On some 2-color off-diagonal Rado numbers

Jing Jin
School of Mathematics, Nanjing Normal University, Taizhou College, Taizhou, P.R. China

Abstract

Let $\varepsilon 0, \varepsilon_{1}$ be two equations, each with at least three variables and coefficients not all the same sign. Define the 2 -color off-diagonal Rado number $R_{2}\left(\varepsilon_{0}, \varepsilon_{1}\right)$ to be the smallest integer N such that for any 2 -coloring of [1, N], it must admit a monochromatic solution to ε_{0} of the first color or a monochromatic solution to ε_{1} of the second color. Motivated by Myers' open problem, we determine the exact numbers $R_{2}(2 x+q y=z, 2 x+y=z)$ and $R_{2}(2 x+2 q y=z, 2 x+2 y=z)$ in this paper.

Keywords Schur number, Rado number, off-diagonal Rado number

1. Introduction and Main Results

Let $[a, b]$ denote the set $\{x \in \square \mid a \leq x \leq b\}$. A function $\Delta:[1, n] \rightarrow[0, k-1]$ is called a k-coloring of the set $[1, n]$. Assume that ε is a system of equations in m variables. We say that a solution x_{1}, x_{2}, \ldots , x_{m} to ε is monochromatic if and only if
$\Delta\left(x_{1}\right)=\Delta\left(x_{2}\right)=\ldots=\Delta\left(x_{m}\right)$.
In 1916, Schur [15] proved that for every integer $k \geq 2$, there exists a least integer $n=S(k)$ such that for every k-coloring of the set $[1, n]$, there exists a monochromatic solution to $x+y=z$. The integer $S(k)$ is called Schur number. Rado [10, 11] generalized the work of Schur to arbitrary system of linear equations. For a given equation ε, the least integer n is called k-color Rado number if it exists and for every coloring of the $\operatorname{set}[1, n]$ with k colors, there exists a monochromatic solution to ε. If such an integer n does not exist, we say that the k-color Rado number for the equation ε is infinite. In recent years there has been considerable interest in finding the exact Rado numbers for particular linear equations and in several other closely related problems, see for example [1,2,3,4,5,6,9,12,13,14,16].
Let ε_{0} and ε_{1} be two equations. Define the 2-color off-diagonal Rado number $R_{2}\left(\varepsilon_{0}, \varepsilon_{1}\right)$ to be the least integer N (if it exists) for which any 2 -coloring of $[1, N]$ must admit a monochromatic solution of color \boldsymbol{I} to ε_{i} for some $\boldsymbol{i} \in\{0,1\}$. Note that if $\varepsilon_{0}=\varepsilon 1$, then the2-color off-diagonal Rado number is nothing but the 2color Rado number.
Myers and Robertson [8] determined the exact 2-color off-diagonal Rado numbers of the form $R_{2}(x+q y=$ $z, x+s y=z)$. In the same paper, they also established the lower bound of $R 2(t x+s y=z, t x+q y=z)$, which can be stated as follows.
Theorem 1.1 Let $q \geq s \geq t$ be positive integers. Then,
$R_{2}(t x+s y=z, t x+q y=z) \geq t(t+q)(t+s)+\frac{\operatorname{gcd}(t, q)}{\operatorname{gcd}(t, s, q)} s$.

In his thesis [7], Myers provided an open problem: what are the precise off-diagonal Rado numbers of the form $R_{2}(t x+s y=z, t x+q y=z)$? Motivated by this open problem, we shall establish the exact formulas for $R_{2}(2 x+y=z, 2 x+q y=z)$ and $R_{2}(2 x+2 y=z, 2 x+2 q y=z)$. Throughout this paper, we always let blue and red be the two colors and denoted by 0 and 1 , respectively. The main results can be stated as the following two theorems which are proved in the next two sections.
Theorem 1.2 Let $q \geq 2$ be an integer. We have
$R_{2}(2 x+y=z, 2 x+q y=z)=\left\{\begin{array}{cl}20, & \text { if } q=2, \\ 3 q+8, & \text { if } q=3 .\end{array}\right.$
Theorem 1.3 If $q \geq 2$ is an integer, then
$R_{2}(2 x+2 y=z, 2 x+2 q y=z)=16 q+18$.

