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Abstract In the present paper, we introduced the coupled theory, Lord–Schulman theory, and Green–Lindsay 

theory to study the rotation on a two-dimensional problem of thermoelasticity subject to thermal loading by a 

laser pulse. The material is a homogeneous isotropic elastic half-space and is heated by a non-Gaussian laser 

beam with a pulse. The method applied here is to use normal mode analysis to solve a thermal shock problem. 

Deformation of a body depends on the nature of the force applied as well as the type of boundary conditions. 

Numerical results for the temperature, displacement, and thermal stress components are given and illustrated 

graphically in the presence of rotation, reinforcement, and for different values of time. 

Keywords Rotation, Generalized thermoelasticity, Laser pulse, Normal mode analysis 

1. Introduction 

In the classical theory of thermoelasticity, Fourier’s heat conduction theory assumes that the thermal 

disturbances propagate at infinite speed, which is unrealistic from the physical point of view. Two different 

generalizations of the classical theory of thermoelasticity have been developed, which predict only the finite 

velocity of propagation of heat and displacement fields. The first one is given by Lord and Shulman [1]. The 

second developed a temperature rate dependent thermoelasticity by including temperature rate among the 

constitutive variables is given by Green and Lindsay [2] have introduced situations where very large thermal 

gradients or annular a high heating speed may exist on the boundaries [3]. 

Effects of rotation and relaxation times on plane waves in generalized thermo-elasticity are studied by 

Roychoudhuri [4]. The classical Fourier model, which leads to an infinite propagation speed of the thermal 

energy, is no longer valid [5]. Ahmad and khan [6] studied the effect of rotation on thermoelastic plane waves in 

an isotropic medium. 

Some problems in thermoelastic rotating media are due to, and Schoenberg and Censor [7], Puri [8], Singh and 

Kumar [9], Othman [10-13], Othman and Singh [14], Abd-Alla  and Abo-Dahab [15]. Also normal mode 

analysis is used to solve a lot of problems in thermal flexibility, such as Lotfy and Abo-Dahab [16] and Othman 

and Song [17]. 

The so-called ultra-short lasers are those with pulse duration ranging from nano-seconds to Femto-seconds in 

general. In the case of ultra-short-pulsed laser heating, the high-intensity energy flux and ultra-short duration 

laser beam, have introduced situations where very large thermal gradients or an ultra-high heating speed may 

exist on the boundaries by Al-Qahtani and Datta [18] Othman and Song [19] have also studied the effect of 
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rotation on plane waves of generalized electro-magneto-thermo-visco-elasticity with two relaxation times. These 

problems are based on the more realistic elastic model since earth; the moon and other planets have angular 

velocity. Wang and Xu [20] have studied the stress wave induced by Pico-and Femto-second laser pulses in a 

semi-infinite metal by expressing the laser pulse energy as Fourier series.                                                                                                               

Some researchers have investigated different problems of the laser pulse. Ultra short, tightly-focused laser 

pulses are employed in a wide range of fields, including particle acceleration [21, 22], high resolution 

microscopy was discussed by Dudovich et al. [23], Schwoerer et al. [24]  studied  X-ray generation and particle 

trapping was studied  by Jiang, Tetsuya and Hiromi  [25]. 

The present paper is to investigate the influence of the rotation  and thermal loading due to laser pulse on the 

plane waves in a linearly thermoelastic isotropic medium. The problem has been solved numerically using 

normal mode analysis. Numerical results for the temperature, displacement components, and the stresses are 

represented graphically and the results are analyzed. The graphical results indicate that the effect of rotation, 

reinforcement, and laser pulse for different values of time on the plane waves in the thermoelastic medium are 

very pronounced.                                         

2. Formulation of the problem and basic equations                                  

We consider the problem of a rotating thermoelastic half-space (x ≥ 0). Acting parallel to the boundary plane 

(taken as the direction of the z-axis). The surface of a half-space is heated uniformly by a laser pulse that is a 

function of x, y, and t. Thus, all quantities considered are independent of z and the third component of 

displacement vector vanishes. When all body forces are neglected the constitutive equation for a linear 

thermoelastic transversely isotropic medium. 

