Journal of Scientific and Engineering Research, 2017, 4(6):199-207

Research Article

ISSN: 2394-2630 CODEN(USA): JSERBR

Assessment of Groundwater Quality around Isolo Dumpsite Lagos Southwestern Nigeria

V.O. Fagoyinbo, A. Adepitan, O. Ojelabi, M.O. Adeyem

Department of Geology, Crawford University, Igbesa, Ogun State, Nigeria

Abstract The groundwater of some areas around the waste dump at Isolo, Lagos, Southwestern Nigeria was assessed for its chemical characteristics.

15 water samples were collected for assessment from 11 wells and 4 boreholes. The samples were analyzed in ACME Analytical Laboratory, Vancouver, Canada using the inductively coupled plasma mass spectrometry (ICP-MS). The physical properties of the samples were determined in the field apart from that of TDS which was carried out in the laboratory.

The results showed that TDS for 10 samples are within normal range while that of 5 samples were above normal. 3 of the 5 samples with high TDS are open wells. The high TDS is a result of pollution. The remaining 2 samples might be from geogenicsouces or contamination through the coating of the inner layer of the pipes. Most of the cations and anions fall within the SON and WHO limit indicating that the water is usable. The SAR is high while salinity hazard classified 10 of the water samples as no hazard with 5 as slightly hazardous and ESP classified the water as slightly sodic. Piper trilinear, Schoeller, Stiff and Durov diagrams were employed to determine the chemical characters of the water samples. They all showed that the water is rich in Na and Cl. It fell in the saline facies (Na + K – Cl) group.

10 of the samples are fresh water while 5 are brackish water. With little treatment and reduction of the salt content, the water will be useful for all purposes.

Keywords Groundwater, Contamination, salinity hazard and brackish water

Introduction

Open dumping of solid waste remains the prevailing form of waste disposal in developing countries like Nigeria. Consideration is hardly given to its effect on human population in such areas. Contamination of water bodies has become an issue of serious environmental concern in recent times. Urban population has been on the increase due to factors like better employment opportunities, concentration of industries and economic activities associated with large population. Generation of waste will also increase accordingly. In spite of the increasing population and waste generation, municipal solid waste management has not received commensurate attention. Consequently, the populace dump their wastes haphazardly. At the best, they find a free place, where they collectively dump their wastes. By so doing, it gets accumulated with time. This is the situation in Isolo waste dump.

Water is an important need of men. Therefore, man must look for water by all means. The most common source of water is groundwater. It is a common source because it is widespread and relatively cheaper to access. In addition, it is assumed to be safe for consumption because it has been filtered through the various layers of soil that it has passed through. However, the innocent consumers are not aware that there are some chemical reactions that could take place between the chemicals in the soil and the groundwater.

Since waste products consist of all kinds of materials leaching through, rain water could affect the chemical attributes of the groundwater. The U.S Environmental Protection Agency declared that hazardous waste sites are one of the principal threats to the environment and living organisms [1]. The quality of groundwater is a function of physicochemical parameters which are influenced by geological and anthropogenic factors [2]. It is therefore necessary to determine the impact of Isolowaste dump on the groundwater within the immediate vicinity. This will create awareness on the effect the groundwater will have on the consumers.

Locations of the Study Area

The study area falls with in latitudes $6^{0}31^{\circ}$ to $6^{0}32^{\circ}$ and longitudes $3^{0}19^{\circ}$ to $3^{0}20^{\circ}$ with terrain about 24.4 m. It is located in Isolo, Lagos, Southwestern Nigeria. It is accessible through good major and minor roads. A major stream which has been channeled to become a large drainage way passes through the study area. The area is highly urbanised with only the immediate banks of the channel with light vegetation.

Figure 1: Topographic Map of Isolo, Lagos State (Adapted from Federal Survey Nigeria, 1964) **Geology and Hydrogeology of the study Area**

The geological map of Lagos was established using several boreholes drilled for various purposes. These include water supply, foundation construction and hydrocarbon exploration. The study area is underlain by coastal plain sands to the North and then Quaternary alluvial, littoral and lagoonal deposits to the South. The 2 geological units are aquifeous. The stratigraphic relationships of the borehole and their electric logs from the earliest wells (Afowo of Mobil) to most recent (Aje wells of Folawiyo) on the Western frontier with the Benin Republic eastwards to Okitipupa Ridge (IseGraben) were used to decipher the geology of the area at depth [3]. The relationship between the local geology and hydrologic characteristics is the demarcation of the four aquifers that fall within the State. These aquifers are associated with the coastal plain sands of varying thickness. The first aquifer is encountered near the surface and it extends to a depth of 80m. The second aquifer falls between a depth of 80m and 150m, the third rarely has a thickness beyond 25m while the fourth aquifer is deeper than 450m and it is associated with the Ilaro/Abeokuta formation.

