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Abstract The purpose of this paper is to study the 2-D problem of generalized thermoelastic medium with voids 

under the effect of gravity within the framework of the Green-Lindsay, Lord–Shulman and classical coupled 

theories. The normal mode analysis is used in our problem. Numerical results with comparisons between 

theories are illustrated graphically. Comparisons are made between the three theories in the presence and 

absence of gravity and also with and without voids. 
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1. Introduction 

The effect of mechanical and thermal distribution of an elastic body is studied within the framework of the 

theory of thermoelasticity. The generalized theory of thermoelasticity is one of the modified versions of 

classical uncoupled and coupled theory of thermoelasticity that has been developed in order to remove the 

paradox of physical impossible phenomena of infinite velocity of thermal signals in the classical coupled 

thermoelasticity theory stated by Biot [1]. The coupled CD theory of thermo-elasticity was extended by 

including the thermal relaxation times into the constitutive equation by Lord and Shulman [2] and Green and 

Lindsay [3]. These theories eliminate the paradox of an infinite velocity of the heat propagation and were 

termed the generalization theories of thermoelasticity, there are the following differences between the two 

theories: 

i. The Lord-Shulman L-S theory involves one relaxation time of the thermo-elastic 0 , while the Green and 

Lindsay G-L theory takes into account two relaxation times 0 0,  .   

ii. In the L-S theory, the energy equation involves the first and second derivatives of the strain with respect 

to time, whereas the corresponding equation in the G-L theory needs only the first derivative of this strain 

with respect to time. 

iii. In the linear case, according to the approach of the G-L theory, the heat cannot propagate with a finite 

speed unless the stresses depend on the temperature, velocity, whereas according to the L-S theory, the heat 

can propagate with a finite speed even though the stresses are independent of the temperature, velocity. 

iv. The two theories are structurally different from one another, and one cannot be obtained as a particular 

case of the other.  

Theory of linear elastic materials with voids is an important development of the classical theory of elasticity; 

this theory deals with materials which have a distribution of small voids, where the volume of void is included 

among the kinematics variables and investigate various types of geological and biological materials since the 

classical theory of elasticity is not sufficient. The theory reduces to the classical theory in the limiting case of 
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the volume of void tending to zero. Cowin and Nunziato [4] developed a theory of linear elastic materials with 

voids to study mathematically the mechanical behavior of porous solids. Puri and Cowin [5] studied the 

behavior of plane waves in a linear elastic material with voids. Iesan [6] developed the linear theory of 

thermoelastic materials with voids. Dhaliwal and Wang [7] developed a heat flux dependent theory of 

thermoelasticity with voids. Ciarletta and Scarpetta [8] discussed some results on thermoelasticity of dielectric 

materials with voids. Othman et al. [9] studied a 2-D problem of a rotating thermoelastic solid with voids under 

thermal loading due to laser pulse and initial stress type III. Othman and Edeeb [10, 11] investigated the 2-D 

problem of a rotating thermoelastic solid with voids, thermal loading due to laser pulse and two-temperature 

under three theories. The effect of gravity on the wave propagation in an elastic solid medium was first 

considered by Bromwich [12] treating the force of gravity as a type of body force. Othman et al. [13] studied the 

effect of gravity on the generalized thermoelastic medium with temperature dependent properties for different 

theories. Ailawalia, and Narah [14] studied the effect of rotation in generalized thermoelastic solid under the 

influence of gravity with an overlying infinite thermoelastic fluid. 

In the present work, we have formulated the generalized thermoelastic medium with voids for three theories 

under the influence of gravity and solve for the components of displacement, stresses, temperature distribution. 

The normal mode method was used to obtain the exact expression for the considered variables. Comparisons are 

carried out between the considered variables as calculated from the generalized thermoelastic pours medium 

based on the L-S, G-L and CD theories in the absence and presence of gravity. In addition, a comparison made 

between the three theories with and without voids. 