When all body forces are neglected, the governing equations are: 

(1) Strain-displacement relations 

, ,
1

2
( ),ij i j j ie u u 

  
, ,

1

2
( ),ij i j j iu u                                 (1) 

where, ( , ,0)iu u v  are the components of the displacement vector and ije are the components of strain 

tensor. 

(2) Stress-displacement relations 

02 (1 ) ,ij ij ij ije e T
t

      


   


 (2) 

(3) Heat conduction equation 

, 0 0 0 0(1 ) (1 )( )ii EK C T n T e Q
t t

     
 

    
 

   (3) 

*
, ,iiT a    (4) 

The plate surface is illuminated by laser pulse given by the heat input by Al-Qahtani and Datta [18]: 

0f(t)g(y)h(x)Q I                                                                                                     (5) 

where, 0I  is the energy absorbed, the temporal profile f(t) is represented as 

2
0 0

( ) = exp( )
t t

f t
t t


                                                                                                    (6)                                                     

where 0t  is the pulse rising time. 

2

2 2

1
g(y)= exp( )

2 r r

y




                                                                                                (7) 

where r is the beam radius. The function of the depth, x, is 

* *( ) exp( )h x z z x                                                                                                 (8) 

From Equations (6)-(8) in Equation (5), we have: 
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* 2
*0

2 2 2

0 0

Q= exp( )exp( )
2 r r

I z y t
t z x

t t


   (9) 

Where ij are the stress components, ,   are the Lame' constants, (3 2 ) ,t    
  

t  is the thermal expansion coefficient,
 ij

 
is the Kronecker delta, T  is the temperature above the reference 

temperature 0,T
 
k  is the thermal conductivity,

 0n  is a parameter, 0 0,   are the relaxation times, 
 
is the 

density, EC  is the  specific heat at constant strain and   is the conductive temperature. 

Since the medium is rotating uniformly with an angular velocity  n where, n  is a unit vector 

representing the direction of the axis of the rotation, the equation of motion in the rotating frame of reference 

has two additional terms (Schoenberg and Censor [11]): centripetal acceleration ( )   u due to time 

varying motion only and Corioli's  acceleration 2 ,  u  then the equation  of  motion in a  rotating  frame of 

reference is 

,[ { } 2( ) ] , , 1,2,3.i i i ij ju i j          u u  (10) 

Equations (1)-(3) are the field equations of the generalized linear thermoelasticity for a rotating media, 

applicable to the coupled theory, for generalizations, as follows: 

1. The equations of the coupled (CT) theory, when 

0 0 00, 0.n      (11)   

2. Lord-Shulman (L-S) theory, when 

0 0 01, 0, 0.n       (12) 

3. Green-Lindsay (G-L) theory, when 

0 0 00, 0.n      (13)
 

The constitutive relations, using Eq. (1), can be written as 

xx ,x ,y 0= ( + 2 ) + (1 ) ,σ λ μ u λv γ T
t




 
    (14)

 

yy ,x ,y 0= + ( + 2 ) (1 ) ,σ λu λ μ v γ T
t




 
    (15)

 

zz 0= (1 ) ,σ λe γ T
t




 
      (16)

 

xy ,y ,x xz yz= ( + ), = = 0.σ μ u v σ σ
                                                                               (17) 

The equation of motion in the absence of body force:
  

2 2
, 0 ,( 2 ) ( ) (1 )x xu u v u e T

t
       


       


     (18) 

2 2
, 0 ,( 2 ) ( ) (1 )y yv v + u v e T

t
       


      


     (19) 

For simplifications we shall use the following non-dimensional variables: 

*
0 0 0 0{ , , } { , , },t t       

     

*
0

0

,i i

c
u u

T

 


 

    0

{ , }
{ , } ,

T
T

T


  

      

