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Introduction 

In this paper, we are concerned with certain inequalities involving heat kernels on arbitrary metric measure 

spaces. The motivation comes from the following three results. 

    (i). Let M be a Riemannian manifold and 𝑝𝑡 𝑥, 𝑦  be the heat kernel on M associated with the Laplace-

Beltrami operator ∆. Let   𝑋𝑡 𝑡≥0  be the diffusion process generated by ∆. For any open set Ω, denote by  

𝜓Ω 𝑡, 𝑥  the probability that  𝑋𝑡  exits from Ω before the time t, provided  𝑋0 = 𝑥. It was proved in [1] that, for 

any two disjoint open subsets U and V of M and for all   𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑉,   𝑡, 𝑠 > 0, 

                         𝑝𝑡+𝑠 𝑥, 𝑦 ≤ 𝜓𝑈 𝑡, 𝑥  sup𝑠≤𝑡 ′≤𝑡+𝑠
𝑢∈𝜕𝑈

 𝑝𝑡 ′ 𝑢, 𝑦 + 𝜓𝑉 𝑠, 𝑦  sup𝑡≤𝑡 ′≤𝑡+𝑠
𝑣∈𝜕𝑉

 𝑝𝑡 ′  𝑣, 𝑥                                         

(1)                                  

( see Fig. 1). Similarly, if U ⊂ V then, for all  𝑥 ∈ 𝑈 and  𝑦 ∈ 𝑉, 

                       𝑝𝑡+𝑠 𝑥, 𝑦 ≤ 𝑝𝑡+𝑠
𝑉  𝑥, 𝑦 + 𝜓𝑈 𝑡, 𝑥  sup𝑠≤𝑡 ′≤𝑡+𝑠

𝑢∈𝜕𝑈

 𝑝𝑡 ′ 𝑢, 𝑦 + 𝜓𝑉 𝑠, 𝑦  sup𝑡≤𝑡 ′≤𝑡+𝑠
𝑣∈𝜕𝑉

 𝑝𝑡 ′ 𝑣, 𝑥  ,                   

(2) 

where  𝑝𝑡
𝑉 𝑥, 𝑦  is the heat kernel in V with the Dirichlet boundary condition in ∂V  (see Fig. 2).  The estimates 

(1) and (2) were used in [1] to obtain heat kernel bounds on manifolds with ends. 

     (ii). Let now  𝑋𝑡 𝑡≥0 be a diffusion process on a metric measure space (𝑀, 𝑑, 𝜇), and assume that   𝑋𝑡  

possesses a continuous transition density 𝑝𝑡 𝑥, 𝑦  that will be called the heat kernel. It was proved in [2] that, 

for any open set V ⊂ M and for all  𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉, 𝑡, 𝑠 > 0, 

                        𝑝2𝑡 𝑥, 𝑥 ≤ 𝑝2𝑡
𝑉  𝑥, 𝑥 + 2𝜓𝑉 𝑡, 𝑥 sup𝑣∈𝑉𝑝𝑡 𝑣, 𝑣 .                                                                                         

(3) 

 

 
Figure 1: Any sample path, connecting 𝑥 and 𝑦, either exits from the set U before time t when starting at 𝑥, or 

exits from the set V before time s when starting at 𝑦. 
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Figure 2: Any sample path, connecting  𝑥  and 𝑦, either stays in V, or exits from the set U before time 𝑡 when 

starting at  𝑥, or exits from the set V before time s when starting at 𝑦. 

   In the setting of manifolds, one sees that (3) is a particular case of (2) where U = V and  𝑥 = 𝑦 since 

sup𝑡≤𝑡 ′≤2𝑡
𝑡∈𝜕𝑉

 𝑝𝑡 ′ 𝑣, 𝑣 ≤ sup𝑣∈𝑉𝑝𝑡 𝑣, 𝑣 . 

Kigami used (3) in [2] to develop a technique for obtaining an upper bound of 𝑝𝑡 𝑥, 𝑥 , given a certain estimate 

of the Dirichlet heat kernel 𝑝𝑡
𝑉 𝑥, 𝑥 .He then applied this technique to obtain heat kernel estimates on post-

critically finite self-similar fractals. 

    iii. In the previous setting, but without the continuity of the heat kernel, the authors proved in [3] the 

following inequality: 

esup𝑦∈𝑉𝑝𝑡+𝑠 𝑥, 𝑦 ≤ esup𝑦∈𝑉𝑝𝑡
𝑉 𝑥, 𝑦 + 𝜓𝑉 𝑡, 𝑥 esup𝑦,𝑧∈𝑉𝑝𝑠 𝑦, 𝑧      4  

for all 𝑡, 𝑠 > 0 and almost all 𝑥 ∈ 𝑉, where esup stands for the essential supremum. 

  We first recall some terminology from the theory of Dirichlet form [4], and prove some further properties of 

Dirichlet forms, which are of independent interest for their own right. 

   Let   𝑀, 𝑑, 𝜇  be a metric measure space, that is, the couple (𝑀, 𝑑) is a locally compact separable metric space 

and 𝜇 is a Radon measure on M with a full support, that is,  𝜇 Ω > 0 for any non-empty open subset Ω of M. 

Let ( ℰ, ℱ ) be a Dirichlet form in  𝐿2 ∶= 𝐿2 𝑀, 𝜇 , that is,  is a dense subspace of 𝐿2 and   ℰ 𝑓, 𝑔  is a bilinear, 

symmetric, non-negative definite, closed, and Markovian functional on  ℱ × ℱ . The closeness of ( ℰ, ℱ) means 

that  is a Hilbert space with the norm    𝑓 2
2 + ℰ 𝑓  

1 2 
, where   ∙ 2 is the norm of 𝐿2 𝑀, 𝜇  and   ℰ 𝑓 

∶= ℰ 𝑓, 𝑓 . The Markovian property means that  𝑓 ∈ ℱ implies 𝑓 ∶=  𝑓 ∨ 0 ∧ 1 ∈ ℱ and  ℰ 𝑓  ≤ ℰ 𝑓  . 

   Let ∆ be the generator of (ℰ, ℱ ), that is, an operator in  𝐿2 with the maximal domain dom (∆) ⊂  such that 

ℰ 𝑓, g = − ∆𝑓, g    for all  𝑓 ∈ dom ∆ , g ∈ ℱ . 

Then ∆ is a non-positive definite self-adjoint operator in 𝐿2 . Let   𝑃𝑡  𝑡≥0  be the heat semigroup associated with 

the form ( ℰ, ℱ ), that is, 𝑃𝑡 = 𝑒𝑥𝑝 𝑡∆ . It follows that, for any  𝑡 ≥ 0, 𝑃𝑡  is a bounded self-adjoint operator in 𝐿2 

. The relation between  𝑃𝑡  and ∆ is given also by the identity 

∆𝑓 = 𝐿2 − lim
𝑡→0

1

𝑡
 𝑃𝑡𝑓 − 𝑓 , 

where the limit exists if and only if  f ∈ dom(∆). A similar relation takes place between 𝑃𝑡  and  : 

ℰ 𝑓, g = lim
𝑡→0

1

𝑡
 𝑓 − 𝑃𝑡𝑓, g , 

for all 𝑓, 𝑔 ∈ ℱ. The heat semigroup   𝑃𝑡  of a Dirichlet form is always Markovian, that is, for any  0 ≤ 𝑓 ≤ 1 

a.e. in M, we have that 0 ≤ 𝑃𝑡𝑓 ≤ 1 a.e. in M for any  𝑡 > 0. 

   A family    𝑝𝑡 𝑡>0 of  𝜇 × 𝜇-measurable functions on M × M is called the heat kernel of the Dirichlet form ( 

ℰ, ℱ ) if  𝑝𝑡  is the integral kernel of the operator 𝑃𝑡  , that is, for any  𝑡 > 0 and for any  𝑓 ∈ 𝐿2 𝑀, 𝜇 , 

𝑃𝑡𝑓 𝑥 = ∫
𝑀

 𝑝𝑡 𝑥, 𝑦 𝑓 𝑦 𝑑𝜇 𝑦                                                  5  

for µ-almost all 𝑥 ∈ 𝑀. The form ( ℰ, ℱ ) is regular if the space ℱ ∩ 𝐶0 𝑀  is dense both in  and in  𝐶0 𝑀 , 

where  𝐶0 𝑀  is the space of all real-valued continuous functions in M with compact support. For any two 

subsets  𝑈,Ω  𝑈 ⋐ Ω  of M, a cut-off function 𝜙 for the pair (U, Ω) is a function in ℱ ∩ 𝐶0 𝑀  such that 

0 ≤ 𝜙 ≤ 1 in M, 𝜙 = 1 in an open neighborhood of  𝑈 , and supp (𝜙) ⊂ Ω. If (ℰ, ℱ ) is a regular Dirichlet form, 
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then a cut-off function exists for any pair (U, Ω) provided that Ω is open and 𝑈  is a non-empty compact subset 

of Ω   [4]. 

    Let Ω be a non-empty open subset of M. We identify the space 𝐿2 Ω  as a subspace of  𝐿2 𝑀  by extending 

any function 𝑓 ∈ 𝐿2 Ω  to M by setting 𝑓 = 0 outside Ω. Denote by  ℱ Ω  the closure of  ℱ ∩ 𝐶0 Ω  in F-norm. 

It is known that if (ℰ, ℱ ) is regular, then ( ℰ, ℱ Ω ) is a regular Dirichlet form in 𝐿2 Ω  [4]. We refer to 

(ℰ, ℱ Ω ) as a restricted Dirichlet form. Denote by  𝑃𝑡
Ω 𝑡≥0 the heat semigroup of ( ℰ, ℱ Ω ). It is known that, 

for any two open subsets   Ω1 ⊂ Ω2 of M, for any  0 ≤ 𝑓 ∈ 𝐿2 , and for any  𝑡 > 0, 

𝑃𝑡
Ω1𝑓 ≤ 𝑃𝑡

Ω2𝑓  a. e. in 𝑀. 

Also, if  Ω𝑘 𝑘=1
∞  is an increasing sequence of open sets [5]. And Ω =  Ω𝑘

∞
𝑘=1  then, for any t > 0, 

𝑃𝑡
Ω𝑘𝑓 → 𝑃𝑡

Ω𝑓  a. e. in 𝑀 as 𝑘 → ∞ 

     The form (ℰ, ℱ ) is called local if  ℰ 𝑓, g = 0 for any 𝑓, g ∈ ℱ with disjoint compact supports in M. 

   For 0 ≤ 𝜌 < ∞, the form (ℰ, ℱ ) is said to be ρ-local if ℰ 𝑓, g = 0 for any    𝑓, g ∈ ℱ with compact supports 

in M and such that 

dist supp 𝑓 , supp g  > 𝜌. 

In particular, if 𝜌 = 0 then the  ρ-local is the same as the local. We say that the form (ℰ, ℱ ) is quasi-local if it is 

ρ-local for some  𝜌 ≥ 0. 

   Let Ω be an open subset of M and I be an open interval in ℝ. A path 𝑢: 𝐼 → 𝐿2 Ω  is said to be weakly 

differentiable at   if, for any 𝜑 ∈ 𝐿2 Ω , the function  𝑢 ∙ , 𝜑  is differentiable at t, that is, the limit 

lim
𝜀→0

 
𝑢 𝑡 + 𝜀 − 𝑢 𝑡 

𝜀
, 𝜑  

exists. If this is the case then it follows from the principle of uniform boundedness that there is a (unique) 

function  𝑤 ∈ 𝐿2 Ω  such that 

lim
𝜀→0

 
𝑢 𝑡 + 𝜀 − 𝑢 𝑡 

𝜀
, 𝜑 =  𝑤, 𝜑 , 

for all 𝜑 ∈ 𝐿2 Ω . We refer to the function w as the weak derivative of 𝑢 at t and write  𝑤 =
𝜕𝑢

𝜕𝑡
 . 

