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Abstract In this paper, we consider a general subclass of analytic and bi-univalent functions in the open unit
disk in the complex plane. Making use of the Chebyshev polynomials, we obtain upper bound estimate for the
second Hankel determinant for this function class.
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1. Introduction
Let’s A denote the class of all complex valued functions f (z) given by

0

f(z)=z+a,2% +a,2%+-=2+> 87", 1)

n
n=2

which are analytic in the open unit disk U = {Z € C : |z| < 1} in the complex plane. Furthermore, let S be
the class of all functions in A which are univalent in U . Some of the important and well-investigated subclass
of S is the class Q(«, /) given below

Q(a,ﬂ):{f esS: Re{(l—ﬂ)¥+ﬂf’(z)}>a,zeU}, ae[O,l),ﬂe[O,l],

which firstly introduced and investigated by Ding et al. [4]
It is well-known that (see [6]) every function f € S hasaninverse f 1 defined by
f(f(2)=2 zeU
and
ffw)=w,weD =D, ={weC:|wl <r(f)}n()=1/4

where
fH(w) =w—a,w +(2a; —a,)w’ —(5a; —5a,a, +a, )W' +--, weD.  (12)

A function f € A is called bi-univalent in U if both f and f ™ are univalent in the definition sets. Let us

2 denote the class of bi-univalent functions in U given by (1.1). For a short history and examples of functions
inthe class X, see [14].

Firstly, Lewin [12] introduced the class of bi-univalent functions, obtaining the estimate |a2| <1.51.
Subsequently, Brannan and Clunie [2] developed the result of Lewin to |a2| < \ﬁ for f €X. Accordingly,
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4
Netanyahu [10] showed that |a2| SE. Earlier, Brannan and Taha [1] introduced certain subclasses of bi-

univalent function class 2, namely bi-starlike function of order ¢ denoted S; («) and bi-convex function of
order ¢ denoted C, () corresponding to the function classes S (a) and C(cx), respectively. For each of

the function classes S, (cr) and C, (), non-sharp estimates on the first two Taylor-Maclaurin coefficients

were found in [1, 16]. Many researchers (see [15, 17, 18]) have introduced and investigated several interesting
subclasses of bi-univalent function class X and they have found non-sharp estimates on the first two Taylor-
Maclaurin coefficients. However, the coefficient problem for each of the Taylor-Maclaurin coefficients

|an|, n=3,4,... is still an open problem (see, for example, [10, 12]).

An analytic function f is bi-starlike of Ma-Minda type or bi-convex of Ma-Minda type if both f and f
are, respectively, Ma-Minda starlike and convex. These classes are denoted, respectively, by S; (¢) and
C, (@) . In the sequel, it is assumed that the function ¢ is an analytic function with positive real part in U,

satisfying ¢(0) =1, ¢'(0) >0 and ¢(U) is symmetric with respect to the real axis. Such a function has a
series expansion of the following form:

$(2) =1+bz+Db,2? +b323+”':1+ibnzn, b >0,
n=1

An analytic function f is subordinate to an analytic function ¢, written f(z) < ¢(z), provided that there is
an analytic function (that is, Schwarz function) @ defined on U with @(0) =0 and |a)(Z)| <1 satisfying
f(2) = #((z)) . Ma and Minda [8] unified various subclasses of starlike and convex functions for which
2f'(z zf"(z

% or 1+T(Z))
considered an analytic function ¢ with positive real partin U, ¢(0) =1, ¢'(0)>0and ¢ maps U onto a

region starlike with respect to 1 and symmetric with respect to the real axis. The class of Ma-Minda starlike

zf'(2)

either of the quantity is subordinate to a more general function. For this purpose, they

and Ma-Minda convex functions consists of functions f € A satisfying the subordination

< ¢(z) and

zf"(2)
f'(2)

In 1976, Noonan and Thomas [11] defined the gth Hankel determinant of f forg € N by

1+

< ¢(z), respectively.

a ... a

n n+q-1
H,(n)=| -

a a

n+q-1""" n+2q-2

Forg=2andn=1, Fekete and Szegdé [7] considered the Hankel determinant of f as

8,3,

H 2 (1) =
8,8,

=a,8,-8;.

