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Abstract By the principle of using sufficiently the property of circulant matrix and based on the technique of 

matrix iterative method, we set up a new circulant and block-diagonal splitting method for solving the Toeplitz 

systems. Moreover, we present a successive overrelaxation acceleration scheme for the proposed splitting 

iteration. Theoretical analysis shows that if given reasonable restrictions for the parameter of the Toeplitz 

matrix, the new splitting method is convergent. 
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1. Introduction 

Considering the Toeplitz system  

 ,= bAx  (1) 

 where 
nn
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 i.e., the elements of A  are constant along its diagonals. The algorithms for solving the Toeplitz systems are 

called Toeplitz solvers. 

Toeplitz systems arise in a variety of applications in mathematics, scientific computing and engineering, for 

instance, image restoration problems in image processing, numerical differential equations and integral 

equations, time series and control theory, etc. These applications have motivated both mathematics and 

engineering to develop sufficient methods for solving Toeplitz systems. 

The properties of Toeplitz matrices and the numerical methods for solving Toeplitz systems have been 

investigated by many authors (see [5, 7, 8, 9, 10, 12, 13]). Some current developments and applications in using 

iterative methods for solving block Toplitz systems are summarized by Jin in [11]. Also, some preconditioners 

for Toeplitz systems are proposed by some authors (cf. [2, 3, 4, 10]). 

In order to solve the Toeplitz system  (1) using iterative methods, in [12], the matrix A  possesses a circulant 

and skew-circulant splitting:  

 SCA
~~

=   

 with  
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 Here, C
~

 is a circulant matrix and S
~

 is a skew-circulant matrix. And he also gave a CSCS iterative method. 

Theoretical analysis has shown that the convergence of the iterative method depends on the circulant and skew-

circulant matrices. 

In [11], another splitting method of Toeplitz system  (1) has been given by  
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 Here, B
~

 is a circulant matrix and D
~

 is a block skew-diagonal matrix. Thus the matrix D
~

 can be written as 

follows.  

 ,
0

0
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~


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
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



D

D
D  

 where 
D  is an 

22

nn
  strictly lower Toeplitz matrix and 

D  is an 
22

nn
  strictly upper Toeplitz matrix. 

In [8], the normal/skew-Hermitian splitting method has been considered for circulant-plus-diagonal systems. 

While in [1], Bai et. al gave an Hermitian/skew-Hermitian splitting for any non-Hermitian positive definite 

systems and they also proposed the HSS iterative method. Such iterative method converges unconditionally to 

the exact solution of the Toeplitz systems  (1) with the bound on convergence speed about the same as that of 

the conjugate gradient method when applied to the Hermitian part of the coefficient matrix A . Moreover, the 

upper bound of the contraction factor is dependent only on the spectrum of the Hermitian part of A , and it is 

independent on the spectrum of the skew-Hermitian part of A . 

In this paper, we investigate the iterative methods for solving Toeplitz system  (1) . By the principle of using 

sufficiently the property of circulant matrix and based on the technique of matrix splittings, we set up a new 

circulant and block-diagonal splitting method for solving the Toeplitz systems. Theoretical analysis shows that 

if given reasonable restrictions for the parameter of the Toeplitz matrix, the new iterative method derived by the 

matrix splitting is convergent. Numerical results show that the new iterative method converges faster than the 

CSCS iterative method given in [12]. 

The arrangement of this paper is as follows. In Section 2, we introduce a new circulant and block-diagonal 

splitting of Toeplitz matrices. Based on this splitting the iterative method for solving Toeplitz systems is 

derived. In Section 3, we discuss the convergence condition and the determination of the optimal parameters. In 

Section 4, the corresponding SOR iterative method is defined. In Section 5, two simple numerical experiments 

are given. 

2. A new circulant and block-diagonal splitting method 

In this section, we propose a new circulant and block-diagonal splitting method for Toeplitz matrix. 

When A  is an even order Toeplitz matrix, then mn 2=  for some 1>m , and the matrix A  can be splitted to 

a 22  block matrix  
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 where D , B  and C  are all mm  Toeplitz matrices defined by  
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So we can transform A  to  
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 It can be splitted to a circulant matrix and a block diagonal matrix as  
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 where L  is an 
22

nn
  lower-triangular Toeplitz matrix and U  is an 

22

nn
  upper-triangular Toeplitz matrix. 