  A path 𝑢 ∶ 𝐼 → ℱ is called a weak subsolution of the heat equation in 𝐼 × Ω, if the following two conditions are 

fulfilled : 

   (i)  the path  𝑡 ↦  𝑢 𝑡  Ω  is weakly differentiable in 𝐿2 Ω  at any  𝑡 ∈ 𝐼; 

   (ii)  for any non-negative  𝜑 ∈ ℱ Ω , we have 

 
𝜕𝑢

𝜕𝑡
, 𝜑 + ℰ 𝑢, 𝜑 ≤ 0.                                                          6  

   Similarly one can define the notions of weak super solution and weak solution of the heat equation. 

  Note that, for any 𝑓 ∈ 𝐿2 Ω , the function  𝑃𝑡
Ω𝑓 is a weak solution in  0,∞ × Ω  [356], and hence, in 

 0, +∞ × 𝑈 for any open subset 𝑈 ⊂ Ω . 

   We use the following notation: 

𝑓+ ∶= 𝑓 ∨ 0    and   𝑓− = − 𝑓 ∧ 0 . 

Denote by the sign  
ℋ
→ a weak convergence in a Hilbert space  and by  

ℋ
→ the strong (norm) convergence in 

.The following statements will be used in this paper. 

Proposition(1) [3]. Let  𝑢𝑘  be a sequence of functions in F such that uk  
L2

→  u ∈ ℱ as  k → ∞. If in addition 

the sequence  ℰ uk   is bounded, then                       uk  
ℱ
→  u as k → ∞. 

Proposition(2)[4]. Any Dirichlet form  ℰ, ℱ  possesses the following properties                                                                                                                         

(a) If  u, v ∈ ℱ , then all the functions  𝑢 ∧ 𝑣, 𝑢 ∨ 𝑣, 𝑢 ∧ 1, 𝑢+, 𝑢−,  𝑢  also belong to   

 (b) If  u, v ∈ ℱ ∩ L∞ M , then  uv ∈ ℱ . 

(c)       If  0 ≤ u ∈ ℱ , then  u ∧ n 
ℱ
→  u as  n → ∞. 

(d)   Let  𝜙 𝑠  be a Lipschitz function on ℝ  such that  𝜙 0 = 0. Then, for any  𝑢 ∈ ℱ, 

𝜙 𝑢 ∈ ℱ also. Moreover, if   𝑢𝑛  𝑛=1
∞  is a sequence of functions from  and 𝑢𝑛  

ℱ
→  𝑢 ∈ ℱ 
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𝑎𝑠 𝑛 → ∞, 𝑡𝑕𝑒𝑛 𝜙 𝑢𝑛  
ℱ
→  𝜙 𝑢 . 𝐹𝑢𝑟𝑡𝑕𝑒𝑟𝑚𝑜𝑟𝑒, 𝑖𝑓 𝜙 𝑢 = 𝑢 𝑡𝑕𝑒𝑛 𝜙 𝑢𝑛  

ℱ
→  𝜙 𝑢 . 

Proposition(3] [5]. Let  ℰ, ℱ  be a regular Dirichlet form, and let  𝑢 ∈ ℱ and Ω be an open subset of M. Then 

the following are equivalent: 

  (i) 𝑢+ ∈ ℱ Ω . 

   (ii) 𝑢 ≤ 𝑣  in M for some function  𝑣 ∈ ℱ Ω . 

Proposition(4) (parabolic maximum principle).  [7]. Assume that   ℰ, ℱ  is a regular Dirichlet form in 𝐿2 . For  

𝑇 ∈ (0, +∞] and for an open subset Ω of M, let u be a weak subsolution of the heat equation in (0, T ) × Ω 

satisfying the following boundary and initial conditions: 

      (i)   𝑢+ 𝑡,∙ ∈ ℱ Ω   for any  𝑡 ∈  0, 𝑇 ; 

      (ii)   𝑢+ 𝑡,∙  
𝐿2 Ω 
     0 as  t → 0. 

Then 𝑢 𝑡, 𝑥 ≤ 0 for any  t ∈ (0, T ) and µ-almost all  𝑥 ∈ Ω . 

      Next we prove further some general results on Dirichlet forms that will be used later on and are of 

independent interest. 

Proposition(5). Let Ω be a non-empty open subset of M. Then, for any non-negative 𝑓 ∈ 𝐿2 Ω , the path  

𝑢 𝑡 = 𝑃𝑡
Ω𝑓 is a weak subsolution of the heat equation in   0,∞ × 𝑀. 

  Proof: We know that 𝑢 𝑡  is weakly differentiable in t in 𝐿2 Ω . Let us show that 𝑢 𝑡  is weakly differentiable 

also in 𝐿2 𝑀 . Indeed, for any function 𝜙 ∈ 𝐿2 𝑀 , we have 

 
𝑢 𝑡 + 𝑠 − 𝑢 𝑡 

𝑠
, 𝜑 =  

𝑢 𝑡 + 𝑠 − 𝑢 𝑡 

𝑠
, 𝜑𝟏Ω +  

𝑢 𝑡 + 𝑠 − 𝑢 𝑡 

𝑠
, 𝜑𝟏Ω𝑐 .     7  

Since 𝜑𝟏Ω ∈ 𝐿
2 Ω , the first term in the right hand side of (7) converges to  𝜕𝑢

𝜕𝑡
, 𝜑𝟏Ω  where  𝜕𝑢

𝜕𝑡
 is the weak 

derivative in 𝐿2 Ω . The second term is obviously 0, whence the convergence of the whole sum to  𝜕𝑢
𝜕𝑡

, 𝜑  

follows. 

   Next, let us show that, for any non-negative 𝜓 ∈ ℱ , 

 
𝜕𝑢

𝜕𝑡
, 𝜓 + ℰ 𝑢, 𝜓 ≤ 0  for any  𝑡 > 0.                                       8  

Indeed, noting that  𝑃𝑠𝑢 𝑡 ≥ 𝑃𝑠
Ω𝑢 𝑡 = 𝑢 𝑡 , we obtain as  𝑠 → 0 + that 

ℰ𝑠 𝑢, 𝜓 =
1

𝑠
 𝑢 − 𝑃𝑠𝑢, 𝜓 ≤

1

𝑠
 𝑢 − 𝑃𝑠

Ω𝑢, 𝜓 =
1

𝑠
 𝑢 𝑡 − 𝑢 𝑡 + 𝑠 , 𝜓 →  −

𝜕𝑢

𝜕𝑡
, 𝜓 . 

Since  ℰ𝑠 𝑢, 𝜓 → ℰ 𝑢, 𝜓   as  𝑠 → 0, the desired inequality (8) follows.     □ 

The following proposition will be used to prove Proposition(8). 

Proposition(6). Let  Ω1 , Ω2 be two non-empty open subsets of M. Then 

ℱ Ω1 ∩ ℱ Ω2 = ℱ Ω1 ∩ Ω2 .                                   9  

Proof:  Since ℱ Ω1 ∩ Ω2 ⊂ ℱ Ω𝑖  for 𝑖 = 1, 2, we see that 

ℱ Ω1 ∩ Ω2 ⊂ ℱ Ω1 ∩ ℱ Ω2 . 

To prove the opposite inclusion, we need to verify that 𝑓 ∈ ℱ Ω1 ∩ ℱ Ω2  implies 𝑓 ∈ ℱ Ω1 ∩  Ω2  . Assume 

first that  𝑓 ≥ 0. Let   𝑓𝑘 𝑘=1
∞  and   g𝑘 𝑘=1

∞  be two sequences from ℱ ∩ 𝐶0 Ω1  and  ℱ ∩ 𝐶0 Ω2 , respectively, 

that both converge to f in  -norm. As  𝑓 ≥ 0 and, hence, 𝑓+ = 𝑓, it follows from Proposition(2) that 

 𝑓𝑘 +  
ℱ
→  𝑓   and   𝑔𝑘 +  

ℱ
→  𝑓   as  𝑘 → ∞.                          10  

Since  𝑓𝑘 + ∈ ℱ ∩ 𝐶0 Ω1  and   g𝑘 + ∈ ℱ ∩ 𝐶0 Ω2 , we see that 

𝑕𝑘 ∶=  𝑓𝑘 + ∧  𝑔𝑘 + ∈ ℱ ∩ 𝐶0 Ω1 ∩ Ω2 ⊂ ℱ Ω1 ∩ Ω2 . 

Setting  𝑢𝑘 =  𝑓𝑘 + −  g𝑘 + and noticing that  𝑢𝑘  
ℱ
→  0 as  𝑘 → ∞, we obtain by Proposition(2)  that   𝑢𝑘   

ℱ
→  0 as 𝑘 → ∞ . It follows that 

𝑕𝑘 =
1

2
  𝑓𝑘 + +  g𝑘 + −   𝑓𝑘 + −  g𝑘 +   

ℱ
→  𝑓  as  𝑘 → ∞. 

Since  ℱ Ω1 ∩ Ω2  is a closed and, hence, weakly closed subspace of  , we conclude that  𝑓 ∈ ℱ Ω1 ∩ Ω2  

.For a signed function  𝑓 ∈ ℱ Ω1 ∩ ℱ Ω2  , we have 𝑓+, 𝑓− ∈ ℱ Ω1 ∩ ℱ Ω1  , whence, by the first part of the 

proof, 𝑓+, 𝑓− ∈ ℱ Ω1 ∩ Ω2  and  𝑓 = 𝑓+ − 𝑓− ∈ ℱ Ω1 ∩ Ω2  , which finishes the proof.       
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Proposition(7) Let U be a non-empty open subset of M, and let 𝑢 ∈ ℱ such that  sup 𝑢 ⊂ 𝑈 and is compact. 

Then 𝑢 ∈ ℱ 𝑈  . 

Proof: We can assume that 𝑢 ≥ 0 because a signed u follows from the decomposition 𝑢 = 𝑢+ − 𝑢− . Next, we 

can assume that 𝑢 is bounded because otherwise consider a sequence 𝑢𝑘 ∶= 𝑢 ∧ 𝑘 that tends to 𝑢 in  -norm as 

𝑘 → ∞ by Proposition (2) ; if we already know that 𝑢𝑘 ∈ ℱ 𝑈  then we can conclude that also  𝑢 ∈ ℱ 𝑈  . 

Hence, we can assume in the sequel that 𝑢 is non-negative and bounded in M, say  0 ≤ 𝑢 ≤ 1. 

  Let 𝜑be a cut-off function for the pair  supp 𝑢 , 𝑈  . Let  𝑢𝑘 𝑘=1
∞   be a sequence from ℱ ∩ 𝐶0 𝑀  such that 

𝑢𝑘  
ℱ
→  𝑢 as 𝑘 → ∞ . As 𝑢 ≥ 0, we have by the last results in Proposition(3) that  𝑢𝑘 +  

ℱ
→  𝑢  as 𝑘 → ∞ and  

  𝑢𝑘 + − 𝜑  
ℱ
→  𝑢 − 𝜑  as 𝑘 → ∞. It follows that 

 𝑢𝑘 + ∧ 𝜑 =
1

2
  𝑢𝑘 + + 𝜑 −   𝑢𝑘 + − 𝜑   

ℱ
→ 

1

2
 𝑢 + 𝜑 −  𝑢 − 𝜑  = 𝑢 ∧ 𝜑 = 𝑢    as  𝑘 → ∞. 