2. Proof of Theorem 1.2.

It is easy to check that Theorem 1.2 holds for $q=2,3,4$. Therefore, it suffices to consider
$q \geq 5$. We first show that
$R_{2}(2 x+q y=z, 2 x+y=z) \geq 3 q+8$.
The lower bound can be established by exhibiting a coloring that avoids red solution to $2 x+q y=z$ andbluesolutionto $2 x+y=z$. Consider the 2 -coloring of [1,3q+7] defined by coloring [3,3q+5] red and its complement blue. It is easy to check that the coloring avoids red solution to $2 x+q y=z$ and blue solution to $2 x+y=z$.
We shall now establish the upper bound, that is,

$$
\begin{equation*}
R_{2}(2 x+q y=z, 2 x+y=z) \leq 3 q+8 \tag{2.2}
\end{equation*}
$$

Let Δ be a 2 -coloring of $[1,3 q+8]$ using the colors redand blue. Without loss of generality, we assume, for contradiction, that there is no red solution to $2 x+q y=z$ and no blue solutionto $2 x+y=z$. We break our proof into two cases.
Case 1: $\Delta(1)=0$. It follows from $\Delta(1)=0$ that $\Delta(3)=1$ which yields $\Delta(3 q+6)=0$. It follows from $\Delta(1)=0$ and $\Delta(3 q+6)=0$ that $\Delta(3 q+8)=1$. The facts $\Delta(3)=1$ and $\Delta(3 q+8)=1$ imply that $\Delta(4)=0$. Since $(1,2$, 4) solves $2 x+y=z$, we see that $\Delta(2)=1$. It follows from $\Delta(3)=1$ and $\Delta(2)=1$ that $\Delta(3 q+4)=0$. Now, we have $\Delta(1)=\Delta(3 q+4)=\Delta(3 q+6)=0$ and $(1,3 q+4,3 q+6)$ is a blue solution to $2 x+y=z$. This is a contradiction.
Case 2: $\Delta(1)=1 . \Delta(1)=1$ implies that $\Delta(q+2)=0$ which yields $\Delta(3 q+6)=1$. It follows from $\Delta(3 q$ $+6)=1$ that $\Delta(3)=0$. Combining $\Delta(3)=0$ and $\Delta(q+2)=0$, we have $\Delta(q+8)=1$. The facts $\Delta(q+8)$ $=1$ and $\Delta(1)=1$ imply that $\Delta(4)=0$. It follows from $\Delta(4)=0$ and $\Delta(q+2)=0$ that $\Delta(q+10)=1$. Since $(5,1, q+10)$ solves $2 x+q y=z$, we see that $\Delta(5)=0$. Combining $\Delta(q+2)=0$ and $\Delta(5)=0$, we have that $\Delta(q+12)=1$. The facts $\Delta(q+12)=1$ and $\Delta(1)=1$ imply that $\Delta(6)=0$. It follows from $\Delta(6)$ $=0$ and $\Delta(q+2)=0$ that $\Delta(q+14)=1$. Since $(7,1, q+14)$ is a solution to $2 x+q y=z$, we see that $\Delta(7)=0$ which implies that $\Delta(q+16)=1$ or else $(7, q+2, q+16)$ is a blue solution to $2 x+y=z$. Now, $\Delta(1)=1$ and $\Delta(q+16)=1$, we see that $\Delta(8)=0$. It follows from $\Delta(q+2)=0$ and $\Delta(8)=0$ that $\Delta(q+18)=$ 1. Note that $q \geq 5$ implies that $3 q+8 \geq q+18$. Since $(9,1, q+18)$ solves $2 x+q y=z$, we see that $\Delta(9)=0$. Now, we have $\Delta(3)=\Delta(9)=0$ and $(3,3,9)$ is a blue solution to $2 x+y=z$, which is a contradiction.