The spectrum of N  can be easily obtained. Typically we can let  
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While, when A  is an odd order Toeplitz matrix, then 12= mn  for some 1>m . We can also split the 

matrix A  to  
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 where D , B  and C  are all mm  Toeplitz matrices like the even order case. So we can transform A  to  
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 It can be splid to NM =Â , where  
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 Here L  is a mm  lower-triangular Toeplitz matrix and U  is a 1)(1)(  mm  upper-triangular 

Toeplitz matrix. The spectrum of N  can be easily got. 

Now, we have proved the matrix Â  is transformed from the Toeplitz matrix A , i.e.,  
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 it can be seen as an preconditioner of A , and the Toeplitz system can be transformed to  

 .= PbPAx  

 We just take A  as Â. Based on the splitting above, we can split Toeplitz matrix A  to the new form  
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With the splitting, we can define the circulant/block-diagonal splitting method, as presented in the following: 
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Evidently, the two-half step of the iteration alternates between the circulant matrix M  and the block diagonal 

matrix N , analogously to the CSCS iterative method proposed by Ng in [12]. The role of M  and N  can be 

interchanged. Since circulant matrix can be diagonalized by the discrete Fourier matrix F  and lower (upper) 

triangular matrix can be diagonalized easily, i.e.,  
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3. Convergence analysis 

Now we study the convergence of the iterative method  (1) . 

We first give an lemma for circulant matrix. It has been proved in [6]. 

Lemma 3.1  If 
nnCM   is a circulant, then it is diagonalized by matrix F . More precisely,  
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Using this Lemma, we can get some properties in special situations. 

 

Lemma 3.2 Let 
nnCM   be a circulant. Then M  is Hermitian if and only if its eigenvalues are 

real, and M  is skew-Hermitian if and only if its eigenvalues are pure imaginary numbers.  

 

 

Lemma 3.3 Let 
nnCM   be a circulant. M  is Hermitian positive definite if and only if its 

eigenvalues are positive.  
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For the convergence property of the iterative method  (1) , we give a general expressional mode for the 

two-step iterative method. The following lemma has been proved in [14]. 
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 Now, using the lemmas above, we give the convergence of our new iterative method. 
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nnCA  , let NMA =  be the circulant/block-diagonal splitting. Then the 

iteration matrix )(G  is  

 )())(()(=)( 11 NIMIMINIG     

 and its spectrum radius ))((  G  is bounded by  

 ,
||

||
max

||

||
max)(

1,2=
j

j

j
j

j

Mj 








 











 

 where  
 )

2
(

1 = na ,  
2

2 = na . 

If we make   such that 0>j , 0>j , then it holds  

 0,>1,<)())((  G  

 i.e., the iterative method is convergent.  

 

  Proof. By Lemma 3.4 the iteration matrix is  

 ).())(()(=)( 11 NIMIMINIG     

 By the similarity invariance of the matrix spectrum, we have  

 ))())(()((=))(( 11 NIMIMINIG     

 )))(())(((= 11   NINIMIMI   

 2

11 ))(())(( PP   NINIMIMI   

 .))(())(( 2

1

2

1 PPPP   NINIMIMI   

 Since M  is a circulant matrix which can diagonalized by Fourier matrix as been shown in Lemma 3.1, and the 

eigenvalue of N  are 
 )

2
(
na  and 

2

na . Then it follows that  
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||
max

||

||
max))((

j

j

Njj

j

Mj

G









 











 

 Hence we get  

 
||

||
max

|)(|

|)(|
max=)(
= j

j

Nj

''

j

'

j

''

j

'

j

''
j

i'
jj

i

i










 










 

 ,
||

||
max

)()(

)()(
max=

22

22

= j

j

Nj
''

j

'

j

''

j

'

j

''
j

i'
jj









 










 

 where i  denote the imaginary unit and  

 ,= 1

1
2

2
0

1
2

1

2

2)
2

(1)
2

(










 n

n

nn

nnj aaaaa    

 where n

i

e



2

= . Since   is positive, if the real part of j  and j  are positive, it is easy to see that )(  

is strictly less than 1 and therefore 1<))((  G , the iterative method is convergent. 

Thus the proof is completed.  

 The theorem indicates that the iterative method is always convergent when the eigenvalues of M  

have positive real part, i.e., M  is Hermitian positive definite. Also it is not easy to determine the value of   in 

order to minimize the spectral radius of the iteration matrix. Now we concentrate on the case that M  is not 

Hermitian. 