2.  Formulation of the Problem and Basic Equations 

We consider a homogeneous isotropic elastic body with voids in a half-space 0z   under the effect of a 

constant gravitational field of acceleration g.  We are interested in plane strain in the x z  plane with 

displacement components 1 3,u u  such that ( , , ),1 1u u x z t 3 3( , , ).u u x z t  

Case 1: 

The basic governing equations of a linear thermoelastic medium with voids under the effect of gravity based on 

the L-S, G-L and CD theories are 

The stress-strain relation written as:   

[ + (1+ ) ]ij kk ij ijσ λe b T δ μ e ,
t

  





=                             (1) 

, ,

1
( ),

2
ij i j j ie u +u                                                                                                       (2) 

The dynamical equations of an elastic medium are given by 

2
2 3 1

1 2
+ ( + ) (1+ ) + g ,

u ue T
μ u λ μ b ρ ρ

x x t x x t


 

   



  

     
=                  (3) 

2
2 31

3 + ( + ) (1+ ) ,
2

uue T
μ u λ μ b ρ g ρ

z z t z x t


 

   
  

  
 

  
=                 (4)  

The equation of voids is 

2
2

0 (1 ) ,
2

b e b m T ρ
t t t

 
     

  
     

  
=                                                 (5) 

The heat conduction equation, 

2
0 0 0 0 0 0 0(1+ ) + (1+ ) (1+ )EK T ρC T βT n e mT n

t t t
   

  
 

  
 + .              (6)  

Where, ijσ are the components of stress tensor, ije are the components of strain,
 

,   are the Lame' constants, 

(3 2 ) t      such that t  
is the coefficient of thermal expansion,

 
ij

 
is the Kronecker delta,
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0, , , , ,b m     are the material constants due to the presence of voids,   is the density, EC is the specific 

heat at constant strain, 0n  is a parameter, 0 ,   are the thermal relaxation times, K  is the thermal 

conductivity, 0T  is the reference temperature is chosen so that  0 0( ) 1T T T     is the change in the  

volume fraction field.  

For a two dimensional problem in xz-plane, Eq. (1) can be written as: 

3 31 1[ ( ) (1 ) ] ( ), i, j 1,3.ij ij

u uu u
b

x z t z x
       

  
       

    
   (7)  

For the purpose of numerical evaluation, we introduce dimensions variables 

*
1

0

( ) ( ),x , z' = x, z
c




 

1
1 3 1 3

1

( ) ( ),u ,u = u ,u
c

 

 
ij

ij ij

σ
σ = σ ,




*
1

2
01

' , ' ,
T

= T
Tc

 
  

*
1 ,t' = t

 
*

1 1

' ,
g

g
c 



 

     

0 0, ,* *
1 1' =         

2
2 * 1
1 1

2
, .EC c

c
K

 





   

Using the above dimensions quantities, Eqs. (3)-(6)  become 

2
2 3 1

1 1 2 3 4 5 2
+ (1+ ) ,

u ue T
u A A A A A

x x t x x t




    
  

  


  
=                       (8) 

2
2 31

3 1 2 3 4 5 2
+ (1+ ) ,

uue T
u A A A A A

z z t z x t




   
  

  


  
=                               (9) 

2
2

6 7 8 9 10 2
(1+ ) ,A e A A A T A

t t t

 
  

  
    

  
=                                           (10) 

2
1 11 0 0 0 2 0 0(1+ n ) (1+ ) + (1+ n ) .

T e
T A

t t t t t t


    

     
  

     
                              (11) 

where, 1 ,A
 






 

2
1

2 *2
1

,
bc

A
 



 

0
3 ,

T
A






 

 
2
1

4 ,
gc

A





  

2
1

5 ,
c

A





  

6 ,
b

A



   

2
1

7 *2
1

,
c

A



  

 

 
2

0 1
8 *

1

,
c

A





 

0
9 ,

mT
A




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2
1

10 ,
c

A
 




  

2
1

11 *2
1

,

E

mc
A

C  
   

*
1

1 2
1

,

E

K

c C







  

2 .
EC





  

We define displacement potentials R and Q which relate to displacement components 
 

1u and 3u as, 

1 ,
R Q

u
x z

 
 
 

