite number of values for a;;

. From condition (4) we have a; >0 Vi and 0<a; <a; Vi, V], therefore for every value of a;, only a

i

finite number of integer values is allowed for each &;. We can conclude that only a finite number of matrices
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of the form (4) exists with determinant equal to d. Similarly we can prove the same results also for matrices in
RHNF. o

Definition 5.1.1 If d >0and n >0 are integers, and S;is a NxnN matrix in LHNF such that |Si| =d we
define the class of L-equivalence of S, as the set C, of all the matrices which are L-equivalentto S, .

From theorem 5.1.1 it follows that, given the integers d >0and n > 0, there is a finite number of classes C,
of L-equivalence.

Theorem 5.1.2 If d >0and n >0 are integers, and we denote with S the set of the all the solutions of the
equation |X| =+d, where X isa nxn integer matrix, then the set of classes of L-equivalence , defined as in
definition 5.1.1, is a partition of S.

Proof. Given a solution X, for theorem 2.2.2 there exists an unimodular matrix U such that UX =S, , where

S.

C.

is LHNF and |Si| =d, namely X is L-equivalentto S, . This means that, by definition 5.1.1, X belongs to

If we suppose that X belongs to two different classes, say C; and C j » then there exist two unimodular matrices
U; and U; such that U; X =S; and U;X =S;. Hence we can write X =U.'S, and X :Uj_lsj , and
therefore

-1 -1
U, 'S =U, S,

-1

The matrix U, Uj_l is unimodular, hence S; is L-equivalent to S;, but for theorem 2.2.4 we have S; =S,
and consequently C; =C;. o

A

5.2 The general case | |=+d

We generalize the previous theorem 5.1.2 by showing how to build a finite number of solutions Si of equation
(1), which play the same role as in the simpler case |X| =+d analyzed in the previous section.

5.2.1 Construction of a Set of Solutions

Let’s consider the equation =+d, and suppose it’s solvable. For theorem 4.1 we have that |A| is defined ,

not equal to 0, it divides d, and A is full rank. For theorem 2.2.1 there exists an unimodular matrix U such that
AU is in RHNF. We can write more explicitly such form as follows :

a, 0 0 .0
Au=|.. .. 0 . Ofwhere 3;>0Viand 0<a;<g; Vi, Vj,j<i

a; a .. 0

("

In order to proceed in the construction we need the following:
Theorem 5.2.1 If a full rank matrix Ais in the form [N O], where N is a square lower triangular matrix and

O is a matrix with all entries equal to O, then it is possible to find an unimodular matrix U’ such that U’4 is in
the form :
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a, 0 0 .0
[N O]=| .. .. 0 . O|where &;>0ViandO<a';,<a, ViVj,j<i ®)
a'. a. .. 0

ij i
(That is, in (8) for each column the maximum is the diagonal entry, whereas in (7) it is true for each row).
Proof. The square matrix N’ in (8) is not singular, hence we can apply theorem 2.2.2 and find an unimodular
matrix U’ such that U’ N’ is in LHNF. Then, if we consider the product, we obtain:
a, 0 0 . O
v4=[U'N' U'O]=[U'N' O]|.. . 0 . 0
a’; a; 0
and the conditions (8) are satisfyed since the matrix U’ N’ is in LHNF. o
Now we take into consideration the matrix U’AU, where U and U’ are defined as in (7) and (8):
a, 0 0 .0
vav=|.. . 0 . 0 9)
a', a, .. 0

From theorems 2.3.1 and 2.3.2 we have that the greatest divisor of the matrix in (9),
is equal to the greatest divisor of A:

Ha'n =[U'AU|=|A (10)

from (10) it follows that Ha'ii divides d. Therefore we can consider the integer k :

k :% (11)
Now let’s consider the set of Nx N matrices in LHNF in which Hbjj =k: (12)
j
ay, 0 0 |
w .0 . 0
{u ' AU} a', a, 0 0
= (13)
B; by by, by 0
0
L bnl bnn_

r n
Note that, by construction, the determinant of such matrices is 1—[61ii : Hbjj =d, where r and n are,
i=1 j=r+1

respectively, the number of row and of column of U’AU (the same as A).
Note also that, from theorem 5.2.1, the matrix U’AU is already in the correct form to give rise to a LHNF.

