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Abstract Let 0, 1 be two equations, each with at least three variables and coefficients not all the same
sign. Define the 2-color off-diagonal Rado number R2(e0, 1) to be the smallest integer N such that for any
2-coloring of [1, N ], it must admit a monochromatic solution to g of the first color or a monochromatic
solution to €1 of the second color. Motivated by Myers’ open problem, we determine the exact numbers
R2(2x+qy =z, 2x+y = z) and R2(2x + 2qy = z, 2x + 2y = z) in this paper.
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1. Introduction and Main Results

Let [a,h] denote the set {X el |a <x< b}. A function A: [1, n] — [0, k —1] is called a k-coloring of

the set [1, n]. Assume that ¢ is a system of equations in m variables. We say that a solution x1, x2, . . .

, Xm to ¢ is monochromatic if and only if

A(X1) = A(Xx2) = ...=A(Xm). (1.1)
In 1916, Schur [15] proved that for every integer k >2, there exists a least integer n = S(K) such that
for every k-coloring of the set [1, n], there exists a monochromatic solution to x+y=z. The integer
S(k) is called Schur number. Rado [10, 11] generalized the work of Schur to arbitrary system of
linear equations. For a given equation &, the least integer n is called k-color Rado number if it exists
and for every coloring of the set[1,n] with k colors, there exists a monochromatic solution to ¢. If
such an integer n does not exist, we say that the k-color Rado number for the equation ¢ is infinite.
In recent years there has been considerable interest in finding the exact Rado numbers for particular
linear equations and in several other closely related problems, see for example
[1,2,3,4,5,6,9,12,13,14,16].

Let 0 and &1 be two equations. Define the 2-color off-diagonal Rado number R2 (¢0,£1) to be the least
integer N (if it exists) for which any 2-coloring of[1,N] must admit a monochromatic solution of color I to
ej for some 1€{0,1}. Note that if 0 = &1, then the2-color off-diagonal Rado number is nothing but the 2-
color Rado number.

Myers and Robertson [8] determined the exact 2-color off-diagonal Rado numbers of the form R2(x + qy =
Z, X + sy = z). In the same paper, they also established the lower bound of R2 (tx + sy = z, tx + qy = 2),
which can be stated as follows.

Theorem 1.1 Let g >s >t be positive integers. Then,

ged(t,q) .

Ra(tx +sy =z, tx+qy =z) 2t(t + q)(t + 5) + ged(t,s,q) |

(1.2)
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In his thesis [7], Myers provided an open problem: what are the precise off-diagonal Rado numbers of the
form Ro(tx + sy = z, tx + qy = z)? Motivated by this open problem, we shall establish the exact formulas for
Ro(2x +y =12, 2x+qy =z) and R2(2x + 2y = z, 2x + 2qy = z). Throughout this paper, we always let blue
and red be the two colors and denoted by 0 and 1, respectively. The main results can be stated as the
following two theorems which are proved in the next two sections.

Theorem 1.2 Let g >2 be an integer. We have

20, if q=2,
39 +38, if q=3.

Theorem 1.3 If g >2 is an integer, then
R2(2x+2y=z,2x+2qy=2z)=160+18. (1.4)

Ro(2x +y =1z, 2x+qy:z):{
(1.3)

2. Proof of Theorem 1.2.

It is easy to check that Theorem 1.2 holds for g = 2, 3, 4. Therefore, it suffices to consider

q> 5. We first show that

R2(2x + qy =z, 2x +y = z) >3 +8. (2.1)
The lower bound can be established by exhibiting a coloring that avoids red solution to
2x+qgy=zandbluesolutionto2x+y =z. Consider the 2-coloring of [1,3q+7] defined by coloring [3, 3g+5] red
and its complement blue. It is easy to check that the coloring avoids red solution to 2x + qy = z and blue
solutionto 2x +y = z.

We shall now establish the upper bound, that is,

Ro(2x +qy =z, 2x +y=12) < 3q +8. (2.2)
Let A be a 2-coloring of [1,39+8] using the colors redand blue. Without loss of generality, we
assume, for contradiction, that there is no red solution to 2x + qy = z and no blue solutionto2x+y=z.
We break our proof into two cases.

Case 1: A(1)=0. It follows from A(1)=0that A(3)=1 which yields A(3g+6)=0. It follows from A(1)=0
and A(3g+6)=0 that A(3g+8)=1. The facts A(3)=1 and A(3g + 8) = 1 imply that A(4) = 0. Since (1, 2,
4) solves 2x +y =z, we see that A(2) = 1. It follows from A(3) = 1 and A(2) = 1 that A(3q + 4) = 0.
Now, we have A(1)=A(3q+4)=A(3q+6)=0 and (1,3q+4,3g+6) is a blue solution to 2x+y=z. This is a
contradiction.