Since   𝑢𝑘 + ∧ 𝜑 ∈ ℱ ∩ 𝐶0 𝑈  , we conclude that  𝑢 ∈ ℱ 𝑈 .     

Proposition(8). Let Ω be a precompact open subset of M and U be an open subset of M, and let K be a closed 

subset of M such that 𝐾 ⊂ 𝑈 (see Fig. 34). Let 𝑢 ∈ ℱ be a function such that  𝑢+ ∈ ℱ Ω  and  𝑢 ≤ 𝜓 in  Ω \ K  

for some    0 ≤ 𝜓 ∈ ℱ . Then 

 𝑢 − 𝜓 + ∈ ℱ Ω ∩ 𝑈 .                                                            11  

  Proof: Since 𝑢 − 𝜓 ≤ 𝑢+ ∈ ℱ Ω , it follows by Proposition(2) that  𝑢 − 𝜓 + ∈ ℱ Ω  . Let us verify that 

 𝑢 − 𝜓 + ∈ ℱ Ω ,                                                              12  

which will then imply (11) by Proposition(6) Indeed noticing that  𝑢 − 𝜓 + = 0 in Ω\ K and in Ω𝑐  , we see that 

supp  𝑢 − 𝜓 + ⊂ 𝐾 ∩ Ω        ⊂ 𝐾 ∩ Ω . 

On the other hand, the set 𝐾 ∩ Ω  is compact and is contained in U, so that (12) follows from Proposition (7).    

 

 
Figure 3: Domains 𝛺 . 𝑈 and 𝐾. 

  The next theorem is the basic technical result. 

 
Figure 4: Illustration in the classical case 

𝑢 ≤ 0  on  𝜕Ω ∩ 𝑈  instead 𝑜𝑓  𝑢+ ∈ ℱ Ω   

𝑢 ≤ 𝑚  on  𝜕𝑈 ∩ Ω  for some  𝑚 ≥ 0   instead of 𝑢 ≤ 𝑚 on Ω\𝐾 . 

𝑢 𝑡,∙ → 0  as 𝑡 → 0  in  Ω ∩ 𝑈. 

then 𝑢 ≤  1 − 𝑃𝑡
𝑈𝟏𝑈 𝑚 in   0, 𝑇0 ×  Ω ∩ 𝑈  (see Fig 4). Indeed, the function  𝑣 =  1 − 𝑃𝑡

𝑈𝟏 𝑚 satisfies the 

heat equation in   0,∞ × 𝑈, the boundary conditions  𝑣 ≥ 0 on 𝜕Ω, 𝑣 = 𝑚 on 𝜕𝑈,, and the initial condition 

𝑣 𝑡,∙ → 0 as   𝑡 → 0 in U. Applying the classical parabolic maximum principle in Ω ∩ U, we obtain  𝑢 ≤ 𝑣. 

Corollary (9). For  Ω𝑛 , Ω𝑛+1  ,  𝑛 ≥ 1, be two sequence of  non-empty open subsets of M.  Then 

ℱ Ω𝑛 ∩ ℱ Ω𝑛+1 = ℱ Ω𝑛 ∩ Ω𝑛+1 . 
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Proof : Given   ℱ Ω𝑛 ∩ Ω𝑛+1 ⊂ ℱ Ω𝑖    for   𝑖 = 1, 2,3, …  we give 

ℱ Ω𝑛 ∩ Ω𝑛+1 ⊂ ℱ Ω𝑛 ∩ ℱ Ω𝑛+1 . 

For the opposite inclusion, we can show 𝑓 ∈ ℱ Ω𝑛 ∩ ℱ Ω𝑛+1  implies that 𝑓 ∈ ℱ Ω𝑛 ∩  Ω𝑛+1  . We assume 

that   𝑓 ≥ 0. Now let   𝑓𝑘 𝑘=1
∞  and   g𝑘 𝑘=1

∞  be two sequences from  ℱ ∩ 𝐶0 Ω𝑛  and  ℱ ∩ 𝐶0 Ω𝑛+1 , 

respectively such that 𝑓𝑘 ⟶ 𝑓  and  𝑔𝑘 ⟶ 𝑓  in  -norm. For  𝑓 ≥ 0  then 𝑓+ = 𝑓, show that  

 𝑓𝑘 +  
ℱ
→  𝑓   and   𝑔𝑘 +  

ℱ
→  𝑓   as  𝑘 → ∞. 

Since  𝑓𝑘 + ∈ ℱ ∩ 𝐶0 Ω𝑛  and   g𝑘 + ∈ ℱ ∩ 𝐶0 Ω𝑛+1 , we see that 

𝑕𝑘 ∶=  𝑓𝑘 + ∧  𝑔𝑘 + ∈ ℱ ∩ 𝐶0 Ω𝑛 ∩ Ω𝑛+1 ⊂ ℱ Ω𝑛 ∩ Ω𝑛+1 . 

Setting  𝑢𝑘 =  𝑓𝑘 + −  g𝑘 +  for 𝑘 → ∞  we  have  𝑢𝑘  
ℱ
→  0  by using   

again that   𝑢𝑘   
ℱ
→  0 as 𝑘 → ∞ . Hence  

𝑕𝑘
ℱ
→  𝑓  as  𝑘 → ∞. 

Since  ℱ Ω𝑛 ∩ Ω𝑛+1  is a closed and hence weakly closed subspace of , we see that  𝑓 ∈ ℱ Ω𝑛 ∩ Ω𝑛+1  .For 

the signed function give the result.       

Theorem(10) Let ( 𝑀,𝑑, 𝜇) be a metric measure space and let (ℰ, ℱ ) be a regular Dirich  form in 𝐿2 𝑀, 𝜇 . Let  

Ω ⊂ 𝑀 be a precompact open set and U ⊂ M be an open such that  𝜇 𝑈 < ∞. Let 𝑢 be a weak subsolution of 

the heat equation in  0, 𝑇0 ×  Ω ∩ 𝑈  where  𝑇0 ∈ (0, +∞], such that 

𝑢+ 𝑡,∙ ∈ ℱ Ω   𝑓𝑜𝑟 𝑎𝑛𝑦 𝑡 ∈  0, 𝑇0 ,                                  13  

𝑢+ 𝑡,∙  
𝐿2 Ω∩𝑈 
        0  𝑎𝑠 𝑡 → 0.                                     14  

Let K be a closed subset of M such that K ⊂ U. Then, for any  𝑡 ∈  0, 𝑇0  and for almost all  𝑥 ∈ 𝑀, 

𝑢 𝑡, 𝑥 ≤  1 − 𝑃𝑡
𝑈1𝑈 𝑥  sup0<𝑠≤𝑡 𝑢+ 𝑠,∙  𝐿∞  Ω\𝐾 ,                           15  

𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑡𝑕𝑎𝑡 sup0<𝑠≤𝑡 𝑢+ 𝑠,∙  𝐿∞  Ω\𝐾 < ∞. 

  Proof: Outside Ω the inequality (15) is trivial because  𝑢 ≤ 0 by (13). In Ω \ U (15) is also obvious because 

𝑃𝑡
𝑈1𝑈 = 0 and K ⊂ U. It remains to prove (15) in Ω ∩ U. Fix a number  𝑇 ∈  0, 𝑇0   and define 𝑚 by 

𝑚 = sup0<𝑡≤𝑇 𝑢+ 𝑡,∙  𝐿∞  Ω\𝐾 .                                 16  

Let us first prove that, for any  𝑡 ∈  0, 𝑇  and for 𝜇-almost all  𝑥 ∈ Ω ∩ 𝑈, 

𝑢 𝑡, 𝑥 ≤ 𝑚.                                                                        17  

Let 𝜙 be a cut-off function for the pair (Ω, M) and consider the function 

𝑤 = 𝑢 −𝑚𝜙.                                                                         18  

Then (17) will follow if we show that 𝑤 ≤ 0 in (0, T ) × (Ω ∩ U). The latter will be proved by using the 

maximum principle of that we need to verify the following conditions. 

   (a)  The function w is a weak subsolution of the heat equation in (0, T ) × (Ω ∩ U). 

 Indeed, the function𝜙, considered as a function of (𝑡, 𝑥), is a weak supersolution of the heat equation in 

 0,∞ × Ω, since for any non-negative function  𝜓 ∈ ℱ Ω , 

ℰ 𝜙, 𝜓 = lim
𝑡→0

𝑡−1 𝜙 − 𝑃𝑡𝜙,𝜓 = lim
𝑡→0

𝑡−1 1 − 𝑃𝑡𝜙,𝜓 ≥ 0. 

Since 𝑢 is a weak subsolution in (0, T ) × (Ω ∩ U), we see from (18) that so is w. 

 
Figure 5: Illustration 
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in the case U ⊂ Ω. 

     (i)  For any  𝑡 ∈  0, 𝑇 , we have 𝑤+ 𝑡,∙ ∈ ℱ Ω ∩ 𝑈 . Indeed, using the facts that 𝑢+ 𝑡,∙ ∈ ℱ Ω  and  

𝑢 ≤ 𝑚 = 𝑚𝜙 in Ω\𝐾 (which is true by (16)), we obtain from Proposition(8) that 

𝑤+ 𝑡,∙ = (𝑢 𝑡,∙ − 𝑚𝜙)+ ∈ ℱ Ω ∩ 𝑈 . 

     (ii) The initial condition 𝑤+ 𝑡,∙  
𝐿2 Ω∩𝑈 
       0 as  𝑡 → 0 follows from 𝑤+ 𝑡,∙ ≤ 𝑢+ 𝑡,∙  and (14). 

Therefore, by the parabolic maximum principle of Proposition(4), we conclude that  𝑤 ≤ 0 in (0, T ) × (Ω ∩ U), 

thus proving (17). 

  We are now in a position to prove the following improvement of (17): 

𝑢 ≤  1 − 𝑃𝑡
𝑈1𝑈 𝑚   in   0, 𝑇 ×  Ω ∩ 𝑈                                   19  

(see Fig. 5  where the case U ⊂ Ω is shown). The path 𝑡 ↦ 𝑢 𝑡,∙  is weakly differentiable in  𝐿2 Ω ∩ 𝑈  and, 

hence, is strongly continuous in 𝐿2 Ω ∩ 𝑈  see [524]. The same applies to the path 𝑡 → 𝑃𝑡
𝑈1𝑈  so that the 

inequality (19) extends to  𝑡 = 𝑇 by continuity. Hence, (19) implies (15). Consider the function 

𝑣 = 𝑢 − 𝑚𝜙 1 − 𝑃𝑡
𝑈𝟏𝑈 ,                                         20  

where 𝑚 and  𝜙 are the same as above. As  𝜇 𝑈 < ∞, we have 𝟏𝑈 ∈ 𝐿
2 𝑈, 𝜇  and, hence,  𝑃𝑡

𝑈𝟏𝑈 ∈ ℱ 𝑈 . We 

claim that 𝑣 is a weak subsolution of the heat equation in (0, T ) × (Ω ∩ U). Since 𝑢 is a weak subsolution, it 

suffices to show that the function 

𝑓 ∶= 𝜙 1 − 𝑃𝑡
𝑈𝟏𝑈  

is a weak supersolution in (0, T ) × (Ω ∩ U). Since the both functions 𝜙 and 𝑃𝑡
𝑈𝟏𝑈  belong to 𝐿∞ 𝑀 ∩ ℱ , so 

does the product  𝜙𝑃𝑡
𝑈𝟏𝑈  , whence 

𝑓 = 𝜙 − 𝜙𝑃𝑡
𝑈𝟏𝑈 ∈ 𝐿

∞ 𝑀 ∩ ℱ. 