*

0

,i ix x
c


 

  0

,
ij

ij
T





 

      

*
,





 

         

2
'

2
0

.Q Q
c






                                                                (20) 
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Where  
* 2

0 /EC c K     and   
2
0 ( 2 ) / .c      

In terms of the non-dimensional quantities defined in (20), the above governing equations take the form 

(dropping the primes over the non-dimensional variables for convenience)                                                                                                

2 2
02 = (1 ) (1 ) ,

e T
u u v u

x t x
    

  
      

  
     (21) 

2 2
02 = (1 ) (1 ) ,

e T
v v u v

y t y
    

  
      

  
     (22) 

2
0 0 0 1(1 ) (1 )( )T n e Q

t t
    

 
     

 
     (23) 

2(1 ) .T a       (24) 

Where, 

2
0

2 2
0

,
E

T

C c







     

2
0

1 2 *
0 E

c

T C




 
  ,   

   

2
0

( )
,

c

 







     

* *2

2
0

.
a

a
c


  

Also, the constitutive relations (14)-(17) reduces to 

xx ,x ,y 0= + (2 1) (1 ) ,σ u v T
t

 


  
    (25)

 

yy ,x ,y 0= (2 1) + (1 ) ,σ u v T
t

 


  
    (26)

 

zz 0= (2 1) (1 ) ,σ e T
t

 


  
    (27)

 

xy ,y ,x xz yz= (1 )( + ), 0.σ u v σ σ  
   (28)

 

We shall consider only the two-dimensional problem. Assuming that all variables are functions of space 

coordinates ,x y  and time t and independent of coordinate .z  So the displacement components are 

( , , ),xu u x y t ( , , ),yu x y t 0.zu 
 

 

We introduce the displacement potentials ( , , )x y t  and ( , , )x y t  which related to displacement 

components by the relations: 

, , ,x yu    , , .y x     (29) 

Using Eqs. (21)-(23), the two-dimensional equations of motion and the heat-conduction equation become, 

respectively 

2 2 2 2
02

( ) 2 (1 )(1 ) 0a
t t

    
        

 
  (30) 

2 2 2

2
[ (1 ) ] 2

t
          


  (31) 

2 2 2 * *
0 0 0 0(1 )(1 ) (1 ) ( , )exp( )a n Q f y t z x

t t
     

 
          

 
   (32) 

*
0

0 1 2 2
0

.
2 r

I z
Q

t



  ,   

2
*

0 0 2
0 0

( , ) [ (1 )]exp( )
r

t y t
f y t t n

t t



                                 (33) 

3. Normal mode analysis 

 The solution of the considered physical variable can be decomposed in terms of normal modes as 

[ , , ]( , , ) [ , , ]( )exp( )x y t x t iby                                                        (34) 
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where,   is a complex constant; b is the wave number in the y-direction, ),x
 

) and ( )x x  are the 

amplitudes of the field quantities. By using (34) then (30)–(32) take the form 

2 2

1 2 3 4( ) ( ) 0D s s s D s                                                                     (35)                                 

2

5 6( ) 0D s s                                                                                           (36) 

2 2 *

7 8 9 10 0( ) ( ) ( , )exp( )s D s s D s Q f y t z x                                       (37) 

where 

2 2 2

1s b    , 
2 2s    ,  

3 0(1 )s a      , 4 0(1 )(1 )s ab    , 

2 2
2

5
(1 )

s b




 
 


, 

6

2

(1 )
s









, 7 0(1 (1 )s a     , 

2 2

8 0( (1 )(1 ))s b ab        

9 0 0(1 )s n    ,
       

2

0 0 2

0 0

( , ) [ (1 )]exp( )
r

t y t
f y t t n t iby

t t
 


      .                                                  (38) 

Eliminating and  using (35)–(37) we obtain 

6 4 2 *

0 1{ } ( , )exp( )D AD BD C Q N f y t z x      
                                      (39) 