Case 2: A(1) =1. A(1) =1 implies that A(q + 2) = 0 which yields A(3q + 6) = 1. It follows from A(3q
+6) = 1 that A(3) = 0. Combining A(3) =0 and A(q + 2) = 0, we have A(q + 8) = 1. The facts A(q + 8)
=1 and A(1) = 1 imply that A(4) = 0. It follows from A(4) = 0 and A(q + 2) = 0 that A(q + 10) = 1.
Since (5, 1, g + 10) solves 2x + qy = z, we see that A(5) = 0. Combining A(q + 2) =0 and A(5) =0, we
have that A(q + 12) = 1. The facts A(q + 12) = 1 and A(1) = 1 imply that A(6) = 0. It follows from A(6)
=0 and A(q + 2) = 0 that A(q + 14) = 1. Since (7, 1, g + 14) is a solution to 2x + qy = z, we see that
A(7) = 0 which implies that A(q + 16) = 1 or else (7,q+2,q+16) is a blue solution to 2x+y=z. Now,
A(1)=1 and A(q+16)=1, we see that A(8) = 0. It follows from A(q+2) =0 and A(8) =0 that A(q+ 18) =
1. Note that g > 5 implies that 3q + 8 > q + 18. Since (9, 1, g + 18) solves 2x + qy = z, we see that A(9) = 0.
Now, we have A(3) = A(9) =0 and (3, 3, 9) is a blue solution to 2x + y = z, which is a contradiction.

3. Proof of Theorem 1.3.
Employing Theorem 1.1, we obtain the lower bound

R2(2x + 2y =z, 2x + 2qy = z) >16q +18. (3.1)
Now, we turn to establish the upper bound, that s,
R2(2x + 2y =z, 2x + 2qy = z) <l6q +18. 3.2)

Let A be a 2-coloring of [1, 16q + 18] using the colors red and blue. Without loss of generality, we
assume, for contradiction, that there is no red solution to 2x+2qy=z and no blue solution to 2x+2y=z.
We also break our proof into two cases.
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Case 1: A(1) = 0. A(1) = 0 implies that A(4) = 1 which yields A(8q + 8) = 0. The facts A(1)=0 and
A(8g+8)=0 imply that A(16g+18)=1. Combining A(16g+18)=1 and A(4) = 1, we have A(4q + 9) = 0.
The facts A(4q + 9) = 0 and A(1) = 0 imply that A(8g+20)=1. It follows from A(8g+20)=1 and
A(4)=1 that A(10)=0. Combining A(8q + 8) = 0 and A(1) = 0, we obtain A(4q + 3) = 1. The facts
A(4q + 3) =1 and A(4) = 1 imply that A(16q + 6) = 0. It follows from A(16q + 6) =0 and A(1) =0
that A(8q + 2) = 1.

Subcase 1: A(2) = 0. A(2) = 0 implies that A(8) = 1 which yields A(16q + 16) = 0. Combining A(16q +
16) = 0and A(2) = 0, we see that A(8q + 6) = 1. The facts A(8g+ 6) = 1 and A(4) = 1 imply that
A(3) = 0. Now, we have A(2) = A(3) = A(10) and (2,3,10) is a blue solution to 2x + 2y = z. This is
a contradiction.

Subcase 2: A(2)=1.A(2)=1 implies that A(4q+4)=0. It follows from A(4g+4)= 0 and A(1) = O that
A(2q + 1) = 1. Now, we have A(2) = A(2g + 1) = A(8g + 2) = 1 and (29+1,2,8q+2) is a red solution
2x+2qgy=z. This is a contradiction.

Case 2: A(1) = 1. A(1) = 1 implies that A(2q + 2) = 0 which yields A(8q + 8) = 1. It follows from
A(8qg + 8) = 1 that A(4) = 0 which yields A(16) = 1. It follows from A(4) = 0 and A(2q + 2) = 0 that
A(4q +12) = 1.

Subcase 1: A(2) = 1. Combining A(2) = 1 and A(4q +12) = 1, we see that A(6) = 0. The facts A(6) =
0 and A(2g + 2) = 0 imply that A(4q + 16) = 1. It follows from A(4g9+16)=1 and A(2)=1 that
A(8)=0. The fact A(2)=1 implies that A(4g+4)=0. Combining A(4q +4) = 0 and A(4) = 0, we
see that A(8q + 16) = 1. The facts A(8q + 16) = 1 and A(2) = 1 imply that A(2q + 8) = 0. It
follows from A(2q + 8) =0 and A(8) = 0 that A(4q + 32) = 1. Note that 49 + 32 <16q + 18
since g > 2. Now, we have A(16)=A(4q+32)=A(2)=1 and (16,2,4q+32) is a red solution to 2x+2qy=z.
This is a contradiction.

Subcase2:A(2)=0. It follows from A(2)=0 and A(2gq+2)=0 that A(49+8)=1. Combining A(4q + 8) = 1
and A(1) =1, we get A(q +4)=0. The facts A(2) =0 and A(q +4) = 0 imply that A(2q + 12) = 1.
It follows from A(2gq + 12) = 1 andA(1) = 1 that A(6) = 0. A(2) = 0 implies that A(8) = 1.
Combining A(8) = 1 and A(1)=1, we have A(2g+16)=0. Since (g+2,6,29+16) solves 2x+2y=z, we see
that A(g+2)=1. This implies that A(4q+4)=0 or else (q+2,1,4q+4) is a red solution to 2x + 2qy = z. It
follows from A(4q + 4) = 0 and A(q + 4) = 0 that A(10q + 16) = 1. Now, we have A(1) = A(4q + 8) =
A(10g +16) =1 and (4q + 8, 1, 10g + 16) is a red solution to 2x+2qy=z. This is a contradiction.
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