 

Remark 3.6 If maxminmaxmin  ,,,  define as follows:  

 },,,{max=},,,{min= 21
1,0,1,=

21
1,0,1,=

'''

j
nj

max

'''

j
nj

min 
 

 

 },,,{max=},,,{min= 21
1,0,1,=

21
1,0,1,=

''''''

j
nj

max

''''''

j
nj

min 
 

 

 then )(  can be estimated by  

 ].,[],[=,
)()(

)()(
max 22

22

maxminmaxmin
i

ii 













 

  

 

The optimal parameter 
*  is chosen such that the above estimate can be minimized. This fact is 

precisely stated as the following theorem. 

 

Theorem 3.7 The minimizer of  

 ],[],[=,
)()(

)()(
max 22

22

maxminmaxmin

'''

'''

'''

''i'
ii 














 

 over all positive   is attained at  

 











maxminmaxmaxmin

maxminmaxmaxmaxmin

for

for






22

2

*

)()(

<)(
=  

 and the corresponding minimum value is equal to  
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




















.
)()(

)()(

<
)(2

)(2

=)(

22

22

2

2

maxminmax

minmaxmin

minmaxmin

maxminmax

maxmaxminmaxmin

maxmaxminmaxmin

for

for











  

  

 

The proof of this theorem can be found in [1]. 

4. SOR acceleration 

In this section, we first introduce a new block system. It can be shown that the block system is equivalent to  

 .=)( bxNM   

Next, the SOR iterative method for solving the block system is introduced. Like in [14], we then 

analyze the eigenvalue and convergence rate between Jacobi and SOR iterative methods. 

 

Theorem 4.8  Assume that the spectral radius of )(G  is smaller than 1. 

If 
*x  is the exact solution of  (1) , then the vector 












*

*

x

x
 satisfies  

 .=
)(

)(












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
















b

b

y

x

NIMI

NIMI




 (1) 

 

Conversely, if 
















*

*

y

x

 satisfies  (1) , then 
** = yx , and 

*x  is the solution of  (1) .  

 

  Proof. It is sufficient to show that the coefficient matrix in  (1) is nonsingular. Indeed, it is 

nonsingular as  

 












NIMI

NIMI





)(

)(
 

 ,
)(0

)(

0

0

))((

0
=

1 















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












  



 GI

NIMI

NI

I

IMIMI

I
 

 where )(G , NI   and MI   are nonsingular and 1<))((  G  by the condition given.   

 In order to solve the newly transformed system, we can try to consider the block Jacobi iteration with 

splitting  

 












NIMI

NIMI





)(

)(
 

 .
0)(

)(0

0

0
= 


























MI

NI

NI

MI








 

 As a result, the iterative method is defined as follows.  

 


























1

1

0

0
k

k

y

x

NI

MI




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 or  
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















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
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By Theorem 4.8 and equation  (1) , the block Guass-Seidel and SOR iterative methods can be 

introduced as an attempt to improve the convergence of the basic circulant/block-diagonal splitting of Toeplitz 

systems, that is,  
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Denote that the iteration matrices of the block Jacobi and SOR iterative methods for parameter   are 

)(J  and )(L , respectively. It has been proved in [14] that if   is a non-zero eigenvalue of )(J  and 

  satisfies the relation  

 ,=1)( 222    (2) 

 then   is a non-zero eigenvalue of )(L . On the other hand, if   satisfies equation  (2) and   is a non-

zero eigenvalue of )(L , then   is an eigenvalue of )(J . Also 1<))((=))((  GJ . Therefor if 

the all eigenvalues of )(J  are real, we have the following result. 

 

Theorem 4.9  The SOR iterative method is convergent iff 2<<0   provided that the all eigenvalues 

of )(J  are real.  

 

Now we would go to the case that the block Jacobi iterative matrix has complex eigenvalues. From 

equation  (2) we can obtain  

 .
11

=
2

1
2

1













 








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Assuming that )sincos(=2

1

 i  and  i= , where 2

1

  and   are expressed in polar 

form and standard form, respectively, we get  

 .)sincos(
1

)sincos(
1

= 










 







 iii  

 Then, by comparing the real parts and the imaginary parts it derives  

 .sin
11

=,cos
11
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
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
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



 





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

 
  

 Therefore, for |1|2   , the point ),(   lies on the ellipse E :  
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Denote that |)
1

(
1

=|








a  and |)

1
(

1
=|









b . Then  

 1.=
2

2

2

2

ba


  

 If |1|2   , then when   increases, both a  and b  increase and therefore E  expands. On the other 

hand, if |1<|2   and when   increases, E  shrinks. Therefor for |1|2   , there is a one-to-one 

correspondence between the circle  |=:| 2

1

C  and E . Hence in order to prove the convergence or to find 

the optimal convergence rate, we can just work on   (the eigenvalues of the block Jacobi matrix) instead of the 

iteration matrix of the SOR iterative method. 