For any  𝑡, 𝑠 ∈  0, 𝑇 , we have that in Ω ∩ U, 

        𝑓 − 𝑃𝑠𝑓 = 𝜙 1 − 𝑃𝑡
𝑈𝟏𝑈 − 𝑃𝑠 𝜙 1 − 𝑃𝑡

𝑈𝟏𝑈   

≥  1 − 𝑃𝑡
𝑈𝟏𝑈 − 𝑃𝑠 1 − 𝑃𝑡

𝑈𝟏𝑈                                           

=  1 − 𝑃𝑠1 − 𝑃𝑡
𝑈𝟏𝑈 + 𝑃𝑠 𝑃𝑡

𝑈𝟏𝑈 ≥ 𝑃𝑡+𝑠
𝑈 𝟏𝑈 − 𝑃𝑡

𝑈𝟏𝑈 , 

which yields that, for any  0 ≤ 𝜓 ∈ ℱ Ω ∩ 𝑈 , 

ℰ 𝑓, 𝜓 = lim
𝑠→0

1

𝑠
 𝑓 − 𝑃𝑠𝑓, 𝜓 ≥ lim

𝑠→0

1

𝑠
 𝑃𝑡+𝑠

𝑈 1𝑢 − 𝑃𝑡
𝑈1𝑈 , 𝜓 =  

𝜕

𝜕𝑡
𝑃𝑡
𝑈1𝑈 , 𝜓 . 

On the other hand, 

 
𝜕𝑓

𝜕𝑡
, 𝜓 =  −𝜙

𝜕

𝜕𝑡
𝑃𝑡
𝑈1𝑈 , 𝜓 = − 

𝜕

𝜕𝑡
𝑃𝑡
𝑈1𝑈 , 𝜓 . 

Therefore, 

 
𝜕𝑓

𝜕𝑡
, 𝜓 + ℰ 𝑓, 𝜓 ≥ 0, 

showing that f  is a weak supersolution. Hence, we have proved that 𝑣 is a weak subsolution.   Since  𝑣 ≤ 𝑢, it 

follows from (14) that 

𝑣+ 𝑡,∙  
𝐿2 𝑈∩Ω 
       0  as 𝑡 → 0. 

It remains to verify the boundary condition:  𝑣+ 𝑡,∙ ∈ ℱ Ω ∩ 𝑈  for any  𝑡 ∈  0, 𝑇 . Observe that 

𝑢 − 𝑚𝜙 ≤ 0   in 𝑀                                                  21  

because we have 

     (a)   𝑢 −𝑚𝜙 ≤ 0  in M \ Ω by (122), 

     (b)   𝑢 − 𝑚𝜙 = 𝑢 −𝑚 ≤ 0 in Ω \ U by (16), 

     (c)   𝑢 − 𝑚𝜙 = 𝑢 −𝑚 ≤ 0 in Ω ∩ U by (17). 

  Using (21), we obtain that in M 

𝑣 = 𝑢 − 𝑚𝜙 1 − 𝑃𝑡
𝑈𝟏𝑈 ≤ 𝑚𝜙𝑃𝑡

𝑈𝟏𝑈 ≤ 𝑚𝑃𝑡
𝑈𝟏𝑈 . 

Since the function 𝑃𝑡
𝑈𝟏𝑈  belongs to ℱ 𝑈 , we conclude by using Proposition(3)  that also 𝑣+ ∈ ℱ 𝑈 . On the 

other hand, we have 

𝑣 = 𝑢 − 𝑚𝜙 1 − 𝑃𝑡
𝑈𝟏𝑈 ≤ 𝑢 ≤ 𝑢+ ∈ ℱ Ω , 

whence it follows that 𝑣+ ∈ ℱ Ω  . Therefore, by Proposition(6) we obtain that  𝑣+ ∈ ℱ 𝑈 ∩ Ω , thus proving 
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the boundary condition. Finally, we conclude by the maximum principle of Proposition(4) that  𝑣 ≤ 0 in (0, T ) 

× (Ω ∩ U) , whence (19) follows.    

Remark (11). The boundary condition (13) in Theorem(10) can be relaxed as follows: 

𝑢+ 𝑡,∙ ∈ ℱ Ω   for any  𝑡 ∈  0, 𝑇0 ∩ ℚ,                                   22  

provided one assumes in addition that 

𝑡 ↦ 𝑢 𝑡,∙   is weakly continuousin 𝐿2 Ω ,                                     23  

𝑡 ↦ ℰ 𝑢 𝑡,∙    is locally bounded,                                        24  

for  𝑡 ∈  0, 𝑇0 . Under the hypotheses (22)-(24) , the inequality (15) can be replaced by a stronger one: 

𝑢 𝑡, 𝑥 ≤  1 − 𝑃𝑡
𝑈1𝑈 𝑥  sup0<𝑠≤𝑡

𝑠∈ℚ
 𝑢+ 𝑠,∙  𝐿∞  Ω\𝐾 .                           25  

The proof goes exactly as the above except that the supremum for defining the constant 𝑚 in (16) is taken only 

over rational  𝑡 ∈ (0, 𝑇]. Then we need to verify that the functions w and 𝑣, defined by (18), (20), respectively, 

satisfy the boundary condition (13) for all real  𝑡 ∈  0, 𝑇  in order to be able to use the maximum principle of 

Proposition(4). Indeed, for any  𝑡 ∈  0, 𝑇 , let   𝑡𝑘 𝑘=1
∞  be a sequence of rationals such that  𝑡𝑘 → 𝑡 as  𝑘 → ∞. 

By (18) and (23), we have 

𝑤 𝑡𝑘 ,∙ − 𝑤 𝑡,∙ = 𝑢 𝑡𝑘 ,∙ − 𝑢 𝑡,∙  
𝐿2 Ω 
     0, 

and thus 

𝑤+ 𝑡𝑘 ,∙  
𝐿2 Ω 
      𝑤+ 𝑡,∙ . 

By (24), ℰ 𝑤 𝑡𝑘 ,∙   is bounded as  𝑘 → ∞.Hence, we obtain by Proposition(1) that 

𝑤+ 𝑡𝑘 ,∙  
ℱ
→ 𝑤+ 𝑡,∙ . 

Since  𝑤+ 𝑡𝑘 ,∙ ∈ ℱ Ω  by (308), we conclude that  𝑤+ 𝑡,∙ ∈ ℱ Ω . Similarly, one has 𝑣+ 𝑡,∙ ∈ ℱ Ω  for all 

real  𝑡 ∈  0, 𝑇 . 

The inequality (15) gives a rise to various interesting comparison inequalities for heat semigroups and heat 

kernels that will be presented below. Before that, let us state a useful particular case of Theorem(10) when U ⊂ 

Ω (cf. Fig. 5). 

Corollary(12). Let (M, d, µ) be a metric measure space and let  ℰ, ℱ  be a regular Dirich- form in 𝐿2 𝑀, 𝜇 . 

Let  Ω ⊂ 𝑀 be a precompact open set and U be an open subset of Ω. Let u be a weak subsolution of the heat 

equation in     0, 𝑇0 × 𝑈 where  𝑇0 ∈ (0, +∞], such that 

𝑢+ 𝑡,∙ ∈ ℱ Ω   𝑓𝑜𝑟 𝑎𝑛𝑦 𝑡 ∈  0, 𝑇0 , 

𝑢+ 𝑡,∙  
𝐿2 𝑈 
     0  𝑎𝑠 𝑡 → 0.                                 26  

Then the conclusion of Theorem(12) holds for any compact subset K of U, any  𝑡 ∈  0, 𝑇0  and almost all  

𝑥 ∈ 𝑀. 

     We give various applications of Theorem(10) to the semigroup solutions, including a specific case of quasi-

local Dirichlet form. 

Proposition(13). Let  ℰ, ℱ  be a regular Dirichlet form in 𝐿2 𝑀, 𝜇 , and let Ω, U be two non-empty open 

subsets of M such that  𝜇 𝑈 < ∞. Let K be any closed subset of M such that K ⊂  U. Then, for any  0 ≤ 𝑓 ∈

𝐿2 Ω , 

𝑃𝑡
Ω  𝑓 𝑥 − 𝑃𝑡

𝑈𝑓 𝑥 ≤  1 − 𝑃𝑡
𝑈𝟏𝑈 𝑥  sup0<𝑠≤𝑡 𝑃𝑠

Ω𝑓 𝐿∞  Ω\𝐾 ,             27  

for all  𝑡 > 0 and almost all  𝑥 ∈ 𝑀. 

  Proof: Without loss of generality, assume that 0 ≤ 𝑓 ∈ 𝐿∞ Ω  (otherwise, apply (27) to the function 𝑓𝑘 = 𝑓 ∧

𝑘 and then pass to the limit as  𝑘 → ∞). Let  Ω𝑖  be a sequence of precompact open subsets exhausting Ω. 

Consider the function 

𝑢 𝑡,∙ ∶= 𝑃𝑡
Ω𝑖𝑓 − 𝑃𝑡

Ω𝑖∩𝑈  𝑓  

and we shall verify that 𝑢 satisfies all the hypothesis of Theorem(10) with the sets Ω𝑖  and U. Indeed, 𝑢 is a weak 

subsolution of the heat equation in  0,∞ ×  Ω𝑖 ∩ 𝑈  because so are 𝑃𝑡
Ω𝑖𝑓 and  𝑃𝑡

Ω𝑖∩𝑈𝑓. Next,  𝑢 𝑡,∙ ∈ ℱ Ω𝑖  

because both 𝑃𝑡
Ω𝑖𝑓 and  𝑃𝑡

Ω𝑖∩𝑈𝑓 belong to ℱ Ω𝑖 . Since both 𝑃𝑡
Ω𝑖𝑓 and 𝑃𝑡

Ω𝑖∩𝑈𝑓 converge to 𝑓 as 𝑡 → 0 

in 𝐿2 Ω𝑖 ∩ 𝑈 , it follows that  𝑢 𝑡,∙  
𝐿2 Ω𝑖∩𝑈 
        0 as 𝑡 → 0. By Theorem (10), we obtain that 
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𝑃𝑡
Ω𝑖𝑓 − 𝑃𝑡

Ω𝑖∩𝑈𝑓 ≤  1 − 𝑃𝑡
𝑈𝟏𝑈   sup0<𝑠≤𝑡 𝑃𝑠

Ω𝑖𝑓 − 𝑃𝑠
Ω𝑖∩𝑈𝑓 

𝐿∞  Ω𝑖\𝐾 
 

          ≤  1 − 𝑃𝑡
𝑈𝟏𝑈   sup0<𝑠≤𝑡 𝑃𝑠

Ω𝑓 𝐿∞  Ω\𝐾 . 

Noticing that  𝑃𝑡
Ω𝑖∩𝑈𝑓 ≤ 𝑃𝑡

𝑈𝑓  and then passing to the limit as  𝑖 → ∞, we obtain (5), as desired.   

  Let us mention for comparison that the following inequality was proved in [355]: 

𝑃𝑡
Ω𝑓 𝑥 − 𝑃𝑡

𝑈𝑓 𝑥 ≤  sup0<𝑠≤𝑡 𝑃𝑠
Ω𝑓 𝐿∞  Ω\𝐾 .                            28  

Obviously, (27) is an improvement of (28). On the other hand, the estimate (28) was proved in [355] for 

arbitrary open set U without the hypotheses of the finiteness of its measure. For applications of (28) see [6]. 