=

PN
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Recently, the upper bounds of |H2(2)| :‘aza4 —aﬂ for the classes S; () and C,(cr) were obtained by

Deniz et al. [3]. Very soon, Orhan et al. [13] reviwed the study of bounds for the second Hankel determinant of
the subclass My (/) of bi-univalent functions.

Chebyshev polynomials, which are used by us in this paper, play a considerable act in numerical analysis and
mathematical physics. It is well-known that the Chebyshev polinomials are four kinds. The most of research
articles related to specific orthogonal polynomials of Chebyshev family, contain essentially results of

Chebyshev polynomials of first and second kinds T, (X)and U, (X), and their numerous uses in different

applications (see [5, 9]).
The well-known kinds of the Chebyshev polynomials are the first and second kinds. In the case of real variable

X on (—1, 1) , the first and second kinds of the Chebyshev polynomials are defined by

T,(x) = cos(narccos x),

sin[(n+1)arccosx] _sin[(n+1)arccos x]

U (X)= =
() sin(arccos x) N
We consider the function
Gt z)=—— te(l,lj,zEu.
1-2tz+z 2

V4
It is well-known that if t =CcOS¢, o € (0, Ej then

sm[(n+l)a] ]
G(t, 1+ —— = 27" —
t.2)= Z_;‘ sina
1+2c05az+(3cosza—sin2a)22+(8cos3a—4c05a)z3+--~, zeU.

That is,
G(t,z) =1+U,(t)z+U,(t)z* +U,(t)z° +---, t e [%1) zeU, (1.3)

sin [(n+1) arccos t]
Vi-t3
the second kind Chebyshev polynomials, we easily obtain that Ul(t) =2t .

where U, (t) = ,n € N are the second kind Chebyshev polynomials. From the definition of

Also, it is well-known that
U, (1) =2tU, () -U, (1)
for all n € N. From here, we can easily obtain
U, (t) =4t* -1, U (t)=8t>-4t,....
Inspired by the aforementioned works, making use of the Chebyshev polynomials, we define a subclass of bi-
univalent functions X as follows.

Definition 1.1. A function f € X given by (1.1) is said to be in the class Q. (G, £,t), #>0,t e(%,lj,

where G is an analytic function given by (1.3), if the following conditions are satisfied
f(z
(1-5) ( )+,Bf "(2)<G(t,z), zeU

and

K;\ "_Y\:\
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(l—ﬂ)M+ﬁg’(w) <G(t,w), we D
W
where g = f .
Remark 1.1. Taking =1, we have Q;(G,1,t) =R, (G 1), te (%,1} ; that is,

f eR,(G,t)= f'(z)<G(t,z), zeU and g'(w) < G(t,w), we D,

where g = f .

Remark 1.2. Taking =0, we have Q;(G,0,t) =N, (G,t), te (% ,1) ; that is,

fe NZ(G,t)©E<G(t,Z), zeU and M—<G(t,W), weD,
z w

where g = f .
In order to prove our main results, we shall need the following lemma.
Lemma 1.1. ([6]) Let P be the class of all analytic functions p(z) of the form

p(2) =1+ pz+ p,2° +---=1+ ) p,2"
n=1

satisfying Re(p(z))>0, zeU and p(0) =1. Then, |p,|<2, for everyn=1,2,3,... . This inequality

is sharp for each n.
Moreover,

2p, = p; +(4-pf)x,
2
ap,=p;+2(4-p7 ) px—(4-pf) px* +2(4- pf)(1—|x| )z,
for some X, z with |X|£1, |Z|Sl.
The object of this paper is to determine the second Hankel determinant for the function class Qy (G, £, t)

and its special classes, and is to give upper bound estimate for |H2(2)| :

In the introduction and preliminaries section of the paper, we provide the necessary information to prove
our main results. In the second section we give the main result. The special cases of the results obtained in
presented paper have been examined and compared with known results.