In a similar manner we arrive at 

6 4 2 *

0 1{ } ( , )exp( )D AD BD C Q N f y t z x      
                                   

(40) 

6 4 2 *

0 2{ } ( , )exp( )D AD BD C Q N f y t z x      
                                      

(41) 

Where, 

   

5 7 9 3 8 1 7 4 9 10 3

7 9 3

( ) ( )
,

( )

s s s s s s s s s s s
A

s s s

    



 

5 8 1 7 4 9 10 3 1 8 4 10 6 2 7

7 9 3

( )
,

( )

s s s s s s s s s s s s s s s
B

s s s

     



    

1 8 5 4 10 5 6 2 8

7 9 3

,
( )

s s s s s s s s s
C

s s s

 



 

2 2* *

3 4 5
1

7 9 3

( )( )
,

( )

s z s z s
N

s s s

 



 

4 2* *

1 5 1 5 6 2
2

7 9 3

( ( )
.

( )

z s s z s s s s
N

s s s

   



         

              (42) 

Equation (35) can be factorized as 

2 2 2 2 2 2 *

1 2 3 0 1( )( )( ) ( ) ( , )exp( )D k D k D k x Q N f y t z x      
                         

(43) 

4.  Solution of the problem 

where, 
2

nk (n = 1, 2, 3) are the roots of the characteristic equation of (43). 

The general solution of (39)–(41)is given by 

3
*

0 1 1

1

( , , ) exp( ) ( , )exp( )n n

n

x y t L k x t iby Q N g f y t z x  



     
                     

(44) 

3
*

1 0 1 1

1

( , , ) exp( ) ( , )exp( )n n n

n

x y t H L k x t iby Q N g f y t z x  



                    (45) 

3
*

2 0 2 1

1

( , , ) exp( ) ( , )exp( )n n n

n

x y t H L k x t iby Q N g f y t z x 



                   (46) 

where 

10 0 0(1 )s b n    
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6
1 2

5

n n

n

s
H L

k s





, 

2

1 2 1
2 2

3 4

n n
n n

n

k s s H
H L

s k s

 



, 

6 4 21 * * *

1
g

z Az Bz C




  
, n = 1,2,3   (47) 

To obtain the components of the displacement vector, from (44) and (45) in (29) 

3
* *

3 1 0 12
1

2
( , , ) exp( ) ( ) ( , )exp( )n n n

n

y
u x y t H L k x t iby z N Q g f y t z x

r
 



      
  

(48) 

3
* *

4 1 0 12
1

2
( , , ) exp( ) ( ) ( , )exp( )n n n

n

y
v x y t H L k x t iby z N Q g f y t z x

r
 



      
  

(49) 

3 1n n nH k ibH   , 4 1n n nH k ibH  ,       n=1,2,3                                               (50) 

The general solutions of stresses are 

3
*

xx 5 3 0 1

1

exp( ) ( , )exp( )n n n

n

σ H L k x t iby N Q g f y t z x 



                          (51) 

3
*

6 4 0 1

1

exp( ) ( , )exp( )yy n n n

n

σ H L k x t iby N Q g f y t z x 



                         (52) 

3
*

7 5 0 1

1

exp( ) ( , )exp( )zz n n n

n

σ H L k x t iby N Q g f y t z x 



                         (53) 

3
*

xy 8 6 1 0 1

1

exp( ) ( , )exp( )n n n

n

σ H L k x t iby N N Q g f y t z x 



                    (54) 

where 

2 2 2 2

5 4 3 2 0 0(2 1) [1 ( ) ( )]n n n n n n nH ibH k H H a k b a k b             

2 2 2 2
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2 2 2 2 2 2
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 
          

 
         

2
2

*

2 4

2 4
( )}

y
a z

r r
    

2
* *

6 2 2 4

4 2 4
(1 )[ ( ) ]

y y
N z z

r r r
                                                                        (55) 
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5.  Boundary conditions 

In this section we need to consider the boundary conditions to determine the parameters nL (n=1,2,3). We shall 

suppress the positive exponentials that are unbounded at infinity. The constants 1 2,L L  and 
3L  have to be 

chosen such that the boundary conditions on the surface at x = 0 and 0I =0. 