Since we suppose the matrices in (13) are in LHNF, the entries of B, have to satisfy :

O<h,<a', Vi Vj j<iif j<r

0<b;<b; ViVj j<i if j>r (14)
S
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From the previous conditions (12) and (14) it follows that there exists only a finite number of matrices B, (see

theorem 5.1.1).
The next step is to build, starting from the matrices (13), a set of solutions of (1).

Theorem 5.2.2 For each matrix B;, defined as in (12), (13) and (14), and given the unimodular matrix U_l,

where U is defined as in (7), the matrix BU is a solution of the equation =+d.

Proof. Starting from the unimodular I' X I matrix U’, as in (9), let’s define an unimodular N x N matrix U’ as
follows:

St o
U= o | (15)

where I is an unit (N —1)x (N —Tr) matrix, and O is a matrix with all entries equal to 0.

Now let’s consider the product:

L |U'AU 5
u' 5 UL (16)

e Sl H T

note that the dimensions of the inner blocks of the matrices allow a block multiplication, hence the expression
(17) is equal to:

[utura+oBUT] [ A s
| ou'A+1BUT | |BU™
U'AU

As we have shown in (13), the determinant of the matrix { }is d, the matrix defined in 5.2.9 is clearly

[
unimodular and its determinant is 1 or -1, therefore the determinant of matrix (18) is d or -d . We can conclude
that the matrix BU s a solution of equation (1). o

U'AU
Note that, from (16), the sign of the determinant of the matrix [ } is the same for every possible B, .

In what follows we define S, = BU ™ (19)

We will refer to this set of solutions as fundamental solutions of the equation =+d

Now, similarly to what we have done in the simpler case previously analyzed (definition 5.1.1), we can give the
following:

Definition 5.2.3 If S, is a solution of

‘ =+d, d >0, defined as in theorem 5.2.2, we define as class of

L-A-equivalence of S; the set C; of all the matrices which are L-A-equivalentto S, .
We have seen that there exists only a finite number of B, therefore there exists only a finite number of S; and

of classes C, .
5.2.2 A Generalization of Theorem 2.2.4

ournal of Scientific and Engineering Research

285



SalviM Journal of Scientific and Engineering Research, 2017, 4(7):275-298

We need a generalization of theorem 2.2.4, which is given by the following:
A
Theorem 5.2.3 If the square integer matrix {B is L-equivalent to a square integer and not singular matrix R,

which is in LHNF, and A is a full rank matrix with r rows in the form:
a, 0 0 .. O

[N O]sf. . 0 .0
a, a 0

in which O is a matrix with all entries equal to 0 and N is a square matrix in LHNF,
then the matrix A is equal to the matrix obtained by the first r rows of the matrix R.

rr

A
Proof. Let’s consider the matrix B: it is full rank, because the matrix {B is L-equivalent to R, hence its

determinant is not 0. We first show, by applying on the rows of B the algorithm yet explained in 2.4, that an
unimodular matrix H exists, such that H is in the form :

H—IO 20
L H (20)

and the following product is in LHNF

AR

Given the matrix B=
by - -~ . b,
the first step is to apply the algorithm 1 (section 2.4) to the first k rows of B. By representing these operations by

the unimodular matrix U, , we can write:

by, . . . O
0 |=U;B (22)
by, .. . .. b,

then we can apply again the algorithm to the first k-1 rows of the matrix U, B. We can represent these

operations by another unimodular matrix U2 , to obtain a new matrix in the form:

b, . . 0 0
b, O |=U,U.B (23)
by o D
S0, going on, in this way we obtain a matrix in the form
8'=[B, B,]=U,.U,U,B (24)

in which B, is square lower triangular .