2. Upper bound for the second Hankel determinant of the class Q, (G, S, t)

In this section, we prove the following theorem on upper bound of the second Hankel determinant of the

function class Q, (G, 5,t) .
Theorem 2.1. Let the function f(z) given by (1.1) be in the class Q. (G, S,t), ﬁe[O,l],t e(%,l},

where the function G is an analytic function given by (1.3). Then,

=
3 ;\\:‘
NS

A
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if A(S,t)>0andc(p,t) >0,

2 max{A'—tzz, Ht, 2—)}, it A1) >0and c(4,t) <0,
2.8, -] < (1+25) it A(B1)<0andc(B.t)<0,

max {H (t, ), H (t,2-)}, if A(B,t) <0andc(B,t)>0,

where
8t?|(2t2 —1)(1+ B) —2t*(1+3
H(t,2-)= ( ) +4ﬂ) il ﬂ)‘,
(1+ﬂ) (1+38)
H(t,8) = (5

(1+ Zﬂ) 8(1+ )" (1+28) (1+38)A(BY)
(27 -2)(1+ B)" - 27 (1+38)|(1+28) -
8t (1+35)t° + (1+ B) (1+28)(4° -1) | (L+ B’ (1+28) -8B (1+ B,
c(B.t) =8t| (5t° ~1)(1+38)+2(4t* -1) 5 |(1+ B’ (1+28) -
87| (1+8) +(2+ B) B |1+ B)' .

A(B,1) =16t

Proof. Letus f € Q,(G, S,t), B e [0,1],t S (%,lj and g = f . Then, in view of Definition 1.1, there

are analytic functions @:U —»U, @:D, — D, with ©(0)=0=a(0), |a)(z)| <1, |w(W)| <1

satisfying the following conditions

(1—ﬂ)%+,6’f’(z)=6(t,a)(z)), zeU (2.1)
and
(l—ﬁ)¥+ﬂg'(w) =G(t,@(w), weD, . (2.2)

Let also the functions P, € P be define as follows

1+ w(z
p(z) = 1_@8 =1+ pz+ p,z° +- _1+Z_; P,z
and
1+ @ (w
q(w)_l_wEW; 1+ QW+ QW +- _1+Zlqn
It follows that
7)-1 1 2 3 |
w(z)::%zi{pﬂ"'(pz_%jzz"'(ps_p1p2+%j23+'“_ 23)
and
wy-1 1 2 3 ]
ZU(W): ZEW; 1 2|:q1 [qz_q?ljwz+[q3_q1q2+q71jws+"‘_- (2.4)

From (2.3) and (2.4), considering (1.3), we can easily show that

\
)

)

. %50
)
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G(t, w(2) =1+U12(t) plz-{u (t)( J }
(2.5)
U, (t) P ,(1) U0
{ 2 (ps PP, + ] ( 2] g } +
and
G(t,w(W))=1+U12(t)qw {U (t)(qz qu U, (t) }
2.6)

{U (t)[q;,; O, + j Z(t)ql[qz—q—lj U%mqf}wﬁm-

From (2.1), (2.5) and (2.2), (2.6), comparing the coefficients of the like power of Z and W, we can easily
obtain that

U t)

(1+p)a, = Py 2.7)
U, (t U, (t
(1+2p)a, = g)(pz—%}%pﬁ (28)
U, (t t 2) U, (t
(1+38)a, = g)(ps—plpﬁll) 2()p1£p2——] #pl 29
and
—-(1+8)a, (t) (2.10)
U, (t U, (t
(1+2p)(28; —a,) = 12()(%—%] ()qf (2.11)
t U, (t
—~(1+3p)(58; ~5a,a, +a, ) = 1()[% 00, + j 2()q1(q2—q—1j %qf- (212)
From (2.7) and (2.10), we get
u@® U & 213)

2(1+ ) Pi=9= 2(1+ )
Subtracting (2.11) from (2.8) and considering (2.13), we can easily obtain that
— a2 Ul—(t) _ _ Ulz(t) 2 Ul(t)
as_6‘2+4(1+2ﬂ)(IO2 )_4(1+ﬁ)2 P +4(1+2ﬁ
Similarly, subtracting (2.12) from (2.9) and considering (2.13) and (2.14), we get
4 oI OP (P ~) Ui (Ps—G)
, = + +
16(1+,B)(1+2ﬁ) (1+3,H)
U,®)-Y,®) U, (1) —2U, (1) +U, () 0
4(1+3p) 8(1+3p) v

Thus, from (2.13), (2.14) and (2.15), for the second Hankel determinant a,a, — a§ , We can easily establish that

)(pz—qz)- (2.14)

(2.15)

P (P, +0,)+

\
)

