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Abstract In this study, the different approaches of the matrix division and the generalization of Cramer’s rule
and some examples are given.
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Recently, matrix division has been described asE:: |B| for A and BeM!( R )matrices, with

|. Introduction

nxn
|B| #0, where [E’:ij ] is the co-divisor matrix on B of A.

11. Different Approaches on the Matrix Division

: : A . : A
Now, different computation OfE for A and BeM*(R) with Aand B regular matrices, to find B’ if it
exist, proceed as follows:

Step 1. Form the augmented matrix[B| A] .

A.
l.
BYj ji

8]

Step 2. Apply the Gauss-Jordan method to attempt to reduce [B| A} to| I,

A A .
as | l,|—=| . Otherwise — dos not exist.
B nxn B
Similarly, [A| B} -~ {In

g

_ _ ... A
Lemma 1. Let A and Bbe regular matrices, with N xN. Then, matrix division E

. This is written uniquely

is regular too.
Proof. For A and B be regular matrices is |A| #0 and |B| #0. Then,

A
matrix of E is regular from define.
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1 1 -1 1 -1 1
Example 1. Graphsof matrices A=| 1 0 -1|and B={2 0 1 |and their
-1 -1 -1 1 1 -1
. A B
divisions —, —.
B A
Figure 1: Graph of Matrix A
Figure 2: Graph of Matrix B
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Figure :. Graph of Matrix E
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B
Figure 4: Graph of Matrix K .

Now, we have established with following theorem equivalent relation. We summarize the main ones in a
new Theorem 1. for easy reference.

Theorem 1.Let A and B be nxn regular matrices. Then, the following are equivalent.
i.  Thesystem AX =B has a unique solution.

B
ii. The matrix — is invertible.

. : B
iii. The unknown matrix X is equal to —.
Proof.i.)=> iii.) Itis obvious.

iii.) =ii.) Ifthe system AX =B has a unique solution then the solutions

B B
[AB]~|1,|= [&X=—.
A A
. _ B B {
ii.) =i.) Ifthereis K then matrix — is invertible and | —

B In:| ~|:In
A
A B B)( A A" B
L= el = ==L, el =] ==.
B A A\ B B A
I
If A= |n then we certainly write Alas K" . In [5] it is clamed that this can not be written.

I11. Generalization of Cramer’s Rule

-0+

Consider a systems of NxN linear equations for N? unknowns, represented in matrix multiplication
form as follows:

A
=/
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AX =B,|B|#0
X X,

where the n by n matrix A has a nonzero determinant, and the X = : -~ ¢ |isamatrix of column

nl T nn
vectors.

Then the following theorem states that in this case the system has a unique solution, whose individual
values for the unknowns are given by:

_ det([( Qij)J)

== =L j j=1..,Nn
T ger(g) AT

dEt([( ol )ii })

Theorem 2.Let a system be AX =B, A, B regular matrices. Then, X;; =

det(B)
i,j=1..,n , where [E’jij]is the co-divisor matrix on B of A.
ap v A, X1 o Xy b, - Dby,
Proof. Let A=| : - : |, X=|: : |, B=| : : ,|A|,|B|¢0 be squares
anl e ann an e Xnn bnl e bnn
A.
det([(B”)J)

matrices. It is clear that X;; = 1, j=1,...,n from division of matrices.

det(B)
1V. Conclusions

The matrix division in [1] defined before by determinant coincides with the definition of matrices division given
by writing the Gauss-Jordan method.
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