The second step is to apply the algorithm 2 on the rows of B’; we can represent these operations by the
unimodular matrix U’, to obtain a matrix in the form:

B =uB'=[B' B,']=uU,.U,U,B (25)
in which the matrix B," isin LHNF.
=
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A
The third step is to consider the matrix {B } and apply the algorithm 2 on the rows of B’’and using the rows

of A to obtain, finally, a matrix in LHNF. Also in this case we can represent the algorithm by pre-multiplying by
an unimodular matrix U’’:

I O1[A A
= (26)
|:U”l UII2:| |:B”:| |:U”1A+U”2 B”:|

If we denote the product in (25) by U, that is:
v=v'U, .U, U, (27)

we can synthetize all the operations with a unique unimodular matrix given by the product:

v o 0lla[ o, e

The matrix H in (20) coincides with the one in the previous (28) after having set
L=U," and #=U,"U
Now, going back to the hypotesis of the theorem, an unimodular matrix W exists such that:

A—WR 29
B|” (29)

and R is in LHNF.
From (21) we obtain:

A 4 A
=H (30)
B NA+H'B
by comparing (30) with (29 ) we can write:
4 A
WR=H (31)
NA+H'B
and then
A
R=WH™ (32)
NA+H'B
A
In the previous (32) the matrices R and are both in LHNF and the matrix W 'His
NA+H'B

unimodular, therefore, by using theorem 2.2.4, the two matrices are equal, in particular A is equal to the first r
rows of the matrix R. o

5.2.3 A Partition of the Set of Solutions

Theorem 5.2.4 Given the integers d > 0and n > 0, and by denoting with S the set of all the solutions of the

equation (1), ==d , where A is a full rank integer matrix, we have that the set of classes Ci of L-A-

equivalence defined as in definition 5.2.3 is a partition of S.
Proof. The first step is to prove that any solution of equation (1) is L-A-equivalent to one of the Si .
If X is a solution, that is :

N

L'/“'I\ N
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A
X
by using the unimodular matrices U and U, defined as in (7) and theorem 5.2.1, we can consider the matrix:

o b5

in which the the determinant is +d or -d and the matrix U’A U satisfies the conditions (8).

= +d (33)

The matrix (34) is a solution of the equation , |X| ==d hence, by using theorem 5.1.2, there exists an

unimodular matrix W, such that:

U'AU
=WR, (35)
o

where R, is LHNFand |R;|=d

Since the matrix (34) satisfies the conditions (8), for theorem 5.2.3, we have that the matrix R;, can be written
as:

U'AU (36)

R',

in which the entries I"ij of the matrix R', satisfy the conditions (similarly to (14)):
O<ri<ay Vi if j<row
O<ry<r’y Viif j>row (37)
in which we denoted by “row” the number of rows, and a';; are the diagonal entries of the matrix U’AU

Now, for what we have proven in theorem 5.2.2, in particular from (16) to (18), the matrix

U'AU
{ B } introduced in (13) is exactly one of the Ri (is LHNF and its determinant is d); it means that we

_ U'AU
can find a B, such that R, = (38)
A
therefore, by using theorem 5.2.2 and by defining U’ as in (15), there exists a solution S; of X =+d such
that:
L|U'AU _1 L, A
u'" U =U"RU "= (for (38)) (39)
B S
hence from (39) we can write:
llfl A
R, =U U (40)
S
by substituting in (35) we obtain:
U'AU LA
:WRi :WU'l U (41)
XU S,
A
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and post-multiplying by U ™