   Given an open set U ⊂ M and non-negative number 𝜌, define the 𝜌 −neighborhood  𝑈𝜌  of U as follows: 

𝑈𝜌 =  𝑥 ∈ 𝑀: 𝑑 𝑥, 𝑈 < 𝜌     if 𝜌 > 0, 

𝑈𝜌 = 𝑈   if 𝜌 = 0, 

where 𝑑 𝑥, 𝑈 = inf𝑦∈𝑈𝑑 𝑥, 𝑦 . 

Theorem (14). Assume that   ℰ, ℱ  is a ρ-local regular Dirichlet form in  𝐿2 𝑀, 𝜇  where 𝜌 ≥ 0. Let U be an 

open subset of M such that 𝑈𝜌  is precompact, and let u be a weak subsolution of the heat equation in  0, 𝑇0 × 𝑈 

where  𝑇0 ∈ (0, +∞]. Assume that, for any 𝑡 ∈  0, 𝑇0 , 𝑢 𝑡,∙ ∈ 𝐿
∞ 𝑀  and 

𝑢+ 𝑡,∙  
𝐿2 𝑈 
     0  𝑎𝑠 𝑡 → 0.                                                     29  

Then for any compact subset K of U, for all  𝑡 ∈  0, 𝑇0 , and almost all 𝑥 ∈ 𝑈𝜌  , 

𝑢 𝑡, 𝑥 ≤  1 − 𝑃𝑡
𝑈𝟏𝑈 𝑥   sup0<𝑠≤𝑡   𝑢+ 𝑠,∙  𝐿∞  𝑈𝜌 \𝐾 ,                30  

𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑  sup0<𝑠≤𝑡 𝑢+ 𝑠,∙  𝐿∞  𝑈𝜌 \𝐾 < ∞. 

 Proof: Since 𝑃𝑡
𝑈𝟏𝑈 = 0 outside U, the inequality (30) is trivially satisfied if   𝑥 ∈ 𝑈𝜌\𝑈. Hence, it suffices to 

prove (30) for 𝑥 ∈ 𝑈. Fix an open subset W of U such that  𝑊 ⊂ 𝑈. Then  𝑊𝜌    ⊂ 𝑈𝜌  so that  𝑊𝜌  is precompact. 

Let  𝜙 be a cut-off function for the pair (𝑊𝜌 , 𝑈𝜌  ). Let us show that the function 𝑤 = 𝑢𝜙 satisfies all the 

hypothesis of Corollary(12) where the domains Ω, U are replaced by 𝑈𝜌  , W respectively. Note that the function 

𝑢 may not satisfy the condition (26) so that we have to use w instead. 

   Let us first show that w is a weak subsolution of the heat equation in    0, 𝑇0 × 𝑊. Indeed, since  𝑢 𝑡,∙ , 𝜙 ∈

ℱ ∩ 𝐿∞ 𝑀  for any  𝑡 ∈  0, 𝑇0 × 𝑊, it follows that 𝑤 𝑡,∙ ∈ ℱ . Since 𝑢 is a subsolution in  0, 𝑇0 × 𝑊 and  

𝜙 ≡ 1 in W, we have, for any non-negative function 𝜓 ∈ ℱ 𝑊 , 

 
𝜕𝑤

𝜕𝑡
, 𝜓 =  𝜙

𝜕𝑢

𝜕𝑡
, 𝜓 =  

𝜕𝑢

𝜕𝑡
, 𝜓 ≤ −ℰ 𝑢, 𝜓  

= −ℰ 𝑤,𝜓 + ℰ  𝜙 − 1 𝑢, 𝜓 = −ℰ 𝑤, 𝜓 .     31  

where we have used the fact that ℰ  𝜙 − 1 𝑢, 𝜓 = 0 by the ρ-locality of , because supp 𝜓 ⊂ 𝑊 , and the 

function  𝜙 − 1 𝑢 is compactly supported outside 𝑊𝜌     , so that the distance between the supports of 𝜓 and 

 𝜙 − 1 𝑢 is larger than ρ. 

  Since supp𝜑 ⊂ 𝑈𝜌  , we see that supp𝑤 𝑡,∙ ⊂ 𝑈𝜌  , and hence, 𝑤 𝑡,∙ ∈ ℱ 𝑈𝜌  and, 𝑤+ 𝑡,∙ ∈ ℱ 𝑈𝜌  . 

Moreover, it follows from (29) that 

𝑤+ 𝑡,∙ = 𝜙𝑢+ 𝑡,∙  
𝐿2 𝑊 
     0  as 𝑡 → 0. 

Hence, w satisfied the required boundary and initial conditions, and by Corollary (11) we obtain that in  

 0, 𝑇0 × 𝑊, 

  𝑢 𝑡, 𝑥 = 𝑤 𝑡, 𝑥 ≤  1 − 𝑃𝑡
𝑊𝟏𝑊 𝑥   sup0<𝑠≤𝑡 𝑤+ 𝑠,∙  𝐿∞  𝑈𝜌 \𝐾  

≤  1 − 𝑃𝑡
𝑊𝟏𝑊 𝑥   sup0<𝑠≤𝑡   𝑢+ 𝑠,∙  𝐿∞  𝑈𝜌 \𝐾 . 

Taking an exhaustion of U by sets like W and then passing to the limit as W → U, we obtain (30).   

     For the case of local Dirichlet forms, we obtain the following improvement of Theorem(14) where the 

condition of the compactness of 𝑈𝜌  is dropped. 

Corollary (15). Assume that  ℰ, ℱ  is a local regular Dirichlet form in 𝐿2 𝑀, 𝜇 . Let U be an open subset of M 

and let u be a weak subsolution of the heat equation in  0, 𝑇0 × 𝑈 where 𝑇0 ∈ (0, +∞]. Assume that, for any  

𝑡 ∈  0, 𝑇0 , the function 𝑢 𝑡,∙ ∈ 𝐿∞ 𝑀  and 
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𝑢+ 𝑡,∙  
𝐿2 𝑈 
     0  𝑎𝑠 𝑡 → 0. 

Then, for any compact subset K of U, for all  𝑡 ∈  0, 𝑇0 , and almost all  𝑥 ∈ 𝑈, 

𝑢 𝑡, 𝑥 ≤  1 − 𝑃𝑡
𝑈𝟏𝑈 𝑥   sup0<𝑠≤𝑡 𝑢+ 𝑠,∙  𝐿∞  𝑈\𝐾 ,            32  

𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 sup0<𝑠≤𝑡 𝑢+ 𝑠,∙  𝐿∞  𝑈\𝐾 < ∞ 

   As an another consequence of Theorem(14), we obtain the following useful comparison inequality for heat 

semigroups. 

Corollary(16).  Assume that  ℰ, ℱ  is a 𝜌-local regular Dirichlet form in  𝐿2 𝑀, 𝜇  where 𝜌 ≥ 0. Let U, Ω be 

two open subsets of M such that 𝑈𝜌  is precompact and 𝑈𝜌 ⊂ Ω. Then for any 0 ≤ 𝑓 ∈ 𝐿∞ 𝑀 , for all 𝑡 > 0 and 

almost all  𝑥 ∈ 𝑈𝜌  , 

𝑃𝑡
Ω𝑓 𝑥 − 𝑃𝑡

𝑈𝑓 𝑥 ≤  1 − 𝑃𝑡
𝑈𝟏𝑈 𝑥   sup0<𝑠≤𝑡   𝑃𝑠

Ω𝑓 𝐿∞  𝑈𝜌 \𝐾                33  

for any compact subset K of U. 

     Moreover, if  𝜌 = 0, that is,   ℰ, ℱ  is local then the same is true without assuming that 𝑈𝜌  is precompact. In 

this case, (33) becomes 

𝑃𝑡
Ω𝑓 𝑥 − 𝑃𝑡

𝑈𝑓 𝑥 ≤  1 − 𝑃𝑡
𝑈𝟏𝑈 𝑥   sup0<𝑠≤𝑡   𝑃𝑠

Ω𝑓 𝐿∞  𝑈\𝐾 .           34  

Proof: Consider the function 

𝑢 𝑡,∙ = 𝑃𝑡
Ω𝑓 ∙ − 𝑃𝑡

𝑈𝑓 ∙ , 

that is bounded on M for any  𝑡 > 0, is a weak subsolution of the heat equation in  0,∞ × 𝑈, and satisfies the 

initial condition (29). Hence, it follows from (30) that, for all 𝑡 > 0 and almost all 𝑥 ∈ 𝑈𝜌  , 

𝑃𝑡
Ω𝑓 𝑥 − 𝑃𝑡

𝑈𝑓 𝑥 ≤  1 − 𝑃𝑡
𝑈𝟏𝑈 𝑥   sup0<𝑠≤𝑡   𝑃𝑠

Ω𝑓 − 𝑃𝑠
𝑈𝑓 𝐿∞  𝑈𝜌 \𝐾 , 

whence (33) follows. 

  In the case of a local form, one passes from precompact U to arbitrary U as in the proof of Corollary(15).       

 The inequality (33) can be improved as follows: 

𝑃𝑡
Ω𝑓 𝑥 − 𝑃𝑡

𝑈𝑓 𝑥 ≤  1 − 𝑃𝑡
𝑈𝟏𝑈 𝑥   sup0<𝑠≤𝑡

𝑠∈ℚ
  𝑃𝑠

Ω𝑓 𝐿∞  𝑈𝜌 \𝐾 ,                  35  

because the function 𝑢 = 𝑃𝑡
Ω𝑓 − 𝑃𝑡

𝑈𝑓 automatically satisfies conditions (23) and (24). Since U ⊂ Ω, it suffices 

to verify that the function 𝑢 = 𝑃𝑡
Ω𝑓 satisfies (23) and (24).Indeed, (23) follows from the strong continuity of the 

semigroup   𝑃𝑡
Ω  in 𝐿2 Ω  whilst  (24) follows from the fact that ℰ 𝑃𝑡

Ω𝑓  is a decreasing function of  𝑡, the latter 

being a consequence of the identity 

ℰ 𝑃𝑡
Ω𝑓 =  𝜆𝑒−2𝜆𝑡𝑑 𝐸𝜆𝑓, 𝑓 ,

∞

0

 

where   𝐸𝜆  is the spectral resolution of the operator ΔΩ  , the generator of  ℰ, ℱ Ω  .  Hence, (35) follows from  

 

𝑢(𝑡, 𝑥) ≤  1 − 𝑃𝑡
𝑈 𝑥  𝑠𝑢𝑝0<𝑠≤𝑡

𝑠∈ℚ
 𝑢+ 𝑠, .   𝐿∞  𝑈𝜌 ∖𝐾  

 

  The estimate (34) with 𝐾 = ∅ was proved also in [6]. A useful particular case of (34) is when the function f 

vanishes in U. In this case, (33) becomes 

𝑃𝑡
Ω𝑓 𝑥 ≤  1 − 𝑃𝑡

𝑈𝟏𝑈 𝑥   sup0<𝑠≤𝑡   𝑃𝑠
Ω𝑓 𝐿∞  𝑈𝜌 \𝐾 .                36  

   We will also  prove a symmetric comparison inequality for the heat kernel of a ρ-local Dirichlet form .The 

motivation is as follows. Let ( ℰ, ℱ) be an arbitrary regular Dirichlet form and let U, V ⊂ Ω be three open 

subsets of M such that 

 U ∩ V = ∅. We claim that, for all  𝑡, 𝑠 > 0 and µ-almost all 𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉, 