Figure 2: Geological Map of the Study Area

Methodology

Fifteen water samples were collected from wells and boreholes. Four boreholes and eleven wells were sampled. Two samples were taken from each well into a 50 ml plastic bottle. The bottles were washed and a drop of HNO₃ was added into one sample from each well while the other was not acidified. The first set was acidified to prevent the metal ions from reacting with the container. The sterilized containers were properly covered and labeled. The GPS reading of the various sample points were taken and recorded immediately. The pH of the water samples and temperatures were respectively determined in the field with pH meter and thermometer. The taste and odor tests were carried out with the tongue and nose respectively The water samples were dispatched to ACME Analytical Laboratory, Vancouver Canada where the Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to analyze them for their chemical concentrations. The total dissolved solids (TDS) were determined classically by evaporation to dryness.

Results and Discussion

The results of physical and chemical analyses of the groundwater are presented in Tables 1 and 2. The results of the physical parameters are as shown below:

Name	Unit		WSA1	WSA2	WSA3	BSA4	WSA5	WSA6	WSA7	WSA8	WSA9	
Sample ID	· ·	• 1	VSA1	WSA2	WSA3	BSA4	WSA5	WSA6	WSA7	WSA8	WSA9	V
Date		Þ										t
Calcium	mg/kg	Þ	10	51.2	37.1	41.6	96.5	58.2	16.7	10.8	25.3	i T
Magnesium	mg/kg	Þ	3.1	7.6	11.9	11.3	12.6	9.2	6.3	3.9	3.1	T
Sodium	mg/kg	•	31.4	113	150	104	87.3	84.9	106	108	46.5	i T
Potassium	mg/kg	•	4.3	57.6	55.5	98.4	74	31.9	26.9	24.2	11.0	i آ
Bicarbonate	mg/kg	Þ	20.6	42.1	31.2	35.2	142.3	67.1	22.2	16.6	42.4	T
Sulfate	mg/kg	Þ	1.6	59.5	64.6	24.9	68.1	94.6	13.6	66.8	120	i l
Chloride	mg/kg	Þ	26.9	135	178	169	107	92.2	122	127	59.	
Dissolved Solids	mg/kg	Þ	243	627	710	64	467	518	441	390	397	Ē
Conductivity	µmho/cm	Þ	380	980	1110	100	730	810	690	610	620	J.
• pH		Þ	6.09	4.52	5.67	6.41	6.91	5.15	4.72	4.75	6.29	Ē
Fluoride	mg/kg	•	0.1									Т
Nitrate	mg/kg	•	17.7									Т
Bromine	mg/kg	Þ	0.08	0.21	0.29	0.76	0.24	0.11	0.22	0.24	0.18	J.
*												

Table 1: Results of the Physical and Chemical Analysis of the Well Samples

🕼 Untitled - RockWar	e Aq•QA										- 0 - X
ile Edit View Samples Analytes Graphs Help											
Name	Unit		WSA8	WSA9	WSA10	WSA11	BSA12	BSA13	WSA14	WSA15	
Sample ID		•	WSA8	WSA9	WSA10	WSA11	BSA12	BSA13	WSA14	WSA15	i+γ 🔄
▶ Date		,) Č
Calcium	mg/kg	•	10.8	25.3	40.3	26.9	2.4	12	0.8	5.8	
 Magnesium 	mg/kg	•	3.9	3.1	13.8	9.5	1	3.7	0.4	3.1	
 Sodium 	mg/kg	,	108	46.5	139	112	44	73.2	0.3	72.5	
▶Potassium	mg/kg	,	24.2	11.6	59.2	43.5	5.1	15.9	0.1	11.8	
 Bicarbonate 	mg/kg	•	16.6	42.4	67.2	36.9	7.2	17.3	6.9	9.6	
 Sulfate 	mg/kg	,	66.8	126	93.2	10	60	44	11	64	
Chloride	mg/kg	,	127	59.1	177	171.3	163.4	129.5	53.79	195.3	
 Dissolved Solids 	mg/kg	•	390	397	697	621	448	166	294	292	
Conductivity	µmho/cm	,	610	620	1090	970	700	260	460	440	
▶ pH		,	4.75	6.29	4.75	4.9	6.43	5.61	4.37	4.94	Ξ.
▶ Fluoride	mg/kg	,	•								
Nitrate	mg/kg	•		0.40	0.00	0.07	0.00	0.00	0.40	0	
Bromine	mg/kg	P	0.24	0.18	0.26	0.07	0.26	0.33	0.12	2	
the second se											
											+
			4						m		•
Data Sheet Data	a Analysis	Series	Plot Piper Diagram	1 Schoeller Diagra	m Durov Diagram	n Stiff Diagram	Cross Plot Radial	Plot Ion Balance	Diagram New Gra	oh	