[U'A] LA
=WR=wU" (42)
L X _ Si
the first member of (42) can be written, by using the definition 5.2.9 :
[U'A] [U' O Al | A
= . =y (43)
i X i O | X ] X
S0 we obtain:
-1 A -1 A_
u" [=WU (44)
X Si_
and then:
A A
=U"wu"t 45
[X } {Si } )

in which the matrix U""WU"" s unimodular.
The previous (45) means exactly that the solution X is L-A-equivalent to one of the fundamental solutions Si

defined in theorem 5.2.2.
The second step is to prove that a solution X cannot be L-A-equivalent to two different fundamental solutions,

say S;and S;.
If a solution X is L-A-equivalent to S; and Sj , we have that:
A A
=W (46)
X ] S;
A " A
= a7
X | s, (47)

and from the previous (46) and (47) it follows:

A

AT L [A
S}:W I\N{S} (49)

i ]

namely, Si is L-A-equivalent to Sj . From (19), it means that B, and Bj exist, such that:

S

BU™ BU™
where U is defined as in (7) and B; and Bj are defined as in (13) and (14). If we post-multiply by the matrix U,
we obtain:
A A

U=W"W' U 51
_BiU _l} {BJU _l} o
[ AU AU

=W W' 52

| B } { B, } ©
S
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Now we consider the matrix U’ defined as in theorem 5.2.1 and define the matrix U’’’ as follows:

Vel
o | | (53)
and then we pre-multiply (52) by U’
U O AU | AU
=U"'W W' (54)
1O 1| B | B,
U'AU | AU
=U"ww' (55)
L Bi | Bi
{u ' AU}
We note that the matrix is in LHNF. From (55), multiplying by the inverses, we obtain:
1 | UTAU AU
W twu = (56)
B, B,

we pre-multiply again by U’

et s UTAUTT U O AU
u'"'w—wu = 7)
B | |0 1] B
hence we obtain:
_1 L[urau] [U'AU
u'w—wu' = 58)
. B || B
U'AU 'U'AU
where both the matrices B and are in LHNF and the product U""'W' WU is an
i L P

U'AU '

} and therefore, by

unimodular matrix. This means that the matrix { }is L-A-equivalent to {

i i
using theorem 2.2.4, they must be equal, so B, = Bj and consequently Si = Sj . This means that the solution X

belongs to one and only one of the classes Ci defined in 5.2.3, therefore the set of Ci is a partitionof S. o

5.2.4 A Formula to Express all the Solutions

Let’s suppose that A is given in the equation (1), then we can express all the solutions of (1) in a way that allows
us to put in evidence the free parameters and reduce the number of unknowns. The formula that we obtain
reduces the initial problem to the problem of finding the values of a unimodular matrix in which the number of
unknowns is lower than that of the equation (1).We will prove the following:

Theorem 5.2.4.1 If X;and X ; are two L-A-equivalent solutions of

‘ ==d , then the unimodular matrix W

A A I O
such that =W , Is in blocks lower triangular form :
X, X i A W'

in which I is an unit matrix, A is a matrix with integer entries, O is a matrix with all entries equal to 0, and W’ is
an unimodular matrix.
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Proof. We first recall some facts concerning the matrices in blocks lower triangular form. Let’s consider the set
of the real square non singular matrices in block lower triangular form, in which there are two blocks of fixed

B, O
dimension, that is, of the form: | R B, (59)

1.The determinant of a matrix in this form is given by the product of the block determinants [10, 11]
2.The product of two matrices of this form is in the same form, in fact;

B O B, O B BB’ B,O+ 0B, 3 BB’ O
R B,||R B,| |RB,+B,R" RO+B,B,| | R" B,B, (60)
3.The inverse of a matrix of this form is in the same form (we consider values in the real field), in fact given a

non singular matrix, is known that the inverse is unique, and the following product shows that the inverse has
the same form (Note that from 1 it follows that none of the blocks is singular):

B O B™ O | | o] [1 O
R B,||-BRB* B%| |RB*~B,B,'RB]* || |O | (61)

(Since the identity matrix is in the same form, it follows that the set of this kind of matrices is a group)

Be U the unimodular matrix defined in (7), if we consider the two matrices:

M_'AU_'AU A O
i __Xi __xiU __Xil Xiz (62)
A AUl [A O
M; = U = =
_Xj _XJ.U _le ij
The two matrices are clearly in blocks lower triangular form, then we can consider the equation
A W A
XX (63)
and, by multiplying by U
_ A_U w A U
XX (64)
— -1 _
M, =WM; => MM =W (65)

therefore, by using the previous facts 2 and 3, the matrix W is in blocks lower triangular form (but its entries

are integers!). Hence we can write:

Al W, O AT [ WA
Xo | (W, W | X | [ WAHW,X (66)

It means, since the matrix A is full rank, that the matrix W, is the identity I, and the determinant of W5 is 1 or -1,

that is, W3 is unimodular. o
If we consider that every solution X is L-A-equivalent to one of the S;, we can write

s wlalawiwrs [l awws

therefore all the solutions of (1) can be expressed by the formula:
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X = AA+W'S, )

The matrix W is unique, since the matrices Xi and X jare full rank. Therefore every possible matrix A and every

unimodular matrix W gives a solution of (1), and for each solution we can find a unique S;, a unique unimodular
matrix #’ and a unique A which, by formula (68), give the solution. From formula (68), and by denoting with r

A
the number of rows of the matrix A and with n the dimension of the matrix {X , We can see that the number of

new unknowns (the entries of the unimodular matrix W) is given by (N—r)-(N—Tr), and the number of free
parameters (the entries of the integer matrix A) is given by F-n . The number of unknowns in (1) is given by
N(N—r), so the number of new unknowns in (68) is lower, since (N—r)-(N—r)<n(n—r).

If the matrix A is not given, then the equation (1) becomes |X|=xd , the formula (68) becomes X =W'S;,

where the S; are the solutions already defined in theorem 5.1.1. In this case the number of unknowns is the

same, since r = 0.
5.3 An Example
2 2 -3 4
2 2 1 2
Let’s suppose that the equation to solve is =14 (69)
Xa1 X3z Xg3 Xy
Xoo Xz Xz Xy

In the example 4.2 we have seen that the greatest divisor of A is 2, it divides 4, hence the equation is solvable.
To find a set of solutions, we have to find the matrix U defined in (7), which we have already found in example
24.1:

3 2 -5 -1
0 0 0 1
10 02 0
-2 -1 4 0
then we have to compute the inverse matrix
2 2 -3 4
Ut 00 2 -1
11 -1 2
01 0 O
now we consider all the matrices Bi , defined in (13) and satisfying conditions (12) and (14). Then, considering
that

U

(70)

3 2 -5 -1
22 -34/10 0 0 1/[1000
AU = . = and k=i=ﬂ=2 (71)
221 2]|-10 2 0/ [1200 Al 2
-2 -1 4 0

all the possibile matrices B; are the following:
0010 0020 0020
B = ; B, = ; By = ;
0002 0001 0011
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0110 0120 0120
B, = . B,= . B, =

0002 0001 0011

0110 0120 0120
B, = . B,= . B, =

010 2 0101 0111

0010 0020 0020
By = ; By= ; By=

0102 0101 0111

then we can find the set of fundamental solutions by applying the formula (19)

S, =BU*

2 2 -3 4

s—FOlO}OO 2 —1_{11—1 2}

1000211 -1 2|02 00
01 0 O

By operating similarly with all the B, we obtain all the fundamental solutions:

11 -1 2 2 2 -2 4 2 2 -2 4
81: 82= 83:

02 0 O 01 0 O 1 2 -1 2

1 111 2 2 0 3 2 2 0 3
84: SSZ SG:

0 200 0100 1 2 -1 2

111 1 2 2 0 3 2 2 0 3
S, = S, = S, =

0 2 2 - 012 -1 1 211

S_11—128_22—248_22—24
oo 2 2 - 001 2 - 2711 2 1 1

For each of the S, aclass C, of L-A-equivalence is defined, and any solution X can be
obtained, by the formula (68):

|:X31 X32 X33 X34:| — |:ﬂ11 /112:||:2 2 _3 4j|+|:wlll W'12j|.[s_]
X41 X42 X43 X44 /121 /122 2 2 1 2 W'21 WI22 I

(75)
Wy Wy,

where =11, S, takes value in the set (74) and the A can take any integer value.