          3 ,
R Q

u
z x

 
 
 

                                                         (12) 

2 ,e R              231( ) .
uu

Q
z x


  

 
                                                                    (13) 

Using Eq. (13) in Eqs. (8)-(11), we obtain: 

2
2

1 4 2 32
( )R Q (1+ ) 0,5S A A A A T

x tt
 

  
   

 
 =                                     (14) 

2
2

4 5 2
( )Q = 0,A R A

x t

 
  

 
                                                                           (15) 

2
2 2

6 7 8 10 92
( ) (1 ) 0,A R A A A A T

t tt
 

  
         

 
                               (16) 

2
2 2

2 11 0 0 1 02
(1+ ) (1+ ) .

T
R A n T

t t t tt


   

    
    

   
                                (17) 

The components of stress tensor are 
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31 1
12 13 142 ,xx

uu u
σ A A A

x z x
 

 
   

  
= [ ]                                                             (18) 

3 31
12 13 142 ,zz

u uu
σ T

x z z
   

 
   

  
= [ ]                                                        (19) 

31 .xz

uu
σ

z x




 
=                                                                                                (20) 

Where  
2

01
13 14 1 1*2

1

, , (1 ), 1 .
Tbc

A S A



  

       12  

3. Normal Mode Analysis 

The solution of the considered physical variable decomposed in terms of normal modes as the following form 

{ , , }( ) = { }(z) exp[i( + )].* * *
ij ijR,Q T,σ x,z,t R ,Q , ,T ,σ ωt cx  

      (21) 

Where 
* * *

ijR ,Q , ,T , σ 
 are the amplitudes of the functions , , ijR,Q T, σ ,   is the complex time constant, 

1i    and  c  is the wave number in the x -direction. 

Using (21) in Eqs. (14)-(17), we obtain  

2 * *
2 3 5(D ) + 0,* *

4S R Q S S =S T                                                                 (22) 

* 2
6 7+(D ) 0,*S R S Q =                                                                                     (23) 

2 2 * 2
6 8(D ) +(D ) + 0,* *

9A c R S S =                                                               (24) 

2 2 * * 2
10 11 12(D ) +(D ) 0.*S c R S S =                                                              (25) 

 Where, 
2 2

1 5
2

1

,
S c A

S
S


  4

3
1

,
iA c

S
S

  2
4

1

,
A

S
S

   3
5

1

(1 )
,

A i
S

S


  6 4 ,S icA

 

2 2
7 5 ,S c A    

2 2
8 7 8 10 ,S c A iA A     9 9 (1 ),S A i 

2
2 0 0

10
1

( )
,

i n
S

   



 
 11

11
1

,
A

S




2 2
1 0

12
1

.
c i

S
   



 


  

Eliminating  
* *,Q   and 

*  between Eqs. (22)-(25), we get the following ordinary differential equation of the 

eighth order which satisfied with  
*R :  

8 6 4 2
3 4[D D + D D + ] (z) = 0.*

1 2B B B B R                                                (26) 

Where 12 8 7 2 6 4 5 10,1B S S S S A S S S        

2
2 8 12 9 11 7 12 7 8 2 12 2 8 2 7 6 3 6 4 12 6 4 4 9 10B S S S S S S S S S S S S S S S S A S S A S c S S S             

2
6 4 7 6 5 11 5 10 5 8 10 5 7 10,A S S A S S S S c S S S S S S      

2 2
3 7 8 12 7 9 11 2 8 12 2 9 11 2 7 12 2 7 8 3 6 12 3 6 8 6 4 10 4 9 10B S S S S S S S S S S S S S S S S S S S S S S S S A S S c S S S c         

2 2 2 2
6 4 7 12 6 4 7 4 7 9 10 6 5 11 5 8 10 6 5 7 11 5 7 10, 5 7 8 10 ,A S S S A S S c S S S S A S S c S S S c A S S S S S S c S S S S         