𝑃𝑡+𝑠
Ω  𝑥, 𝑦 ≤  1 − 𝑃𝑡

𝑈𝟏𝑈 𝑥   𝑃𝑠
Ω ∙, 𝑦  𝐿∞  Ω\𝑈  

+ 1 − 𝑃𝑠
𝑉𝟏𝑉 𝑦   𝑝𝑡

Ω ∙, 𝑥  
𝐿∞  Ω\𝑉 

.             37  

Indeed, noticing that 

∫
Ω\𝑈

 𝑝𝑡
Ω 𝑥, 𝑧 𝑑𝜇 𝑧 ≤ 1 − 𝑃𝑡

Ω𝟏𝑈 𝑥 ≤ 1 − 𝑃𝑡
𝑈𝟏𝑈 𝑥 , 

we obtain that 
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∫
Ω\𝑈

 𝑝𝑡
Ω 𝑥, 𝑧 𝑑𝜇 𝑧 ≤  𝑝𝑠

Ω ∙, 𝑦  𝐿∞  Ω\𝑈  ∫Ω\𝑈
𝑝𝑡
Ω   𝑥, 𝑧 𝑑𝜇 𝑧  

≤  1 − 𝑃𝑡
𝑈1𝑈 𝑥   𝑝𝑠

Ω ∙, 𝑦  𝐿∞  Ω\𝑈               38  

In a similar way, we have 

∫
Ω\𝑉

 𝑝𝑡
Ω 𝑥, 𝑧 𝑝𝑠

Ω 𝑧, 𝑦 𝑑𝜇 𝑧 ≤  1 − 𝑃𝑠
𝑉𝟏𝑉 𝑦   𝑝𝑡

Ω ∙, 𝑥  
𝐿∞  Ω\𝑉 

.          39  

Therefore, by the semigroup property, 

             𝑝𝑡+𝑠
Ω  𝑥, 𝑦 = ∫

Ω
 𝑝𝑡
Ω 𝑥, 𝑧 𝑝𝑠

Ω 𝑧, 𝑦 𝑑𝜇 𝑧  

≤ ∫
Ω\𝑈

 𝑝𝑡
Ω 𝑥, 𝑧 𝑝𝑠

Ω 𝑧, 𝑦 𝑑𝜇 𝑧 + ∫
Ω\𝑉

 𝑝𝑡
Ω 𝑥, 𝑧 𝑝𝑠

Ω 𝑧, 𝑦 𝑑𝜇 𝑧 . 

which together with (38) and (39) yields (37). 

  The purpose of the next theorem is to use the ρ-locality in order to replace in (37) the  𝐿∞  -norms in Ω \ U, Ω \ 

V by those in smaller sets, which is frequently critical for applications. 

Theorem(17). Let  ℰ, ℱ  be a ρ-local regular Dirichlet form in  𝐿2 𝑀, 𝜇  where  𝜌 ≥ 0, and let U, V, Ω be 

three open subsets of M such that 𝑈𝜌  , 𝑉𝜌  are precompact and  𝑈𝜌 , 𝑉𝜌 ⊂ Ω. Assume that all the Dirichlet heat 

kernels 𝑝𝑡
𝑈 , 𝑝𝑡

𝑉 , 𝑝𝑡
Ω  exist and that  𝑝𝑡

Ω 𝑥, 𝑦  is locally bounded in  ℝ+ × Ω × Ω. Then, for all  𝑡, 𝑠 > 0 and µ-

almost all  𝑥 ∈ 𝑈, 𝑦 ∈ 𝑉, 

𝑝𝑡+𝑠
Ω  𝑥, 𝑦  ≤  ∫

Ω
  𝑝𝑡

𝑈 𝑥, 𝑧 𝑝𝑠
𝑉 𝑧, 𝑦 𝑑𝜇 𝑧 +  1 − 𝑃𝑡

𝑈1𝑈 𝑥   sup𝑠<𝑡 ′≤𝑡+𝑠   𝑝𝑡 ′
Ω  ∙, 𝑦  

𝐿∞  𝑈𝜌 \𝐾1 
 

+ 1 − 𝑃𝑠
𝑉1𝑉 𝑦   sup𝑡<𝑡 ′ 𝑡+𝑠   𝑝𝑡 ′

Ω  ∙, 𝑥  
𝐿∞  𝑉𝜌 \𝐾2 

,                        40  

where 𝐾1 , 𝐾2 are any compact subsets of U and V respectively. 

  In the case ρ = 0, that is, when  ℰ, ℱ  is local, the assumption of the compactness of 𝑈𝜌 , 𝑉𝜌  can be dropped. 

  Proof: Let v be a non-negative function from 𝐿∞ ∩ 𝐿1 𝑉 . Setting  𝑓 = 𝑃𝑠
Ω𝑣 and noticing that all the 

hypotheses of Corollary(16) are satisfied, we obtain by (35) that the following inequality is true in U for all t > 

0: 

𝑃𝑡+𝑠
Ω 𝑣 ≤ 𝑃𝑡

𝑈 𝑃𝑠
Ω𝑣 +  1 − 𝑃𝑡

𝑈𝟏𝑈  sup0<𝑡 ′≤𝑡
𝑡 ′∈ℚ

  𝑃𝑡 ′+𝑠
Ω 𝑣 

𝐿∞  𝑈𝜌 \𝐾1 
 

= 𝑃𝑡
𝑈 𝑃𝑠

Ω𝑣 +  1 − 𝑃𝑡
𝑈𝟏𝑈  sup𝑠<𝑡 ′≤𝑡+𝑠

𝑡 ′∈ℚ

  𝑃𝑡 ′
Ω𝑣 

𝐿∞  𝑈1\𝐾1 
,  41  

where we have used that 𝑃𝑡
Ω𝑓 = 𝑃𝑡+𝑠

Ω 𝑣. Consider the function 

𝐹 𝑦 ∶=  sup𝑠<𝑡 ′≤𝑡+𝑠
𝑡 ′∈ℚ

 esup𝑧∈𝑈𝜌 \𝐾1
 𝑝𝑡 ′
Ω  𝑧, 𝑦 , 

which is bounded in V. Note that 𝐹 𝑦  is measurable as the supremum of a countable family of measurable 

functions of y since 

𝑦 ↦ esup𝑧∈𝑈𝜌 \𝐾1
 𝑝𝑡 ′
Ω  𝑧, 𝑦  

is measurable t varies in . We have then 

sup𝑠<𝑡 ′≤𝑡+𝑠
𝑡 ′∈ℚ

  𝑃𝑡 ′
Ω𝑣 

𝐿∞  𝑈𝜌 \𝐾1 
= sup𝑠<𝑡 ′≤𝑡+𝑠

𝑡 ′∈ℚ

 esup𝑧∈𝑈𝜌 \𝐾1
∫
𝑉

 𝑝𝑡 ′
Ω  𝑧, 𝑦 𝑣 𝑦 𝑑𝜇 𝑦  

≤ ∫
𝑉

 𝐹 𝑦 𝑣 𝑦 𝑑𝜇 𝑦 .                                      42  

Multiplying (41) by a non-negative function 𝑢 ∈ 𝐿∞ ∩ 𝐿1 𝑈  and integrating over U, we obtain 

 𝑃𝑡+𝑠
Ω 𝑣, 𝑢 ≤  𝑃𝑡

𝑈 𝑃𝑠
Ω𝑣 , 𝑢 + ∬

𝑈×𝑉
  1 − 𝑃𝑡

𝑈1𝑈 𝑥  𝐹 𝑦 𝑢 𝑥 𝑣 𝑦 𝑑𝜇 𝑥 𝑑𝜇 𝑦 .     43  

On the other hand, observe that 

 𝑃𝑡
𝑈 𝑃𝑠

Ω𝑣 , 𝑢 =  𝑃𝑠
Ω𝑣, 𝑃𝑡

𝑈𝑢 =  𝑣, 𝑃𝑠
Ω𝑃𝑡

𝑈𝑢 .                         44  

Using (35) again, now with 𝑓 = 𝑃𝑡
𝑈𝑢 and with V in place of U, we obtain the following inequality in V: 

𝑃𝑠
Ω𝑃𝑡

𝑈𝑢 = 𝑃𝑠
Ω𝑓 ≤ 𝑃𝑠

𝑉𝑓 +  1 − 𝑃𝑠
𝑉1𝑉  sup0<𝑡 ′≤𝑠

𝑡 ′∈ℚ

  𝑃𝑡 ′
Ω𝑓 

𝐿∞  𝑉𝜌 \𝐾2 
.       45  

Observing that  𝑃𝑡
𝑈𝑢 ≤ 𝑃𝑡

Ω𝑢, we obtain that 

𝑃𝑡 ′
Ω𝑓 = 𝑃𝑡 ′

Ω𝑃𝑡
𝑈𝑢 ≤ 𝑃𝑡 ′

Ω𝑃𝑡
Ω𝑢 = 𝑃𝑡 ′+𝑡

Ω 𝑢. 

Similarly to (42), we have 

sup𝑡<𝑡 ′≤𝑡+𝑠
𝑡 ′∈ℚ

  𝑃𝑡 ′
Ω𝑢 

𝐿∞  𝑉𝜌 \𝐾2 
≤ ∫

𝑈
 𝐺 𝑥 𝑢 𝑥 𝑑𝜇 𝑥  
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where 

𝐺 𝑥 ∶= sup𝑡<𝑡 ′≤𝑡+𝑠
𝑡 ′∈ℚ

 esup𝑧∈𝑉𝜌 \𝐾2
 𝑝𝑡 ′
Ω  𝑧, 𝑥  

is a bounded measurable function on U. Substituting into (45), we obtain in V 

𝑃𝑡
Ω𝑃𝑡

𝑈𝑢 ≤ 𝑃𝑠
𝑉 𝑃𝑡

𝑈𝑢 +  1 − 𝑃𝑠
𝑉𝟏𝑉  ∫𝑉  𝐺 𝑥 𝑢 𝑥 𝑑𝜇 𝑥 .         46  

Multiplying (46) by 𝑣 and integrating over V, we obtain 

 𝑣, 𝑃𝑠
Ω𝑃𝑡

𝑈𝑢  ≤   𝑣, 𝑃𝑠
𝑉 𝑃𝑡

𝑈𝑢  +∬
𝑈×𝑉

  1 − 𝑃𝑠
𝑉1𝑉 𝑦   𝐺 𝑥 𝑢 𝑥 𝑣 𝑥 𝑑𝜇 𝑥 𝑑𝜇 𝑥 . 

Combining this with (43) and (154), we obtain 

    𝑃𝑡+𝑠
Ω 𝑣, 𝑢 ≤  𝑣, 𝑃𝑠

𝑉 𝑃𝑡
𝑈𝑢   

+∬
𝑈×𝑉

  1 − 𝑃𝑡
𝑈1𝑈 𝑥  𝐹 𝑦 𝑢 𝑥 𝑣 𝑦 𝑑𝜇 𝑥 𝑑𝜇 𝑦  

+∬
𝑈×𝑉

  1 − 𝑃𝑠
𝑉1𝑉 𝑦  𝐺 𝑥 𝑢 𝑥 𝑣 𝑦 𝑑𝜇 𝑥 𝑑𝜇 𝑦 . 

Since 

 𝑣, 𝑃𝑠
𝑉 𝑃𝑡

𝑈𝑢  = ∬
𝑈×𝑉

 ∫
Ω
𝑝𝑡
𝑈 𝑥, 𝑧 𝑝𝑠

𝑉 𝑧, 𝑦 𝑑𝜇 𝑧  𝑢 𝑥 𝑣 𝑦 𝑑𝜇 𝑥 𝑑𝜇 𝑦 ,       

we can rewrite the previous inequality in the form 

 

∬
𝑈×𝑉

 𝑝𝑡+𝑠
Ω  𝑥, 𝑦 𝑢 𝑥 𝑣 𝑦 𝑑𝜇 𝑥 𝑑𝜇 𝑦 ≤ ∬

𝑈×𝑉
 Φ 𝑥, 𝑦 𝑢 𝑥 𝑣 𝑦 𝑑𝜇 𝑥 𝑑𝜇 𝑦 ,      47  

where 

Φ 𝑥, 𝑦 = ∫
𝑈∩𝑉

 𝑝𝑡
𝑈 𝑥, 𝑧 𝑝𝑠

𝑉 𝑧, 𝑦 𝑑𝜇 𝑧 +  1 − 𝑃𝑡
𝑈𝟏𝑈 𝑥  𝐹 𝑦 +  1 − 𝑃𝑠

𝑉𝟏𝑉 𝑦  𝐺 𝑥 . 