1

W21 WZZ
5.4 The Number of L-A-Equivalence Classes

(72)

(73)

(74)

We take into consideration the total amount of the different S, , the fundamental solutions given A, in §5.4.

Let’s suppose that the equation

A
| = £ s solvable, i | Al divides d, and set d = p," p,"™..p,"|A, in which

the [, are different prime numbers, and k is the number of rows of the matrix X. We will prove the following:

\
)

i

AR
)

{)
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Theorem 5.4 The number N of L-A-equivalence classes is given by:
K k k k k R k ok k k i k k k k i
_ MK=Jo=J1-—] NoK=Jo=J1-=Jn2 NK=Jo=J1-—]
N=A QL2 2 - 2P RIOIDIDITPN DROIDIDITPN ")
Jo=lir=lo J2=h jnlzjrq—l Jo=lit=Jo 2=l jnZ:jnz—l Jo=lir=lo l2=h jnI:jm—l

(76)

Proof.

k
Let’s start proving the factor |A| :

ay, 0 0
0 0
. . . . . . alrl a'rr 0
if we take into consideration the hermitian form of :
X bIl bI2 bII 0
0
L bnl bnn_

every bij ,with ] <, cantake &; possible integer values from 0 to &, —1. Since in every column there are k

possible entries, all the possibilities are given by a,,a,,"...a,, = (&, &y, ...a, ) = A

. n d
with F <i<n, wehave: [ [b; =— = p,"p,"..pn,"

S

If we consider the square matrix B (lower triangular) with the diagonal entries D , all the possible integer

Now if we consider the entries b..

values of the column i are given by (b”)k’i so, for all the diagonal entries b, the number N of possible

1’
matrices will be the product N =(b,)*™"-(0,,) *--(b,)°. If we take into consideration the primes

factorization can write:

N = (pf) - (ps2) - (pf) 2 - (p52) 2 ()2 - (p52) -+ () - (p3*?)°

by reordering the terms:

N =(pr) - (pr) 2 - (pr) 2 - (p52) - (o) 2 - (p52) - (pr) - (=)< 2 - () 2 -

It means that in order to find the total number of the possible matrices B we can find for each factor pini the

number of possible square lower triangular matrices of order k, with determinant equal to pini and then we

multiply all these numbers.

Now, if we consider the factor pini , and consider a lower triangular matrix of order k and determinant pini ,
for each P; set in the diagonal on the column (or row) number j, we have a contribution (by multiplication) of

P;“", so, by extending to all possible disposition on the diagonal, we obtain that the total number of such

N

L'/“'I\ N
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K ok K K _ _ _
matrices is given by > > > . > plp h.p v which can be written as

jo=lii=lo i2=h jni:jnl—l
kK k. k K o
z Z Z a Z pinik—lo—h—lz---—ln,
Jo=lii=lo J2=h Jn=Ima
Finally, by considering all the factors P, "', we can write the formula which gives the number of all the
possible L-A-equivalence classes:

AREY0 IS FALEED'9 39 IS FAERDR03D 9D D A AL

Jo=li1=lo jo=h1 Im=lma Jo=li1=lo Jo=h iny=lnpu jo=li1=lo J2=h Im=Inya
O
5.4.1 Example

If we consider the equation (69), we have that , |A| =2, k=2

clearly we have ; = 2 and n = 1. By applying the formula (76) we obtain:

2
=|A O 27Ty =22(2' +2°) = 4-3=12
j=1

6. Generation of Unimodular Matrices
If we consider the equation (68), it’s clear that in order to find explicitly all the solutions we need a way to build

all the possible unimodular matrices. Some known results on the GL(n'Z)
can be useful. It’s known that 4 matrices suffice to generate this group [14].