2 2
4 2 7 8 12 2 7 9 11 3 6 8 12 3 6 9 11 6 4 7 12 4 7 9 10B S S S S S S S S S S S S S S S S A S S S c S S S S c       

2 2
6 5 7 11 5 7 8 10 .A S S S c S S S S c   

In a similar manner, we get  

8 6 4 2 * * *
1 2 3 4[D D + D D + ]{ (z), (z), (z), (z)} = 0.*B B B B R Q T                        (27) 

Equation (27) factored as 

2 2 2 2 2 2 2 2 * * *
1 2 3 4[(D )(D )(D )(D )]{ (z), (z), (z), (z)} = 0.*k k k k R Q T     (28) 

Where
 

2 ( 1,2,3,4)nk n   are the roots of the Eq. (27), 
d

D .
dz

  

The solution of Eq. (27) bound as ,z   is given by: 
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4
n

n

n=1

k z*R = M e ,


                                                                   (29) 

4
* n

1n n

n=1

k z
Q = H M e ,


                                                                           (30) 

n
2n n

n=1

,
k

4
z* = H M e


                                                                              (31) 

4
n

3n n

n=1

.
k z* = H M e


                                                                          (32)  

Where, n (n 1,2,3,4)M 
 
are constants. 

To obtain the components of the displacement vector, from (29) and (33) in (12) 

n

4
*
1 4n n

n=1

,
k z

u = H M e


                                                               (33)

  

n

4
*
3 5n n

n=1

,
k z

u = H M e


                                  (34) 

From Eqs. (31)-(34) in (18)-(20) to obtain the components of the stresses 

4
* n

6n n

n=1

,
z

xx
k

= H M e


                                (35)

  

n

4
*

7n n

n=1

,
z

zz
k

= H M e 
                                         (36) 

n

4
*

8n n

n=1

.
z

xz
k

= H M e 
                                                                  (37) 

Where 6
1n 2

n 7

,
( )

S
H =

k S




 

2 2 2
6 5 n 9 n 2 3 1n

2n 2
5 n 8 4 9

[ A ( ) + ( H ]
,

[ ( ) + ]

S k c S k S S
H =

S k S S S

    


 

2
n 2 3 1n 4 2n

3n
5

+
,

k S S H S H
H =

S

 

 

4n n 1n,H = ic k H ,     5n n 1n( ),H = k icH   6n 12 4n n 5n 4n 13 2n 14 3n= (i ) + 2i + ,H A cH k H cH A H A H 

 
7n 12 4n n 5n n 5n 13 2n 14 3n= (i ) 2 + ,H A cH k H k H A H A H      

      8n n 4 5( ).n nH = k H icH   

4.  Boundary Conditions  

In this section, we need to consider the boundary conditions at 0z  , in order to determine the constants 

( 1,2,3,4).M n n  

(1) The mechanical boundary condition 

      
1= 0, 0.  ,      zz xz

i( t + cx)σ Pe σ =
z

 
 


                         (38)  

 (2) The thermal boundary condition that the surface of the half-space is subjected to 

       2
+

.
i(ωt cx)

T = P e                                                                             (39) 

Where the magnitude of the applied force in the half-space is 1P , and 2P
 
is the applied constant temperature to 

the boundary. 

Using the expressions of the variables into the above boundary conditions (38), (39), we obtain 

4

7n n 1

n=1

H M = P ,                                                                 (40) 

4

8n n

n=1

= 0,H M                                                                             (41) 
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4

n 2n n

n=1

= 0,k H M                                                                            (42) 

4

3n n 2

n=1

.H M = P                                                                              (43) 

Invoking boundary conditions (40)-(43) at the surface 0z  of the plate, we obtain a system of four equations. 