Then we have the following theorem. 

 

Theorem 4.10  The SOR iterative method is convergent if for each  i=  of the block Jacobi 

iteration matrix J , the point ),(   lies on or inside the ellipse 1=
2

2
2

D


   for some 0>D  and 

D1

2
<<0  .  

 

The proof of Theorems 4.9 and 4.10 can be found in [14]. 

5. Numerical examples 

In this section, we test the convergence rate of the circulant/block-triangle splitting and the SOR iterative 

method for the Toeplitz system. 

 

Example 5.11  An nn  Toeplitz matrix ][ fAn  is generated by a function f , i.e., the thkj ),(  

entry of the Toeplitz matrix is given by kja   where  

 .21,0,=,)(
2

1
= 

 kdefa ik

k 






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 The function f  is called the generating function of the Toeplitz matrix. Two kind of generating functions are 

tested. They are 

(i) 
pp

j jija   |)|(1|)|(1= , 2,1,0,= j  

or 

(ii) 
p

j ja  )(1= , 0j , and 
p

j ja  )(1= , 0<j .  

 

The parameter 1,1.1,0.9=p , use the iterative method above, we can solve the Toeplitz system. The 

number of iteration time is as follows. 

All tests are started from the zero vector, performed in MATLAB, and terminated when the current 

iterate satisfies 
6

2

(0)

2

)( 10<||||/|||| rr k
, where 

)(kr  is the residual of the k th iteration. 

The results will be listed in the tables. Where GF denotes generating function, IT1 and IT2 denote 

respectively the CSCS iterative method and SOR iterative method. 

  

  Table 1: The CSCS iterative method and SOR iterative method for the first GF  

  1=p    1.1=p    0.9=p   

n    1IT    2IT    1IT    2IT    1IT    2IT  

  15   8   15   8   16   8  

  17   14   16   12   17   12  

  18   15   17   13   19   12  

  18   14   17   13   20   13  

  19   14   17   15   20   13  

  21   16   17   15   22   15  

 

  Table 2: The CSCS iterative method and SOR iterative method for the second GF 

  1=p    1.1=p    0.9=p   

n    1IT    2IT    1IT    2IT    1IT    2IT  

  13   9   11   7   15   6  

  14   10   13   9   17   9  

  16   11   13   10   17   10  

  17   12   14   11   20   11  

  17   12   14   11   23   14  

  17   13   14   12   23   16  

 

 Example 5.12  The nn  Toeplitz matrix ][ fAn  is generated by a function f , where the thkj ),(  entry of 

the Toeplitz matrix is given by ja  defined by 

(i) 
1

1
=

j
a j , 

1

1
=




j
a j , 2,1,0,= j ; 

(ii) 1= ja j , 1=  jna j , 2,1,0,= j  

or 

(iii) 1)100(= ja j , 1=  jna j , 2,1,0,= j .  

 

We compute the Toeplitz equations by the CSCS iterative method, circulant/block-diagonal splitting 

and SOR iterative method. 
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The number of iteration time is in Table 3, where IT1, IT2 and IT3 denote respectively the CSCS 

method, circulant/block-diagonal splitting and SOR iterative method. All tests are started from the zero vector, 

performed in MATLAB, and terminated when the current iterative method satisfies 
6

2

(0)

2

)( 10<||||/|||| rr k
. 

  

  Table 3: The CSCS, circulant/block-diagonal splitting and SOR iterative method 

  First GF   Second GF   Third GF  

n    1IT    2IT    3IT    1IT    2IT    3IT    1IT    2IT    3IT  

  6   6   5   9   8   8   11   9   7  

  7   6   6   11   10   10   10   10   8  

  8   9   7   14   12   11   12   9   8  

  9   8   7   13   12   11   12   11   9  

  11   9   8   15   13   12   13   11   9  

  12   11   10   16   14   13   13   11   10  

  13   11   10   15   14   13   13   11   10  

  13   12   10   17   14   13   14   11   10  

  12   11   10   16   15   13   14   13   10  

  13   11   10   18   16   14   14   12   10  
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