nxn. .
group of integral matrices

The number of generators can be reduced to the following 2, as Trott has proven [15]:

1 0 0 .. .. O] 0 1 0 . . O]
110 . 0 0 0 1 . 0
0 010 0 0 0 01 0
U, = Uu =
0 0 0 0
. . .10 " 01
0 00 . 0 1] (-1 0 0 . 0 O
| . _ | A‘:id
Hence, going back to the formula (68), that gives the general solutions of equation |x ,

X = AA+W'S,

we can write any unimodular matrix W’ as product of U and U, ,

k
w=TTU,")
i<l
where K is natural and a; , b; are integers. Therefore the general solution can be written as:
k
X = AA+(HU ay,) ]si

1 (77)

6.1 Example
We can consider the expression (75):
‘yk

‘\
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|:X31 X32  Xg3 Xsﬂ _ |:ﬂ11 ﬂiz}‘|:2 2 -3 4}_{W'11 W'12j|_[s ]
- ] 1 i
X41 X42 X43 X44 221 ﬂ’ZZ 2 2 1 2 W21 W22
W, W
where '11 '12 =21 and write the unimodular matrix as product of the generators. In this case the
Wor Wo,
01 10
generators are: U = and U, =
10 11

therefore we can obtain all solutions of equation (69) by the formula (77):

{Xsl sti _ Fm -3 4
X1 Xy4 Aoy

X32 X33

NSRRI T

where the fundamental solutions S; take values in the set (74), k is a natural number
6.2 Another Example

Xio  Xy3

A :
", &, b are integers.

1 2 2 0 O
-1 1 3 0 1
Let’s solve the equation : Xop Xa Xgg Xgy  Xgg| =44
Xgp Xyp Xyg Xy Xys
X1 Xsp X3 X5y g
1- First we compute the gcd to establish if it’s solvable: ged (3, 5, 0, 1, 4, 0, 2, 0, 2, 0)=1, 1 divides 4,
hence the equation is solvable.
2-  Then we find the RHNF of A , the matrix U and U™ :
-1 -2 8 0 2]
1 1 -5 0 -1
1 22 00 100 00
40 0 1 0 0|=
-1 1 3 01 01000
O 0 0 1 O
-2 -2 10 0 3|
-1 -2 8 0 27 [1 2 2 0 0]
1 1 -5 0 -1 -11 3 01
u'={0 0 1 0 0| =[{0 0100
O 0 0 1 O 0 0010
-2 -2 10 0 3| [0 2 0 0 1]
3- Find the fundamental solutions
The cardinality of the fundamental solutions set is given by

3 3 o
N=100 > 2%k hy= (200 42802 4. 280°) 1 (2522 4. 2°2°) + (2°°°) = (16 +8+4) + (4 +2) +1=35

Jo=L i=lo

The 35 B; matrices are:

D

S
‘q;

P/
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SalviM

coo0o1¢000O011O0O00O01O0O0|0O0O01O0TO00O0OT1IO0T0
0O 0O01O0({0O OO 40/0 00 40(|IO OO0 40/00040O0
0O 00O 4/00O0O01|00011 1000 2 1|0 00 31

0 040O00O0M4CO0O00O0TZ4TCO0O0||IOO0O 400|000 400
co0oo01o00011100021°0|/00310(|00O010O0
coo0O0OOT10 000 1|0 00O 1{/0 00 O0 1|0 0 1 01

0O 0 40 0({0O O 400(/00 40 0(|IOO0C4O0O0|0O0400
0o011¢000%21°C0(|00310(/00011O000110O0
0016011001010 010 1100 2 0 1|00 2 01

0O 0 40 0({0OO0O 400(/00 40 0(|IOO0C4O0O0|00400
0co021¢00031°©00O0O01TO0||I0O011O0(|00210
co02¢o010020 1|00 3 0 1{|0 0 3 0 1{|/0 0 3 0 1

