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Abstract Let ε0, ε1 be two equations, each with at least three variables and coefficients not all the same 

sign. Define the 2-color off-diagonal Rado number R2(ε0, ε1) to be the smallest integer N such that for any 

2-coloring of [1, N ], it must admit a monochromatic solution to ε0 of the first color or a monochromatic 

solution to ε1 of the second color. Motivated by Myers’ open problem, we determine the exact numbers 

R2(2x+qy = z, 2x+ y = z) and R2(2x + 2qy = z, 2x + 2y = z) in this paper. 
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1. Introduction and Main Results 

Let [a,b] denote the set  x a x b   . A function ∆: [1, n] → [0, k −1] is called a k-coloring of 

the set [1, n]. Assume that ε is a system of equations in m variables. We say that a solution x1, x2, . . . 

, xm to ε is monochromatic if and only if 

∆(x1) = ∆(x2) = …=∆(xm). (1.1) 

In 1916, Schur [15] proved that for every integer k ≥2, there exists a least integer n = S(k) such that 

for every k-coloring of the set [1, n], there exists a monochromatic solution to x+y=z. The integer 

S(k) is called Schur number. Rado [10, 11] generalized the work of Schur to arbitrary system of 

linear equations. For a given equation ε, the least integer n is called k-color Rado number if it exists 

and for every coloring of the set[1,n] with k colors, there exists a monochromatic solution to ε. If 

such an integer n does not exist, we say that the k-color Rado number for the equation ε is infinite.  

In recent years there has been considerable interest in finding the exact Rado numbers for particular 

linear equations and in several other closely related problems, see for example 

[1,2,3,4,5,6,9,12,13,14,16]. 

Let ε0 and ε1 be two equations. Define the 2-color off-diagonal Rado number R2 (ε0,ε1) to be the least 

integer N (if it exists) for which any 2-coloring of[1,N] must admit a monochromatic solution of color I to 

εi for some i∈{0,1}. Note that if ε0 = ε1, then the2-color off-diagonal Rado number is nothing but the 2-

color Rado number. 

Myers and Robertson [8] determined the exact 2-color off-diagonal Rado numbers of the form R2(x + qy = 

z, x + sy = z). In the same paper, they also established the lower bound of R2 (tx + sy = z, tx + qy = z), 

which can be stated as  follows. 

Theorem 1.1 Let q ≥s ≥t be positive integers. Then, 

R2(tx + sy = z, tx + qy = z) ≥t(t + q)(t + s) +
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In his thesis [7], Myers provided an open problem: what are the precise off-diagonal Rado numbers of the 

form R2(tx + sy = z, tx + qy = z)? Motivated by this open problem, we shall establish the exact formulas for 

R2(2x + y = z, 2x + qy = z) and  R2(2x + 2y = z, 2x + 2qy = z). Throughout this paper, we always let blue 

and red be the two colors and denoted by 0 and 1, respectively. The main results can be stated as the 

following two theorems which are proved in the next two sections. 

Theorem 1.2 Let q ≥2 be an integer. We have 

R2(2x + y = z, 2x + qy = z) =
20, 2,

3 8, 3.

if q

q if q




                                                                        (1.3) 

Theorem 1.3 If q ≥2 is an integer, then 

R2(2x+2y=z,2x+2qy=z)=16q+18.                                                                                            (1.4) 

 

2. Proof of Theorem 1.2. 

It is easy to check that Theorem 1.2 holds for q = 2, 3, 4. Therefore, it suffices to consider 

q ≥  5.  We first show that 

R2(2x + qy = z, 2x + y = z) ≥3q +8.                                                                                            (2.1) 

The lower bound can be established by exhibiting a coloring that avoids red solution to   

2x+qy=zandbluesolutionto2x+y =z. Consider the 2-coloring of [1,3q+7] defined by coloring [3, 3q+5] red 

and its complement blue. It is easy to check that the coloring avoids red solution to 2x + qy = z and blue 

solution to 2x + y = z. 