Obviously, Φ 𝑥, 𝑦  is a bounded measurable function on U × V. By [6], the inequality (47) implies 

𝑃𝑡+𝑠
Ω  𝑥, 𝑦 ≤ 𝛷 𝑥, 𝑦  

for almost all 𝑥 ∈ 𝑈 and 𝑦 ∈ 𝑉, which proves (40). 

     In the case of a local form ( ℰ, ℱ ), one obtains the claim for arbitrary open sets U, V by passing to the limit 

when exhausting U and V by precompact open sets.                                                                                                                                      

    We introduce a technique for self-improvement of pointwise upper estimates of the heat kernel of a local, 

conservative, regular Dirichlet form. This issue was addressed in [7, 2, 5,3] on abstract metric measure spaces, 

and in [8, 9, 10] on some fractal sets. Motivated by the application of symmetric comparison inequalities for the 

heat kernels in [1], we here present an alternative approach to such results, which is based on Theorem(17) 

  Let   𝑃𝑡 𝑡≥0,  𝑃𝑡
Ω 𝑡≥0 be the semigroups of the Dirichlet forms  ℰ, ℱ ,  ℰ, ℱ Ω   respectively as before. For any  

𝑥 ∈ 𝑀 and  𝑟 > 0, define the metric ball 

𝐵 𝑥, 𝑟 =  𝑦 ∈ 𝑀: 𝑑 𝑥, 𝑦 < 𝑟 . 

For any ball 𝐵 = 𝐵 𝑥, 𝑟  and any positive constant λ, denote by  λB  the ball  𝐵 𝑥, 𝜆𝑟   . 

  Recall that a Dirichlet form ( ℰ, ℱ ) in  𝐿2 𝑀, 𝜇  is called conservative if the heat semigroup   𝑃𝑡 𝑡≥0 𝑜𝑓  ℰ, ℱ  

satisfies the following property: 

𝑃𝑡1 = 1  in 𝑀  for any 𝑡 > 0. 

Lemma(18). Assume that  ℰ, ℱ  is a conservative, regular Dirichlet form in 𝐿2 𝑀, 𝜇 , and let   𝑃𝑡 𝑡≥0 be the 

heat semigroup of  ℰ, ℱ . Assume that 𝜙 𝑟, 𝑡  is a non-negative function on   0,∞ ×  0,   such that 𝜙 𝑟,∙  is 

increasing in  0,∞  for every r > 0. If, for any t > 0 and any ball B in M of radius r, 

𝑃𝑡𝟏𝐵𝑐 ≤ 𝜙 𝑟, 𝑡   𝑖𝑛 
1

4
𝐵,                                48  

Then 

1 − 𝑃𝑡
𝐵𝟏𝐵 ≤ 2𝜙  

𝑟

4
, 𝑡   𝑖𝑛 

1

4
𝐵.                             49  

Proof : Applying the estimate (37) with Ω = M, U = B,  𝐾 =
3

4
𝐵  and  𝑃𝑡1 = 1 , we obtain that, for any t > 0 and 

almost everywhere in M, 

𝑃𝑡
𝐵𝟏1

2
𝐵
≥ 𝑃𝑡𝟏1

2
𝐵
− sup0<𝑠≤𝑡  𝑃𝑠𝟏1

2
𝐵
 
𝐿∞   

1
4
𝐵  

𝑐
 

.                  50  

For any  𝑥 ∈
1

4
𝐵, we have that  𝐵 𝑥, 𝑟 4  ⊂

1

2
𝐵 (see Fig. 6). Using the identity    𝑃𝑡1 = 1, we have that, for any  
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𝑥 ∈
1

4
𝐵, 

𝑃𝑡𝟏1
2
𝐵

= 1 − 𝑃𝑡𝟏
 

1
2
𝐵 

𝑐 ≥ 1 − 𝑃𝑡1𝐵 𝑥,𝑟 4  𝑐 . 

Applying (48) for the ball 𝐵 𝑥, 𝑟 4  , we see that 

𝑃𝑡𝟏𝐵 𝑥,𝑟 4  𝑐 ≤ 𝜙 𝑟 4 , 𝑡   in 𝐵 𝑥, 𝑟 16  . 

It follows that, for any 𝑥 ∈
1

4
𝐵, 

 
Figure 6: Illustration to the proof of Lemma (18). 

𝑃𝑡𝟏1
2
𝐵
≥ 1 − 𝜙 𝑟 4 , 𝑡      in 𝐵 𝑥, 𝑟 16  . 

Covering 
1

4
𝐵 by a countable family of balls 𝐵 𝑥𝑘 , 𝑟 16   where  𝑥𝑘 ∈

1

4
𝐵, we obtain that 

𝑃𝑡𝟏1
2
𝐵
≥ 1 − 𝜙 𝑟 4 , 𝑡    in 

1

4
𝐵.                                    51  

On the other hand, for any 𝑦 ∈  
3

4
𝐵  

𝑐

 , we have that 
1

2
𝐵 ⊂ 𝐵 𝑦, 𝑟 4  𝑐 , and so 

𝑃𝑠𝟏1
2
𝐵
≤ 𝑃𝑠1𝐵 𝑦,𝑟 4  𝑐 . 

Applying (48) for the ball 𝐵 𝑦, 𝑟 4   at time s and using the monotonicity of 𝜙 𝑟, 𝑠  in s, we obtain that, for any  

0 < 𝑠 ≤ 𝑡, 

𝑃𝑠𝟏𝐵 𝑦,𝑟 4  𝑐 ≤ 𝜙 𝑟 4 , 𝑠 ≤ 𝜙 𝑟 4 , 𝑡    in 𝐵 𝑦, 𝑟 16  . 

It follows that, for any 𝑦 ∈  
3

4
𝐵  

𝑐

 and any 0 < 𝑠 ≤ 𝑡, 

𝑃𝑠𝟏1
2
𝐵
≤ 𝜙 𝑟 4 , 𝑡   in 𝐵 𝑦, 𝑟 16  , 

which implies that 

𝑃𝑠𝟏1
2
𝐵
≤ 𝜙 𝑟 4 , 𝑡   in   

3

4
𝐵  

𝑐

.                             52  

Combining (50), (51) and (52), we obtain that, for any t > 0, 

𝑃𝑡
𝐵𝟏𝐵 ≥ 𝑃𝑡

𝐵𝟏1
2
𝐵
≥ 1 − 2𝜙 𝑟 4 , 𝑡    in  

1

4
𝐵,                          53  

which was to be proved.   

   In the next statement, we use a function 𝐹:𝑀 × 𝑀 ×  0,∞ →  0,∞  with the following properties: 

 (F1):  𝐹 𝑥, 𝑦, 𝑠 = 𝐹 𝑦, 𝑥, 𝑠 for all  𝑥, 𝑦 ∈ 𝑀 and  𝑠 > 0; 

  (F2):  𝐹 𝑥, 𝑦, 𝑠  is decreasing in 𝑠 for any  𝑥, 𝑦 ∈ 𝑀; 

  (F3): there exist  𝛼, 𝐶 > 0 such that 

𝐹 𝑧, 𝑦, 𝑠 

𝐹 𝑥, 𝑦, 𝑠 
≤ 𝐶  1 +

𝑑 𝑥, 𝑧 

𝑠
 

𝛼

                                                       54  

for all 𝑥, 𝑦, 𝑧 ∈ 𝑀 and  𝑠 > 0. 

Theorem(19). Let ( ℰ, ℱ) be a conservative, local, regular Dirichlet form in 𝐿2 𝑀, 𝜇 . Let h be a positive 
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increasing function on  0, +∞ . Assume in addition that the following two conditions hold: 

    (i) The heat kernel 𝑝𝑡  of   ℰ, ℱ  exists and satisfies the inequality 

𝑝𝑡 𝑥, 𝑦 ≤ 𝐹 𝑥, 𝑦, 𝑕 𝑡  ,                                                     55  

    for all t > 0, µ-almost all 𝑥, 𝑦 ∈ 𝑀, where F is a function that satisfies the 

        conditions (F1)-(F3) above. 

   (ii) There exist 𝜀 ∈  0,
1

2
 , 1 and δ > 0 such that, for any ball B of radius r > 0 and for   any t > 0, we have 

𝑃𝑡1𝐵𝑐 ≤ 𝜀  𝑖𝑛  
1

4
𝐵                                                  56  

whenever  𝑕 𝑡 ≤ 𝛿𝑟. 

Then, for all λ, t > 0 and µ-almost all  𝑥, 𝑦 ∈ 𝑀, 

𝑝𝑡 𝑥, 𝑦 ≤ 𝐶𝐹  𝑥, 𝑦, 𝑕  
𝑡

2
  exp  −𝑐′ 𝑡Ψ  

𝑐𝑟

𝑡
                             57  

where 𝑟 = 𝑑 𝑥, 𝑦 , the constant  𝐶 > 0, and Ψ is defined by 

Ψ 𝑠 = sup𝜆>0  
𝑠

𝑕 1 𝜆  
− 𝜆 .                                 58  

Proof: Fix  𝑡 > 0, two distinct points 𝑥0 , 𝑦0 ∈ 𝑀 and set 𝑟 =
1

2
𝑑 𝑥0, 𝑦0 . With 𝑈 = 𝐵 𝑥0 , 𝑟 , 𝑉 = 𝐵 𝑦0 , 𝑟 , Ω =

𝑀 and  𝜌 = 0, we obtain that, for   µ-almost all 𝑥 ∈ 𝐵 𝑥0 , 𝑟  and  𝑦 ∈ 𝐵 𝑥0, 𝑟 , 

𝑝𝑡 𝑥, 𝑦 ≤  1 − 𝑃𝑡 2 
𝑈 𝟏𝑈 𝑥   sup𝑡 2 <𝑠≤𝑡  esup𝑧∈𝐵 𝑥0 ,𝑟  𝑝𝑠 𝑧, 𝑦         59  

+ 1 − 𝑃𝑡 2 
𝑉 𝟏𝑉 𝑦   sup𝑡 2 <𝑠≤𝑡  esup𝑧∈𝐵 𝑦0 ,𝑟  𝑝𝑡 𝑧, 𝑥 .    60  

In what follows, we estimate the term on the right-hand side of (59), while the term in (60) can be treated 

similarly. We claim that, for all λ > 0, 

1 − 𝑃𝑡 2 
𝑈 𝟏𝑈 ≤ 𝐶 exp  𝑐′𝜆𝑡 −

𝑐𝑟

𝑕 1 𝜆  
    in 

1

4
𝑈.                        61  

Indeed, we see from (56) that the hypothesis (48) of Lemma(18) is satisfied with 

𝜙 𝑟, 𝑡 =  
 𝜀,   if 𝑕 𝑡 ≤ 𝛿𝑟,
 1      otherwise.