00 4000O01O00O0(/001O0O0|/0O02O0O0|I0O02O00O0
0 o031¢00O0O02O0(/0O0O0 2 0||0O0O01O0(|0O0110
00301000 0 20 00 1 2|0 0 0 0 2{|0 0 0 0 2

0 020O00O0?2°O0O0/00 200|002 00(|0O0 200
001100 O0O01QO0|/|0000 2 0(/00O02O0(1I0O0C1 20
0010 2{|001CO0 2{|000O0 1|0 00 1 10 0 0 01

0o 0220 0[O0 20 00O02¢0O0|O 02 00j0020@PO0
co012¢000O020(/0OO0O0 2 0(/00120/0012@0
coo00110011011j001111j00101|I001 101

:BiU—l

Therefore the set of fundamental solutions is given by S;

4. Write all the solutions:

2 2 00

1

0O 0 010

0

2 0 01

U a;, b; are integer.

A

where Kk is a natural number
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7. Concluding Remarks

In this paper we have considered the diophantine equation = +d where A is full rank and d is not zero. The

equation is solvable if and only if the gcd of the matrix A divides d . If the equation is solvable we have shown
how to build a set of solutions S; , which we have defined fundamental solutions. Then we have defined an
equivalence relation which gives rise to a partition of the set of all solutions, in which each S; belongs to a
different class. We have given a formula to express all the solutions in which the two generators U and U, of
GL(n, Z) are used:

[
X =AA+{HU ay,) Jsi

j=L
Finally we have given a formula to compute the number of the equivalence classes. In this paper we considered

A
d # 0 and much of what we proved is valid only if the matrix [X } is not singular.

References

[1]. M.Salvi (Submitted), On a Kind of nonlinear Diophantine Equation, Italian Journal of Pure and
Applied Mathematics. 2014. Available at: http://arxiv.org/abs/1607.03097

[2]. G.H.Bradley. (1971). Algorithms for Hermite and Smith normal matrices and linear Diophantine
equations. Math. Comp. 25: 897-907.

[3]. H.J.S. Smith. (1861). On systems of linear equations and congruences. Philosophical Transactions of
the Royal Society of London 151: 293-326.

[4]. Tsu-Wu J. Chou, G.E. Collins. (1982). Algorithms for the Solution of Systems of Linear Diophantine
Equations. Siam Journal of Computation 11/4: 687-708.

[5]. P.D.Domich, R.Kannan and L.E.Trotter Jr. (1987). Hermite Normal Form computation using modulo
determinant arithmetic. Mathematics of operations research 12/1: 50-59.

[6]. R.N. Greenwell, S.Kertzner. (2009). Solving linear Diophantine matrix equations using the Smith
Normal Form (more or less). Int. J. Pure Appl. Math. 55/1:49-60.

[7]. W.J.Gilbert, A.Pathria. (1990). Linear Diophantine Equations,
Available at: http://www.math.uwaterloo.ca/~wgilbert/Research/GilbertPathria.pdf

[8]. C.Hermite. (1851). Sur I'introduction des variables continues dans la théorie des nombres. J. Reine
Angew Math. 41:191-216.

[9]. A. Schrijver . (1986). Theory of Linear and Integer Programming, John Wiley & Sons.

[10]. L.N.Herstein. (1975). Topics in algebra, John Wiley, New York.

[11]. A.Maltsev.(1980). Fondamenti di algebra lineare, Editori Riuniti, Edizioni Mir.

[12]. M.Newman. (1972). Integral Matrices, Academic Press.

[13]. A.J.B. Ward. (2000). A matrix method for a system of linear Diophantine equations. The Mathematical
Gazette. 84:81-84.

[14]. Coxeter H.S.M., Moser W.0.J. (1957). Generators and Relations for Discrete Groups. Springer-Verlag.

[15]. Trott S.M. (1962). A pair of generators for the unimodular group. Canad. Math. Bull. 5/3: 245-252.

N

L'/“'I\ N

D’ Journal of Scientific and Engineering Research

298