Table 2: Derived Fluid Properties of the Groundwater

File Edit View	Samples Ana	ytes Graphs	Help		
🛸 🖬 🖻 1	8 5 4	।		" ↓ ×	
+				Sample WSA15	+
▼ Fluid Properties					_ چ
Water Type Dissolved Solids Density Conductivity Hardness (as CaCO ₃ Total	Na-Cl 292 mg/kg 0.99725 g/cm 440 µmho/cm 3) 27.248 mg/kg	291.3 3 27.11	2 mg/L 73 mg/L	Measured Calculated Measured Calculated	
Carbonate Non-Carbonate	15.747 11.501	15.70	04 69		
▼ Internal Consister	ncy				ا ا
Primary Tests Anion-Cation Balan Anions Cations % Difference Measured TDS = Ca Measured	ce ilculated TDS	6.83 4 26.105 292.000		Not within ± 2%	
Calculated Ratio Measured EC = Calc	culated EC	362.100 0.806		Not within range 1.0 to 1.2	
Calculated Ratio Secondary Tests	- 6	625.838 0.703		Not within range 0.9 to 1.1	
Anions Cations Calculated TDS to E Measured TDS to E Organic Mass Balar	C ratio C ratio <u>nce</u>	1.551886 0.909375 0.823 0.664		Not within preferred range (0.9-1.1) Within preferred range (0.9-1.1) Not within preferred range (0.5-0.7) OK	
DOC ≥ Sum of Orga DOC unavailable	nics				
▼ Carbonate Equilib	nia 40				<u>_</u>
Speciation at DH 4.9	40			m	
Data Sheet Da	ita Analysis	Series Plot	New Graph		
Pendu					

pН

W Untitled - RockWare Ag+OA

The pH levels of the wells fall within 4.37 to 6.91. The permissible range of pH is 6.5 to 9.5. When it is below 6.5, the water becomes acidic and when above 8.5, the water is said to be alkaline. The two adverse conditions are not good for human consumption. Only one of the wells (well 5) falls within the appropriate range. The other wells contain acidic water which is not good for human consumption. However, it may be treated to become potable.

Electrical Conductivity

The EC levels of the wells fall within 260 and 1110. The SON standard for EC is a maximum of 1,500 μ s/m. All the well water fall below the maximum permissible level hence their electrical conductivity is appropriate. However, wells 3 and 10 are above the WHO limit but within the SON limit.

Total Dissolved Solids

The TDS values range between 64 and 710 while the SON standard for TDS is that it should be below 1,500 mg/l. All the well samples are within this range. However, wells 2, 3, 10 and 11 are relatively higher than

Journal of Scientific and Engineering Research

. 0 %

others. They are located close to one another and very close to the river. The higher TDS for 2, 3 and 10 is because the well are open and are therefore susceptible to pollution. Well 10 is a borehole. This emphasizes the importance of ensuring wells are closed. Its high TDS level may be from inner corrosion of the pipes. From the TDS values, wells 1,4,5,7,8,12,13,14 and 15 could be classified as fresh water while wells 2,3,6,10 and 11 could be classified as Brackish water.

Figure 3: Trilinear Piper Diagram Showing Chemical Characters of the Well Samples

From the Diamond Plot, the water in the study area can be classified as sodium chloride water. This is typical of marine and deep ancient ground water. The study area is very close to the lagoon, therefore, the effect of the lagoon has impacted the salty nature on the water. The dumpsite may have its own contributional influence too. Schoeller Diagram

Journal of Scientific and Engineering Research

Schoeller Diagram

From the Schoeller diagram, Na+ K and Cl have the highest values indicating high salt content. The water is therefore saline. This is followed by Ca+ Mg and SO₄ while CO₃ + HCO₃ have the lowest values.

Stiff Diagram

From the Stiff diagram, all the wells, except well 9, have Na + K and Cl to be much higher than other ions. Well 9 has SO_4^{2-} to be highest, followed by Na + K and Cl, the far distance from the dumpsite may be responsible for the high SO_4^{2-} content.

Stiff Diagram

Figure 5: Stiff Diagrams of 5 of the Sampled Waters
Durov Diagram

Figure 6: Durov Diagram Showing the Parameters of the Groundwater Samples

From the Durov diagram in Fig 6, all the TDS values fall within acceptable limit and the pH values reflected acidic water since they fall mostly below 6.5. The cations and anions showed high concentration of Na + K and Cl, respectively. This is in agreement with the Piper, Stiff and Schoeller diagrams which classified the waters as saline.