We shall now establish the upper bound, that is, 

R2(2x + qy = z, 2x + y = z) ≤  3q +8.                                                                                               (2.2) 

Let ∆ be a 2-coloring of [1,3q+8] using the colors redand blue. Without loss of generality, we 

assume, for contradiction, that there is no red solution to 2x + qy = z and no blue solutionto2x+y=z. 

We break our proof into two cases. 

Case 1: ∆(1)=0. It follows from ∆(1)=0that ∆(3)=1 which yields ∆(3q+6)=0. It follows from ∆(1)=0 

and ∆(3q+6)=0 that ∆(3q+8)=1. The facts ∆(3)=1 and ∆(3q + 8) = 1 imply that ∆(4) = 0.  Since (1, 2, 

4) solves 2x + y = z, we see that ∆(2) = 1.  It follows from ∆(3) = 1 and ∆(2) = 1 that ∆(3q + 4) = 0.  

Now, we have ∆(1)=∆(3q+4)=∆(3q+6)=0 and (1,3q+4,3q+6) is a blue solution to 2x+y=z. This is a 

contradiction. 

Case 2: ∆(1) = 1.  ∆(1) = 1 implies that ∆(q + 2) = 0 which yields ∆(3q + 6) = 1. It follows from ∆(3q 

+ 6) = 1 that ∆(3) = 0.  Combining ∆(3) = 0 and ∆(q + 2) = 0, we have ∆(q + 8) = 1. The facts ∆(q + 8) 

= 1 and ∆(1) = 1 imply that ∆(4) = 0. It follows from ∆(4) = 0 and ∆(q + 2) = 0 that ∆(q + 10) = 1. 

Since (5, 1, q + 10) solves 2x + qy = z, we see that ∆(5) = 0.  Combining ∆(q + 2) = 0 and ∆(5) = 0, we 

have that ∆(q + 12) = 1. The facts ∆(q + 12) = 1 and ∆(1) = 1 imply that ∆(6) = 0. It follows from ∆(6) 

= 0 and ∆(q + 2) = 0 that ∆(q + 14) = 1. Since (7, 1, q + 14) is a solution to 2x + qy = z, we see that 

∆(7) = 0 which implies that ∆(q + 16) = 1 or else (7,q+2,q+16) is a blue solution to 2x+y=z. Now, 

∆(1)=1 and ∆(q+16)=1, we see that ∆(8) = 0. It follows  from  ∆(q + 2)  = 0  and  ∆(8)  = 0  that  ∆(q + 18)  = 

1.  Note that q ≥ 5 implies that 3q + 8 ≥  q + 18.  Since (9, 1, q + 18) solves 2x + qy = z, we see that ∆(9) = 0. 

Now, we have ∆(3) = ∆(9) = 0 and (3, 3, 9) is a blue solution to 2x + y = z, which is a contradiction. 

 

3. Proof of Theorem 1.3. 

Employing Theorem 1.1, we obtain the lower bound 

R2(2x + 2y = z, 2x + 2qy = z) ≥16q +18.                                                                                           (3.1) 

Now, we turn to establish the upper bound, that    is, 

R2(2x + 2y = z, 2x + 2qy = z) ≤16q +18.                                                                                           (3.2) 

Let ∆ be a 2-coloring of [1, 16q + 18] using the colors red and blue. Without loss of generality, we 

assume, for contradiction, that there is no red solution to 2x+2qy=z and no blue solution to 2x+2y=z. 

We also break our proof into two cases. 
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Case 1: ∆(1) = 0. ∆(1) = 0 implies that ∆(4) = 1 which yields ∆(8q + 8) = 0. The facts ∆(1)=0 and 

∆(8q+8)=0 imply that ∆(16q+18)=1. Combining ∆(16q+18)=1 and ∆(4) = 1, we have ∆(4q + 9) = 0.  