1. The mechanical boundary conditions 

xy 0σ  , 0
x





, 1 exp[ ]yyσ p t iby  

                                                         
(56) 

where 
1p is the magnitude of the mechanical force. 

Substituting the expressions of the considered variables in these boundary conditions, we can obtain the 

following equations satisfied by the parameters: 

3

8

1

0n n

n

H L



                                                                                                             

(57) 

3

1

0n n

n

k L


 
                                                                                                           

(58) 

3

6 1

1

n n

n

H L p


                                                                                                        (59) 

Invoking boundary conditions (52) at surface x = 0 of the plate, we obtain a system of four equations, (53)–(55). 

After applying the inverse of matrix method, we have the values of four constants nL (n=1,2,3). 

1

1 81 82 83

2 1 2 3

3 61 62 63 1

0

0

L H H H

L k k k

L H H H p



     
     
     

        
     
          

                                             (60) 

Hence we obtain the expressions for the displacements, the temperature distribution, and the other physical 

quantities of the plate surface. 

6. Numerical results and discussion 

 In the view to illustrate the computational work, the following material constants at
 0 293T C  are considered 

a copper material for an elastic solid with generalized thermoelastic solid as follow: 

10 1 27.76 10 ,kgm s   
   

10 1 23.86 10 ,kgm s   
 

7 14 (10) ,e Hm      1,   

11 2
0 4.0 10 / ,dyne cm    

1 1386 ,k m k   
9 21.28 10 / ,N m     

5 2

0 10 / ,I J m  

5 11.78 10 ,t k     
    0383.1 / ,EC J kgK i      

 
* 70.1 10 ,a    0 2  ,              

   

0 0.1,   
  1 1,p   0.9,b   

 
25 ,r m    

3* 10 / ,z m
  0 5 ,t ns          0 8.x    

First: the computations were carried out in the presence laser pulse
 

5

0 10I  and on the surface of a plane
 

110y  , The numerical results for, the normal displacement components (u, v), the force stress component 

, , ,xx yy zz xy    are shown respectively in all Figures Numerical analysis has been carried out by taking z 

range from 0 to 8 and always begins from negative values in all Figures. 

From figs. (1-6), display a comparison between the three thermoelastic theories (i.e. CT, L-S and G-L). In 

figures (1, 4, 5), it is shown that the values of  coefficient  considering (G-L) theory are less than the 
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corresponding value considering (L-S) theory less than it takes into account (CT) theory. In Fig. 2 it is shown 

that the values of  coefficient  considering (G-L) theory are less than the corresponding value considering (CT) 

theory less than it takes into account (L-S) theory in the range 0 1x  , and that the values of  coefficient  

considering (G-L) theory are less than the corresponding value considering (L-S) theory less than it takes into 

account (CT) theory in the range 1.x    In Fig. 3 it is shown that the values of coefficient considering (G-L) 

theory are less than the corresponding value considering (CT) theory less than it takes into account (L-S) theory 

in the range 0 0.6x  , and that the values of coefficient considering (G-L) theory are less than the 

corresponding value considering (L-S) theory less than it takes into account (CT) theory in the range 0.6x  .  

In Fig. 6 it is shown that the values of coefficient considering (G-L) theory are less than the corresponding value 

considering (CT) theory less than it takes into account (L-S) theory in the range 0 1.4x  , and that the 

values of coefficient  considering (G-L) theory are less than the corresponding value considering (L-S) theory 

less than it takes into account (CT) theory in the range 1.4.x                                                                    

Figs. 7-12 display the influence of rotation parameter 0.1, 0.2, 0.3, 0.4.  

In Figs. (7, 8, 9, 11, 12) we note that the smaller values of the x increases with a decreasing of the rotation but in 

Fig. 10 do not affect by the variation of the rotation.  