  

Therefore, by Lemma(18), we obtain that, for all balls B of radius r, 

1 − 𝑃𝑡
𝐵𝟏𝐵 ≤ 2𝜙  

𝑟

4
, 𝑡 ≤ 2𝜀    in 

1

4
𝐵, 

provided that 𝑕 𝑡 ≤ 𝛿𝑟 4 . It follows from [5] (see also [6]) that, for any ball B of radius r and for any λ > 0, 

𝑃𝑡1𝐵𝑐 ≤ 𝐶 exp  𝑐′𝜆𝑡 −
𝑐𝑟

𝑕 1 𝜆  
   in 

1

2
𝐵. 

Using Lemma(18) again, this time with the function 

𝜙 𝑟, 𝑡 = 𝐶 exp  𝑐′𝜆𝑡 −
𝑐𝑟

𝑕 1 𝜆  
 , 

We obtain 

1 − 𝑃𝑡
𝐵1𝐵 ≤ 2𝐶exp 𝑐′𝜆𝑡 −

𝑐𝑟 4 

𝑕 1 𝜆  
   in 

1

4
𝐵, 

which proves (61). 

 On the other hand, for all 𝑧 ∈ 𝐵 𝑥0 , 𝑟  and  𝑥 ∈ 𝐵 𝑥0, 𝑟 , we have that   𝑧 ∈ 𝐵 𝑥, 2𝑟 , whence by condition 

(F3) 

𝐹 𝑧, 𝑦, 𝑕 𝑡 2   

𝐹 𝑥, 𝑦, 𝑕 𝑡 2   
≤ 𝐶  1 +

2𝑟

𝑕 𝑡 2  
 
𝛼

≤ 2𝛼𝐶  1 +
𝑟

𝑕 𝑡 2  
 
𝛼

. 

Noting that h is increasing and 𝐹 𝑥, 𝑦,∙  is decreasing, we have from (55) that, for all 
1

2
≤ 𝑠 ≤ 𝑡 and for µ-almost 

all 𝑧 ∈ 𝐵 𝑥0, 𝑟  and 𝑦 ∈ 𝐵 𝑦0 , 𝑟 , 

𝑝𝑠 𝑧, 𝑦 ≤ 𝐹 𝑧, 𝑦, 𝑕 𝑠  ≤ 𝐹 𝑧, 𝑦, 𝑕 𝑡 2    

= 𝐹 𝑥, 𝑦, 𝑕 𝑡 2   
𝐹 𝑧, 𝑦, 𝑕 𝑡 2   

𝐹 𝑥, 𝑦, 𝑕 𝑡 2   
≤ 2𝛼𝐶𝐹 𝑥, 𝑦, 𝑕 𝑡 2    1 +

𝑟

𝑕 𝑡 2  
 
𝛼

. 
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Therefore, we have, for almost all  𝑦 ∈ 𝐵 𝑦0 , 𝑟 , 

sup𝑡 2 <𝑠≤𝑡  esup𝑧∈𝐵 𝑥0 ,𝑟  𝑝𝑠 𝑧, 𝑦 ∈ 𝐶𝐹 𝑥, 𝑦, 𝑕 𝑡 2    1 +
𝑟

𝑕 𝑡 2  
 
𝛼

.  62  

Combining (61) and (62) and a similar estimate for the term in (60), we obtain from  (59) and (60) that, for µ-

almost all 𝑥 ∈ 𝐵  𝑥0 ,
1

4
𝑟 , 𝑦 ∈  𝑦0 ,

1

4
𝑟 , 

𝑝𝑡 𝑥, 𝑦 ≤ 𝐶𝐹 𝑥, 𝑦, 𝑕 𝑡 2    1 +
𝑟

𝑕 𝑡 2  
 
𝛼

exp  𝑐′𝜆𝑡 −
𝑐𝑟

𝑕 1 𝜆  
 .     63  

   In order to absorb the middle term to the exponential on the right-hand side in (63), fix  r, t and consider the 

function 

𝐺 𝜆 ∶=
𝑐𝑟

𝑕 1 𝜆  
− 𝑐′𝜆𝑡, 

where  c' , c are the same as in (63). Using this with λ = 2/t and the elementary inequality 

𝛼 log  1 +
𝑟

𝑕 𝑡 2  
 ≤

1

2

𝑐𝑟

𝑕 𝑡 2  
+ 𝑐′′  

                    =
1

2
𝐺 2 𝑡  + 𝑐′ + 𝑐′′ ≤

1

2
sup𝜆>0𝐺 𝜆 + 𝑐′ + 𝑐′′ . 

Therefore, 

 1 +
𝑟

𝑕 𝑡 2  
 
𝛼

exp −sup𝜆>0𝐺 𝜆  ≤ exp  −
1

2
supλ>0𝐺 𝜆 + 𝑐′ + 𝑐′′   

                                                      ≤ 𝐶 exp  −
1

2
sup𝜆>0𝐺 𝜆   

                                             ≤ 𝐶 exp  −
1

2
𝐺 𝜆  . 

Therefore, we obtain from (63) that, for any λ > 0 and µ-almost all 𝑥 ∈ 𝐵  𝑥0 ,
1

4
𝑟 , 𝑦 ∈ 𝐵  𝑦0 ,

1

4
𝑟  . 

𝑝𝑡 𝑥, 𝑦 ≤ 𝐶𝐹 𝑥, 𝑦, 𝑕 𝑡 2   𝑒𝑥𝑝  −
1

2
𝐺 𝜆  .                          64  

Since M × M \ diag can be covered by a countable family of sets 𝐵  𝑥0 ,
1

4
𝑟 × 𝐵  𝑦0 ,

1

4
𝑟  as above, it follows 

that (64) holds for µ-almost all 𝑥, 𝑦 ∈ 𝑀. Taking sup in λ > 0, we obtain (57).  

    Let us give an example to illustrate Theorem(19), Set 

𝑉 𝑥, 𝑟 ∶= 𝜇 𝐵 𝑥, 𝑟   

and assume in the sequel that the following volume doubling condition (V D) is satisfied: there is a constant 

𝐶𝐷 ≥ 1 such that 

𝑉 𝑥, 2𝑟 ≤ 𝐶𝐷𝑉 𝑥, 𝑟                                                       65  

for all 𝑥 ∈ 𝑀 and  𝑟 > 0. It is known that (V D) implies the existence of a constant  𝛼 > 0 such that 

𝑉 𝑥, 𝑅 

𝑉 𝑦, 𝑟 
≤ 𝐶𝐷  

𝑑 𝑥, 𝑦 + 𝑅

𝑟
 

𝛼

                                            66  

for all  𝑥, 𝑦 ∈ 𝑀 and  0 < 𝑟 ≤ 𝑅 (see [6]). 

  Define functions h and F as follows: 

𝑕 𝑡 = 𝑡1 𝛽  

and 

𝐹 𝑥, 𝑦, 𝑠 =
𝐶

 𝑉 𝑥, 𝑕 𝑠  𝑉 𝑦, 𝑕 𝑠  

 , 

for all 𝑡, 𝑠 > 0 and  𝑥, 𝑦 ∈ 𝑀, where  𝛽 > 1 is some constant. It follows from (66) that F satisfies conditions 

(F1)-(F3). It is easy to see that the supremum in (58) is attained at  𝜆 = 𝑐𝑠
𝛽

𝛽−1   so that 

Ψ 𝑠 = 𝑐𝑠
𝛽
𝛽−1. 

The estimate (57) becomes 
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𝑝𝑡 𝑥, 𝑦 ≤
𝐶

 𝑉 𝑥, 𝑡1 𝛽  𝑉 𝑦, 𝑡1 𝛽  
exp −𝑐  

𝑑 𝑥, 𝑦 

𝑡1 𝛽 
 

𝛽
𝛽−1

 . 

for all 𝑡 > 0 and almost all 𝑥, 𝑦 ∈ 𝑀. Using (66) again and applying the same argument as in the proof of 

Theorem(19), we obtain that 

𝑝𝑡 𝑥, 𝑦 ≤
𝐶

𝑉 𝑥, 𝑡1 𝛽  
exp −𝑐  

𝑑 𝑥, 𝑦 

𝑡1 𝛽 
 

𝛽
𝛽−1

 .                               67  

In particular, if 𝑉 𝑥, 𝑟  ≃  𝑟𝛼  for some  𝛼 > 0,  then (67) becomes 

𝑝𝑡 𝑥, 𝑦 ≤
𝐶

𝑡𝛼 𝛽 
exp −𝑐  

𝑑 𝑥, 𝑦 

𝑡1 𝛽 
 

𝛽
𝛽−1

 .                                68  

Proposition(20). Let  𝐹 𝑥, 𝑦  be a non-negative µ-measurable function of  𝑥, 𝑦 ∈ 𝑀. Then the function 

𝑓 𝑥 = esup𝑦  𝐹 𝑥, 𝑦  

Is measurable. 

Proof: Fix a pointwise realization of F. Assume first that F is bounded. For any    𝑥 ∈ 𝑀, consider the mapping 

𝐿1 ∋ 𝜑 ⟼ 𝑇𝜑 𝑥 ∶= ∫
𝑀

 𝐹 𝑥, 𝑦 𝜑 𝑦 𝑑𝜇 𝑦  

which is a bounded linear functional on 𝐿1 . We have 

𝑓 𝑥 = sup 𝜑 1≤1  𝑇𝜑 𝑥 . 

Since T is continuous in 𝜑, the supremum can be replaced by the one over a dense subset 𝑆 ⊂ 𝐿1 , that is, 

𝑓 𝑥 =   sup 𝜑 1≤1,𝜑∈𝑆 𝑇𝜑 𝑥 . 

Since 𝑇𝜑 is a measurable function, the supremum over a countable family is also measurable, and hence, the 

function f is measurable. 

   For an arbitrary F, consider  𝐹𝑘 = 𝐹 ∧ 𝑘, we have from above that                                   

𝑓𝑘 𝑥 ∶= 𝑒𝑠𝑢𝑝𝑦𝐹𝑘 𝑥, 𝑦  is measurable. Note that the sequence  𝑓𝑘 𝑘=1
∞  increases and converges to f  pointwise 

as 𝑘 → ∞. Hence, the function f  is measurable. 

Corollary(21). Let   𝐹 𝑥𝑗 , 𝑦 ∞
𝑗=1  be a series of  non-negative µ-measurable functions  of  𝑥𝑗 , 𝑦 ∈ 𝑀 , 𝑗 ≥ 1 . 

Then the series of  functions [11]. 

𝑓 𝑥𝑗  = esup𝑦 𝐹 𝑥𝑗 , 𝑦 

∞

𝑗=1

  

Is measurable. 

Proof:  If  F is bounded. Then for any    𝑥𝑗 ∈ 𝑀, we consider the mapping 

𝜑 ⟼ 𝑇𝜑 𝑥𝑗    such that 𝜑 ∈ 𝐿1 

and   

𝑇𝜑 𝑥𝑗  ∶= ∫
𝑀
 𝐹 𝑥𝑗 , 𝑦 𝜑 𝑦 𝑑𝜇 𝑦 

∞

𝑗=1

  

which are a bounded linear functionals on 𝐿1 . We have 

𝑓 𝑥𝑗  = sup 𝜑 1≤1  𝑇𝜑 𝑥𝑗  .

∞

𝑗=1

  

Since T is continuous in 𝜑, the supremum can be replaced by the one over a dense subset 𝑆 ⊂ 𝐿1 , that is, 

 𝑓 𝑥𝑗  

∞

𝑗=1

=   sup 𝜑 1≤1,𝜑∈𝑆   𝑇𝜑 𝑥𝑗  

∞

𝑗=1

. 

Since  𝑇𝜑 𝑥𝑗  
∞
𝑗=1   are  measurable functions, then  the supremum over a countable family is also measurable 

,and hence, the functions  𝑓 , 𝑥𝑗   are measurable.  
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