/i

)

le="))|
7
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a0, —a2 = SR (P:=G) Ui OP(Py—)
32(1+B)° (1+28) 8(1+pB)(1+3p)
CAORENG) Oy O Y
8(1+8)(1+38) 7 Y 16(1+28)
u,(t)p;
16(1+ )" (1+35)
Since (see (2.13)) p, =—0,, in view of Lemma 1.1, we can easily obtain

4—p? 4_ p?
Zpl (x=y), p,+0, = Df+Tp1(X+y) (2.17)

(2.16)

{[U.(H-2U,()+U, (0] 1+ B) -V (1+38)}.

p,—0, =
and

P o(4-p)p
Pz — s :%"'%(X"'Y)_

A B o e (1l ]

According to Lemma 1.1, we may assume without any restriction that 7 € [0, 2] , Where 7 = | p1| .

Thus, substituting the expressions (2.17) and (2.18) in (2.16) and using triangle inequality, letting
|X| =¢, |y| =17, we can easily obtain that

a8, —al| < (t,0)(E+n) +¢,(t.7) (£ +7° )+t ) (E+7) +C,(t,0) = F(E7), (219)

where

(4_ plz) Py (Xz N y2)+
4 (2.18)

vio(a-r) 2) >0, ,(t,7) = Uiz (z-2)(4-<") <0,
64(1+25) 32(1+B)(1+38)

UP)e* (4-2%)  U,(0U, ()% (4-7°)
+ >0,
64(1+ B) (1+25)  16(1+p)(1+3p)
U2+ 8 U0 -(1+38)U; 0] , U2@Mr(4-7)
c,(t,7) = Z T+ >0,
16(1+ )" (1+35) 8(1+p)(1+3p)
te(%,l},re[O,Z].

Now, we need to maximize the function F(&,77) on the closed square Q2= {(«f, 77): éEne [0,1]} for each

¢ (t,7)=

C(t7) =

Te [O, 2] . Since the coefficients of the function F(&,7) is dependent to variable 7 for fixed value of t, we
must investigate the maximum of F(&,77) respect to 7 taking into account these cases
=0, r=2and TE(O,Z).

Letus 7 =0. Then, we write

— — U12 (t) 2
F(£n)=c(t0) A 2] (E+n)".
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It is clear that the maximum of the function F(&,7) occurs at (5, r) =@1),and

HU)
max | F(&,n): &, 0,1{=F@11)=——"2_. 2.20
{F(&m):&me[01]}=F (L) Lr25) (220)
Now, let’s 7= 2. Inthis case, F(&,77) is a constant function (with respect to 7 ) as follows:
U, )2+ ) U0 - (1+38)U7 1)
F(&m=c,(t2)= . (2.21)

(1+ )" (1+3p)
In the case 7 € (O, 2), we will examine the maximum of the function F(&,77) taking into account the

2

sing of A(E,m) =" (£, (Em)=| .,/ (Em) |

By simple computation, we can easily see that
A(&,m) =4c,(t, 7)[2¢,(t, 7) +¢, (1, 7).

Since ¢, (t,7) <O forall te(%,lj,r €(0,2) and

Ul (t)(4-7*)(2-1)
32(1+ B)(1+28)" (1+3p)
where (1) = 2(1+,B)(1+3ﬁ)—ﬁzr. It is clear that (1+,B)(1+ Bﬁ) >1forall fe [0,1]. Hence, we
write @(7) =2(1+ ﬂ)(1+3,8)—,821 >2— % forall Be [0,1] and 7 € (O, 2). Thatis, ¢(7) >0 for
allt e (O, 2) and  for  each pe [0,1] : So, 2c,(t,7)+c,(t,7) >0 for  all
T 6(0,2) and for each S e [0,1]. Thus, we conclude that A(E,7)<0 for all (577) eQ,

2c,(t,7)+c,(t,7) = o(7),

7€(0,2) and for each8 [ 0,1. Consequently, the function F(&,7) cannot have a local maximum in

Q) . Therefore, we must investigate the maximum of the function F(&,77) on the boundary of the square €.
Let’s

0Q={(0,7):7€[0,1]}U{(£,0): & [0.1])f U{(L7n):n[0,1]} L{(&1):£€[0,1]}.
We can easily show that the maximum of the function F(&,77) on the boundary 0Q of the square {2 occurs
at (5,77) = (1,1) ,and
max {F (&,7):(£,n)e0Q} =F(11)=