3. Proof of Theorem 1.3.

Employing Theorem 1.1, we obtain the lower bound
$R_{2}(2 x+2 y=z, 2 x+2 q y=z) \geq 16 q+18$.
Now, we turn to establish the upper bound, that is,
$R_{2}(2 x+2 y=z, 2 x+2 q y=z) \leq 16 q+18$.
Let Δ be a 2 -coloring of $[1,16 q+18]$ using the colors red and blue. Without loss of generality, we assume, for contradiction, that there is no red solution to $2 x+2 q y=z$ and no blue solution to $2 x+2 y=z$. We also break our proof into two cases.

Case 1: $\Delta(1)=0 . \Delta(1)=0$ implies that $\Delta(4)=1$ which yields $\Delta(8 q+8)=0$. The facts $\Delta(1)=0$ and $\Delta(8 q+8)=0$ imply that $\Delta(16 q+18)=1$. Combining $\Delta(16 q+18)=1$ and $\Delta(4)=1$, we have $\Delta(4 q+9)=0$. The facts $\Delta(4 q+9)=0$ and $\Delta(1)=0$ imply that $\Delta(8 q+20)=1$. It follows from $\Delta(8 q+20)=1$ and $\Delta(4)=1$ that $\Delta(10)=0$. Combining $\Delta(8 q+8)=0$ and $\Delta(1)=0$, we obtain $\Delta(4 q+3)=1$. The facts $\Delta(4 q+3)=1$ and $\Delta(4)=1$ imply that $\Delta(16 q+6)=0$. It follows from $\Delta(16 q+6)=0$ and $\Delta(1)=0$ that $\Delta(8 q+2)=1$.
Subcase $1: \Delta(2)=0 . \Delta(2)=0$ implies that $\Delta(8)=1$ which yields $\Delta(16 q+16)=0$. Combining $\Delta(16 q+$ $16)=0$ and $\Delta(2)=0$, we see that $\Delta(8 q+6)=1$. The facts $\Delta(8 q+6)=1$ and $\Delta(4)=1$ imply that $\Delta(3)=0$. Now, we have $\Delta(2)=\Delta(3)=\Delta(10)$ and $(2,3,10)$ is a blue solution to $2 x+2 y=z$. This is a contradiction.
Subcase 2: $\Delta(2)=1 . \Delta(2)=1$ implies that $\Delta(4 q+4)=0$. It follows from $\Delta(4 q+4)=0$ and $\Delta(1)=0$ that $\Delta(2 q+1)=1$. Now, we have $\Delta(2)=\Delta(2 q+1)=\Delta(8 q+2)=1$ and $(2 q+1,2,8 q+2)$ is a red solution $2 x+2 q y=z$. This is a contradiction.
Case 2: $\Delta(1)=1 . \Delta(1)=1$ implies that $\Delta(2 q+2)=0$ which yields $\Delta(8 q+8)=1$. It follows from $\Delta(8 q+8)=1$ that $\Delta(4)=0$ which yields $\Delta(16)=1$. It follows from $\Delta(4)=0$ and $\Delta(2 q+2)=0$ that $\Delta(4 q+12)=1$.
Subcase 1: $\Delta(2)=1$. Combining $\Delta(2)=1$ and $\Delta(4 q+12)=1$, we see that $\Delta(6)=0$. The facts $\Delta(6)=$ 0 and $\Delta(2 q+2)=0$ imply that $\Delta(4 q+16)=1$. It follows from $\Delta(4 q+16)=1$ and $\Delta(2)=1$ that $\Delta(8)=0$. The fact $\Delta(2)=1$ implies that $\Delta(4 q+4)=0$. Combining $\Delta(4 q+4)=0$ and $\Delta(4)=0$, we see that $\Delta(8 q+16)=1$. The facts $\Delta(8 q+16)=1$ and $\Delta(2)=1$ imply that $\Delta(2 q+8)=0$. It follows from $\Delta(2 q+8)=0$ and $\Delta(8)=0$ that $\Delta(4 q+32)=1$. Note that $4 q+32<16 q+18$ since $q \geq 2$. Now, we have $\Delta(16)=\Delta(4 q+32)=\Delta(2)=1$ and $(16,2,4 q+32)$ is a red solution to $2 x+2 q y=z$. This is a contradiction.
Subcase $2: \Delta(2)=0$. It follows from $\Delta(2)=0$ and $\Delta(2 q+2)=0$ that $\Delta(4 q+8)=1$. Combining $\Delta(4 q+8)=1$ and $\Delta(1)=1$, we get $\Delta(q+4)=0$. The facts $\Delta(2)=0$ and $\Delta(q+4)=0$ imply that $\Delta(2 q+12)=1$. It follows from $\Delta(2 q+12)=1$ and $\Delta(1)=1$ that $\Delta(6)=0 . \quad \Delta(2)=0$ implies that $\Delta(8)=1$. Combining $\Delta(8)=1$ and $\Delta(1)=1$, we have $\Delta(2 q+16)=0$. Since $(q+2,6,2 q+16)$ solves $2 x+2 y=z$, we see that $\Delta(q+2)=1$. This implies that $\Delta(4 q+4)=0$ or else $(q+2,1,4 q+4)$ is a red solution to $2 x+2 q y=z$. It follows from $\Delta(4 q+4)=0$ and $\Delta(q+4)=0$ that $\Delta(10 q+16)=1$. Now, we have $\Delta(1)=\Delta(4 q+8)=$ $\Delta(10 q+16)=1$ and $(4 q+8,1,10 q+16)$ is a red solution to $2 x+2 q y=z$. This is a contradiction.