The facts ∆(4q + 9) = 0 and ∆(1) = 0 imply that ∆(8q+20)=1. It follows from ∆(8q+20)=1 and 

∆(4)=1 that ∆(10)=0. Combining ∆(8q + 8) = 0 and ∆(1) = 0, we obtain ∆(4q + 3) = 1.  The facts 

∆(4q + 3) = 1 and ∆(4) = 1 imply that ∆(16q + 6) = 0.  It follows from ∆(16q + 6) = 0 and ∆(1) = 0  

that ∆(8q + 2) = 1. 

Subcase 1: ∆(2) = 0. ∆(2) = 0 implies that ∆(8) = 1 which yields ∆(16q + 16) = 0. Combining ∆(16q + 

16)  =  0 and ∆(2)  =  0,  we see that ∆(8q + 6)  =  1. The facts ∆(8q+ 6) = 1 and ∆(4) = 1 imply that 

∆(3) = 0. Now, we have ∆(2) = ∆(3) = ∆(10) and (2,3,10) is a blue solution to 2x + 2y = z. This is 

a contradiction. 

Subcase 2: ∆(2)=1.∆(2)=1 implies that ∆(4q+4)=0. It follows from ∆(4q+4)= 0 and ∆(1) = 0 that 

∆(2q + 1) = 1. Now, we have ∆(2) = ∆(2q + 1) = ∆(8q + 2) = 1 and (2q+1,2,8q+2) is a red solution 

2x+2qy=z. This is a contradiction. 

Case 2: ∆(1) = 1. ∆(1) = 1 implies that ∆(2q + 2) = 0 which yields ∆(8q + 8) = 1. It follows from 

∆(8q + 8) = 1 that ∆(4) = 0 which yields ∆(16) = 1. It follows from ∆(4) = 0 and ∆(2q + 2) = 0 that 

∆(4q + 12) = 1. 

Subcase 1: ∆(2) = 1. Combining ∆(2) = 1 and ∆(4q +12) = 1, we see that ∆(6) = 0. The facts ∆(6)  =  

0 and ∆(2q + 2)  =  0 imply that ∆(4q + 16)  =  1.   It follows from ∆(4q+16)=1 and ∆(2)=1 that 

∆(8)=0. The fact ∆(2)=1 implies that ∆(4q+4)=0. Combining ∆(4q + 4)  =  0 and ∆(4)  =  0, we 

see that ∆(8q + 16)  =  1.   The facts ∆(8q + 16) = 1 and ∆(2) = 1 imply that ∆(2q + 8) = 0. It 

follows from ∆(2q + 8) = 0 and  ∆(8)  =  0  that  ∆(4q + 32)  =  1.  Note that 4q + 32  <16q  + 18  

since  q  ≥ 2. Now, we have ∆(16)=∆(4q+32)=∆(2)=1 and (16,2,4q+32) is a red solution to 2x+2qy=z. 

This is a contradiction. 

Subcase2:∆(2)=0. It follows from ∆(2)=0 and ∆(2q+2)=0 that ∆(4q+8)=1. Combining ∆(4q + 8) = 1 

and ∆(1) = 1, we  get ∆(q + 4) = 0.  The facts ∆(2) = 0  and ∆(q + 4)  =  0 imply that ∆(2q + 12)  =  1.   

It follows from ∆(2q + 12)  =  1  and∆(1) = 1 that ∆(6) = 0.  ∆(2) = 0 implies that ∆(8) = 1. 

Combining ∆(8) = 1 and ∆(1)=1, we have ∆(2q+16)=0. Since (q+2,6,2q+16) solves 2x+2y=z, we see 

that ∆(q+2)=1. This implies that ∆(4q+4)=0 or else (q+2,1,4q+4) is a red solution to 2x + 2qy = z. It 

follows from ∆(4q + 4) = 0 and ∆(q + 4) = 0 that ∆(10q + 16) = 1. Now, we have ∆(1) = ∆(4q + 8) = 

∆(10q + 16) = 1 and (4q + 8, 1, 10q + 16) is a red solution to 2x+2qy=z. This is a contradiction. 
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