1 (2.22)
4c,(t,7) +2[C2(t, 7) + G, r)] +c,(t,7),te (E,lj T €E (O, 2).
Now, let us define the function H: (0,2) — R as follows:
H(t,7)=4c(t,7)+ 2[C2 (t,7) +c,(t, T)] +c,(t,7) (2.23)

for fixed value of t.
Substituting the value C; (t,7),J=1,2,3,4 inthe (2.23), we obtain

Ht )= UZ(t) i A(,B,taf" + 4c(ﬂ2,t)r2 | 220

(1+ Zﬂ) 32(1+,B) (1+2,B) (1+3,B)
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where
A(B,1) = 2U1(t)‘(1+ BY U () (1+ 3,8)Uf(t)‘(1+ 28) -
U, (O (1+38)UL (1) +4(1+ B) (1+28)U, (1) |(1+ B) (1+28)-207 (1) 5° (1+ )’
c(B.1) =U,()[U] (1) (1+35) +4U, (1) (1+ B) (1+28) |(1+ B) (1+28) -
207(1)| (1+B) +(2+ B) B|(1+ B).

Now, we must investigate the maximum (with respect to 7 ) of the function H (t,7) in the interval (0,2) for

fixed value of t.
Differentiating both sides of (2.24) (according to 7 ), we get

H(t,7) = A(B, 1)z +2¢(,1) .
T 8(1+ B) (1+28) (1+38)

We will examine the sign of the function H'(t, ) depending on the different cases of the signs of A(t,7) and

c(t, 7) as follows.
(1) Let A(B,1)=>0 andc(B,t)>0, then H'(t,z)>0, so H(t,z) is an increasing function.
Therefore,

U,(0)|(2+B) Us()—(1+38)U2()

max {H(t,7):7(0,2)} =H(t,2-) = T (2.25)
That is,
max{max {F (&,7):&ne[01]}:7€(0,2)} =H(t,2-).
(1) Let A(B,t)>0 and c(p,t)<0, then 7, = % is a critical point of the function

H(t,7) . We assume that 7, 6(0,2). Since H(t,z,) >0, 7, is a local minimum point of the function
H (t,7) . Thatis, the function H(t,7) cannot have a local maximum.

(z21) Let A(B,t) <0 and c(B,t) <0, then H'(t,z) <0. Thus, H(t,7) is an decreasing function on
the interval (0,2).

Therefore,

max {H (t,7):7 €(0,2)} = H(t,0+) =4c,(t,0) = (;1127(2)2 . (2.26)

(zv) Let A(B,t) <0 and c(f,t) >0, then 7, is a critical point of the function H (t,7) . We assume
that 7, €(0,2). Since H"(t,7,) <0, 7, is a local maximum point of the function H (t,) and maximum

value occurs at 7 = Z'O.
Therefore,
max{H(t,7):7(0,2)} =H(t,z,) = H(t. ), (2.27)

where

35 -‘_\\\\
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4? ¢’ (A1)
(1+28) 8(1+p) (1+28) (1+38)A(B.Y)

Thus, from (2.20) - (2.27), the proof of Theorem 2.1 is completed.
In the special cases from Theorem 2.1, we arrive at the following results.

H(t, p) =

Corollary 2.1. Let the function f(z) given by (1.1) be in the class Q,(G,0,t) = N, (G,t), te[%,lj,

where the function G is an analytic function given by (1.3). Then,

la,a, —a3| <8t”.
Corollary 2.2. Let the function f(z) given by (1.1) be in the class Q,(G,1,t) =R, (G,1), te(%,lj,

where the function G is an analytic function given by (1.3). Then,

t*(1-t), if te (
max{H(t),tz(l—tz)}, if te(
t2 (1—t2), if te(tl,?S]
gtz, if te(@,l},

2
la,a, —a3| <

where

H(t) == t2+¢((t)) P(t) =64t (42t° — 7t - 9) Lo (t) =18t% + 42t% +t — 27
ot

and t,=0.55368,t, =0.69471 are the positive numerical roots of the equations
42t* — 7t —9=0,18t> + 42t? +t — 27, respectively.
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