Journal of Scientific and Engineering Research

Table 3: Derived Water Parameters

(Untitled - RockWare Aq•C	QA				
File Edit View Samples	Analytes Graphs	Help			
🗃 🖬 🖻 🛎	∋ ⊘ Q ⊂	⊕			
←		Sample	W\$A15	→	
▼ Carbonate Equilibria				e	-
Speciation at pH 4.940					
CO3	28.86×10-9 mmolal				
HCO ₃	0.005928				1
CO ₂	0.1515				1
Total	0.1574 from measure	ed HCO3			11
Total Carbonate from Titrati	ion Alkalinity				11
No Measurement for Alka	alinity				
Titration Alkalinity from To	stal Carbonate				
Minute Science	0.2900 mg/kg CaCO	3			
Calcite	-6.015	Undersaturated			
Aragonite	-6.18	Undersaturated			-
Partial Pressure of CO2					П
	0.004127 atm				
 Inigation Waters 				e	
Salinity Hazard	Medium				
Sodium Adsorption Ratio	6.04				
Exchangeable Sodium Ratio	5.791				
Magnesium Hazard	40.8 0.0 mon/l				
Ceothermometry	0.0 meg/L			2	
Contracting (¥	
Suica Geothermometer	N/A				
Ouartz (max. steam loss)	N/A				
Chalcedony	N/A				
α-Cristobalite	N/A				
β-Cristobalite	N/A				
Amorphous Silica	N/A				
Na-K-Ca Geothermometer	202.03*C				
Na-K-Ca-Mg Geothermomet	er > 350°C				
Mg-Li Geothermometer	N/A				-
•			W	۱.	
Data Sheet Data Analy	/sis Series Plot	New Graph			-
Open an existing AgeOA Data	File				-

Sodium Absorption Ratio

The SAR for the water in the study area is 6.04. This is an indication of high salt content. The SAR should not be more than 12 for water for irrigation. The SAR value is 6.04 which is less than 12 hence the water is adequate for irrigation. However, for consumption, efforts should be made to reduce the salt content.

Salinity Hazard

From the TDS values, 10 of the wells with TDS values below 500mg/l fall within NO HAZARD zone while 5 wells whose value are above 500mg/l fall within SLIGHTLY HAZARDOUS zone. The high values for 2, 3 and 10 is because of the fact that the wells are open. The other 2 wells may be caused by geogenic factors or contamination from pipes.

Exchangeable Sodium Percentage

The exchangeable sodium percentage is 5.791 which can be approximated to 6. When the percentage is 6 and above, it is regarded as SODIC. The water in the study area could be regarded as SODIC.

Water Quality and Usability

Water quality is derived from the chemical and physical characteristics of the water. Biological characteristics also play its own part on the quality. The physical parameters of the groundwater in the study area indicate that the water has high usability after treatment. However, the pH of most of the wells is low indicating high acidity. Considering the environment, which is not too far from the lagoon, the acidity may be as a result of the dump site. The TDS values classified 10 of the wells as fresh water while 5 of the wells are brackish water. The SAR indicated that the water is good for irrigation and can easily be treated for drinking. The 10 wells that are fresh water have no hazard implication while the remaining 5 are slightly hazardous. The exchangeable sodium percentage indicated that the groundwater of the study area is very close to sodic.

From the Piper diagram, the water facies is sodium chloride water which is Na-K-Cl facies. This falls in line with that of Schoeller and Stiff diagram which indicated that Na + K and Cl are most abundant in the water. The usability of the groundwater is therefore very high but if it will be consumed, it must be treated to make it potable.

Conclusion

An assessment of the quality of groundwater around Isolo Waste Dump was carried out. The physical characteristics showed that the water is good for use after some treatment. The water is acidic, while the electrical conductivity falls within SON limit and the TDS classified 10 of the water samples as fresh while 5 are brackish water. The Piper trilinear diagram classified the water as Na-K-Cl facies. This is supported by

Schoeller and Stiff diagrams which indicated that the water is rich in Na and Cl. The Durov diagram fits in with Piper, Schoeller and Stiff diagrams results. The sodium absorption ratio indicates that the water is good for irrigation since its value of 6.04 is less than 12 which is the upper limit. From the TDS, the salinity hazard for 10 wells described them as 'no hazard' while 5 of the samples described them as 'slightly hazardous'. The exchangeable sodium percentage is slightly sodic. However, there is need to treat the water for it to be potable.

References

- [1]. Yang, R.S.H., and E. R. Rauckman (1987). Toxicological studies of chemical mixture of environmental concern at the national toxicology program: health effects of ground water contaminants. Toxicology 47:15–34.
- [2]. Majolagbe, A.O., Kasali, A.A., and Ghaniyu, L.O (2011). Quality assessment of groundwater in the vicinity of dumpsites in Ifo and Lagos, Southwestern Nigeria. Advances in Applied Science Research, 2(1):89-29.
- [3]. Olatunji, A.S, 2006.Geochemical evaluation of the Lagos Lagoon sediments. Unpub.Ph.D Thesis. Dept of Geology, University of Ibadan. 162p.