References

[1]. H. Harborth and S. Maasberg, Rado numbers for $a(x+y)=b z$, J. Combin. Theory Ser. A 80 (2) (1997) 356-363.
[2]. H. Harborth and S. Maasberg, All two-color Rado numbers for $a(x+y)=b z$, Discrete Math. 197/198 (1999) 397-407.
[3]. B. Hopkins and D. Schaal, On Rado numbers for $\sum_{i=1}^{m-1} a_{i} x_{i}=x_{m}$, Adv. Appl. Math. 35 (2005) 433-441.
[4]. B. Johnson and D. Schaal, Disjunctive Rado numbers, J. Combin. Theory Ser. A 112 (2005) 263276.
[5]. S. Jones and D. Schaal, A class of two-color Rado numbers, Discrete Math. 289 (2004) 63-69.
[6]. W. Kosek andD.Schaal,Radonumbersfortheequation $\sum_{i=1}^{m-1} x_{i}+c=x_{m}$ fornegative values of c, Adv. Appl. Math. 27 (2001) 805-815.
[7]. K. Myers, Rado and Rado-type numbers, High Honors Thesis, Colgate University, 2007.
[8]. K. Myers and A. Robertson, Two color off-diagonal Rado-type numbers, Electron. J. Combin. 13 (2007) R53.
[9]. K. Myers and A. Robertson, Some two color, four variable Rado numbers, Adv. Appl.Math. 41 (2008) 214-226.
[10]. R. Rado, Studien zur Kombinatorik, Math. Z. 36 (1933) 424-480.
[11]. R. Rado, Note on combinatorial analysis, Proc. London Math Soc. 48(1936)122-160.
[12]. A. Robertson, Difference Ramsey numbers and Issai numbers, Adv. Appl. Math. 25(2) (2000) 153-162.
[13]. A. Robertson and D. Schaal, Off-diagonal generalized Schur numbers, Adv. Appl. Math. 26 (2001) 252-257.
[14]. D. Saracino, The 2-color Rado number of $x_{1}+x_{2}+\cdots+x_{m-1}=a x_{m}$, Ars Combin. 113 (2014) 81-95.
[15]. I. Schur, ̈̈berdiekongruenz $x^{m}+y^{m} \equiv z^{m}(\bmod p)$, Jahresber.Deutsch. Math. Verein. 25 (1916) 114117.
[16]. O.X.M. Yao, A note on the two-color Rado numbers for $a(x-y)=b z$, Ars Combin. 113 (2014) 473-476.