Figs. 13-18 display the influence of rotation parameter 0.1,0.2,0.3,0.4t 
 
and we noted that the smaller 

values of the x increases with a decreasing of the time. 

 

6. Conclusion 

By comparing the figures obtained under the three thermoelastic theories, important phenomena, we observed 

the following remarks: 

1. The values of all the physical quantities converge to zero with the increase of distance x and all functions are 

continuous. 

2. The method that is used in the present article is applicable to a wide range of problems in hydrodynamics and 

thermoelasticity. 

3. The presence of the laser pulse in the current model has an important role on the field quantities.  

4. The different values of rotation, laser pulse and time in the current model are very  

strongly pronounced and very affective on the wave propagation phenomena. 

 

 
Figure 1: Displacement component u under three theories with respect to x 
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Figure 2: Displacement component v under three theories with respect to x 

 

Figure 3: Distribution of
 xxσ under three theories with respect to x 

 

Figure 4: Distribution of
 yyσ under three theories with respect to x 
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Figure 5: Distribution of zzσ under three theories with respect to x 

 

Figure 6: Distribution of the stress component
 xyσ  under three theories with respect to x 

 
Figure 7: Displacement component u under effect of rotation with respect to x 
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Figure 8: Displacement component u under effect of rotation with respect to x 

 

Figure 9: Distribution of
 xxσ under effect of rotation with respect to x 

 

Figure 10: Distribution of
 yyσ  under effect of rotation with respect to x 
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Figure 11: Distribution of zzσ  under effect of rotation with respect to x 

 

Figure 12: Distribution of xyσ  under effect of rotation with respect to x 

 
Figure 13: Displacement component u under the time with respect to x  
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Figure 14: Displacement component under the time with respect to x  

 

Figure 15: Distribution of
 xxσ under the time with respect to x 

 

Figure 16: Distribution of
 yyσ under the time with respect to x 
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Figure 17: Distribution of
 zzσ under the time with respect to x 

 

Figure 18: Distribution of the stress component xyσ  under the time with respect to x 

References 

[1]. Lord, H., & Shulman, Y. (1967). A generalized dynamical theory of thermo-elasticity. Journal of 

Mechanics and Physics of Solids, 15(5), 299-307.  

[2]. Green, A. E. & Lindsay, K.A.  (1972). Thermoelasticity. Journal of Elasticity, 2(1), 1-7.  

[3]. Bargmann, H. (1974). Recent developments in the field of thermally induced waves and vibrations. 

Nuclear Engineering and Design, 27(3), 372-385.  

[4]. Roychoudhuri, S.K. (1985). Effect of rotation and relaxation times on plane waves in generalized 

thermoelasticity", Journal of Elasticity, 15(1), 497-505. 

[5]. Joseph, D. & Preziosi, L. (1989). Heat waves. Rev. Mod. Phys. 61, 41-73. 

[6]. Ahmad, F. & Khan, A. (1999). Thermoelastic plane waves in a rotating isotropic Medium. Acta 

Mechanica, 136 (3/4), 243-247. 

[7]. Schoenberg, M. & Censor, D. (1973). Elastic waves in rotating media. Quart. Applied Mathematics. 

31, 115-125.  

[8]. Puri, P. (1976). Plane thermoelastic waves in rotating media. Bull. DeL’Acad. Polon. Des. Sci. Ser. 

Tech. 24, 103-110 

[9]. Singh, B. & Kumar, R. (1998). Reflection of plane wave from a flat boundary of micropolar 

generalized thermoelastic half-space. International Journal of  Engineering Science. 36(7/8), 865-890 

0 1 2 3 4 5 6 7 8
-10

-8

-6

-4

-2

0

x


z
z

 

 

t=0.1

t=0.2

t=0.3

t=0.4

0 1 2 3 4 5 6 7 8
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

x


x
y

 

 

t=0.1

t=0.2

t=0.3

t=0.4



Abo-Dahab SM et al                                 Journal of Scientific and Engineering Research, 2016, 3(6):173-187 

 

Journal of Scientific and Engineering Research 

187 

 

[10]. Othman, M.I.A.  (2002). Lord-Shulman theory under the dependence of the modulus of elasticity on 

the reference temperature in two dimensional generalized thermoelasticity. Journal of Thermal 

Stresses. 25(11), 1027-1045. 

[11]. Othman, M.I.A. (2004a). Relaxation effects on thermal shock problems in an elastic half-space of 

generalized magneto-thermoelastic waves. Mechanics and Mechanical Engineering. 7(2), 165-178.  

[12]. Othman, M.I.A. (2004b). Effect of rotation on plane waves in generalized thermoelasticity with two 

relaxation times. International Journal of Solids and Structures. 41(11/12), 2939-2956.  

[13]. Othman, M.I.A. (2005). Effect of rotation and relaxation time on thermal shock problem for a half-

space in generalized thermo-viscoelasticity. Acta Mechanica. 174 (3/4), 129-143.  

[14]. Othman, M.I.A. & Singh, B. (2007). The effect of rotation on generalized micropolar thermoelasticity 

for a half-space under five theories. International Journal of Solids and Structures. 44(9), 2748-2762. 

[15]. Abd-Alla, A.M. & Abo-Dahab, S.M. (2014). Effect of rotation on mechanical waves propagation in a 

dry long bone. Journal of Computation and Theoretical Nanoscience. 11(10), 2097-2103. 

[16]. Lotfy, Kh. & Abo-Dahab, S.M. (2015). Two-dimensional problem of two temperature generalized 

thermoelasticity with normal mode analysis under thermal shock problem, Journal of Computation and 

Theoretical Nanoscience. 12(9), 1709-1719. 

[17]. Othman, M.I.A. & Song, Y.Q. (2008). Effect of rotation on plane waves of generalized electro-

magneto-thermovisco-elasticity with two relaxation times. Applied Mathematical Modelling. 32(5), 

811-825.  

[18]. Al-Qahtani, M.H. & Datta, S.K. (2008). Laser-generated thermoelastic waves in an anisotropic infinite 

plate: exact analysis. Journal of Thermal Stresses. 31(6), 569-583. 

[19]. Othman, M.I.A. & Song, Y.Q. (2008). Effect of rotation on plane waves of generalized electro-

magneto-thermo-viscoelasticity with two relaxation times. Applied Mathematical Modelling. 32(5), 

811-825. 

[20]. Wang, X. & Xu, X. (2002), Thermoelastic wave induced by pulsed laser heating. Journal of Thermal 

Stresses. 25, 457-473. 

[21]. Salamin, Y.I. & Keitel, C.H. (2002). Electron acceleration by a tightly-focused laser beam. Phys. Rev. 

Lett. 88, 095005. 

[22]. Marceau, V., April, A. & Piché, M. (2012). Electron acceleration driven by ultrashort and nonparaxial 

radially polarized laser pulses. Opt. Letter. 37, 2442-2444. 

[23]. Dudovich, N., Oron, D. & Silberberg, Y. (2002). Single-pulse coherently controlled nonlinear Raman 

spectroscopy and microscopy. Nature. 418, 512-514. 

[24]. Schwoerer, H., Liesfeld, B., Schlenvoigt, H.-P., Amthor, K.-U. & Sauerbrey, R. (2006). Thomson-

backscattered X rays from laser-accelerated electrons. Phys. Rev. Letter. 96, 014802. 

[25]. Jiang, Y., Narushima, T. & Okamoto, H. (2010). Nonlinear optical effects in trapping nanoparticles 

with femtosecond pulses. Nat. Phys. 6, 1005–1009. 

http://academic.research.microsoft.com/Author/19415207/mohamed-i-a-othman
http://academic.research.microsoft.com/Author/53823423/yaqin-song
http://academic.research.microsoft.com/Author/19415207/mohamed-i-a-othman
http://academic.research.microsoft.com/Author/53823423/yaqin-song