After applying the inverse of matrix method, we get the values of the four constants n (n 1,2,3,4).M 
          

Case 2: 

The solution of wave propagation of a generalized thermoelastic medium without voids under the effect of 

gravity is: by putting 0, , , , ,b m     equal to zero, then the basic governing Eqs. (1) and (3)-(6) of a linear  

thermoelastic medium without voids under the effect of  gravity can be written as: 

2
2 3 1

1 2
+ ( + ) (1+ ) ,

u ue T
μ u λ μ ρ g ρ

x t x x t
 

   
 

    
 + =               (44) 

2
2 31

3 2
+ ( + ) (1+ ) ,

uue T
μ u λ μ ρ g ρ

z t z x t
 

  
 

    
  =  (45)  

2
0 0 0 0(1+ ) + (1+ ) ,E

T e
K T ρC T n

t t t t
  

   
 

   
                               (46) 

3 31 1[ ( ) (1 ) ] ( ), , 1,3.ij ij

u uu u
i j

x z t z x
      

  
      

    
           (47) 

The dimensions of Eqs. (44)-(46) have the form 

2
2 3 1

1 1 2 3 4+ (1+ ) ,
2

u ue T
u E E E E

x t x x t


   





   
+ =                                     (48) 

2
2 31

3 1 2 3 4 2
+ (1+ ) ,

uue T
u E E E E

z t z x t


  
 

    
 =                                        (49) 

2
3 0 4 0 0(1+ ) + (1+ n ) .

T e
T

t t t t
   

   
 

   
                                  (50) 

Where 
2 2 *

0 1 1 1
1 2 3 4 3 42

1

, , , , , .
T gc c K

E E E E
cec ce

     
 

    


       

Using Eq. (13) in Eqs. (48)-(50), we obtain: 

2
2

1 3 22
( ) (1+ ) 0,4F E R E Q E T

x tt


  
   

 
=                               (51) 

2
2

3 4 2
( )Q = 0,E R E

x t

 
  

 
                                                                (52) 

2
2 2

3 4 02
(1+ ) 0.

Τ
R Τ

t tt
  

  
     

 
                                            (53) 

The components of stress tensor are  

31 1
5 62 (1 ) ,xx

uu u
σ E E i Τ

x z x


 
   

  
= [ ]                                           (54) 

3 31
5 62 (1 ) ,zz

u uu
σ E E i Τ

x z z


 
   

  
= [ ]                                                     (55) 

31[ ]xz

uu
σ

z x




 
= .                                                                                 (56) 
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Where  

   

0
5 6 1 1, (1 ) , 1

T
E E i F E




 
      

Using (21) in Eqs. (51)-(53), we obtain  

2 * *
2 3 4(D ) 0,*F R Q FΤ =F 

                     
                                     (57) 

* 2
5 6F +(D ) 0,*R F Q =                                                                           (58) 

2 2 * 2
7 8(D ) + (D ) 0,*E c R E Τ =                                                                       (59) 

 where,  
2 2

2 231 4 2
2 3 4 5 3 6 4

1 1 1

(1 )
, , , , ,

icEFc E E i
F F F F icE F c E

F F F

 


 
     

 
2 2 2

4 0 0 3 0
7 8

3 3

( )
, .

i n c i
F F

       

 

   
    

Eliminating  *Q  and  
*T  between Eqs. (57)-(59), we get the following ordinary differential equation of sixth 

order which satisfied with  
*R  

6 4 2
1 2 3[D I D + I D I ] (z) = 0.*R                                                             (60) 

Where
 1 8 6 2 4 7I ,F F F F F     

   

2
2 6 8 2 8 2 6 3 5 4 6 7 4 7I ,F F F F F F F F F F F F F c       

 
2

3 2 6 8 2 8 4 6 7 .F F F F F F F F c     

In a similar manner, we get  

6 4 2 * *
1 2 3[D I D + I D I ]{ (z), (z), (z)} = 0.*R Q T                                     (61) 

Equation (61) factored as 

2 2 2 2 2 2 * *
1 2 3[(D )(D )(D )]{ (z), (z), (z)} = 0.*k k k R Q Τ  

                
 (62) 

Where 2
n (n 1,2,3)k   are the roots of the Eq. (61). 

The solution of Eq. (61) bound as ,z   is given by: 

3
n

n=1

n ,
zk*R = M e


                                                   (63)

  
3

* n
1n n

n 1

,
z

=

k
Q = L M e


                        (64) 

3
n

2n n

n=1

,
zk*T = L M e


                        (65) 

where n (n 1,2,3)M 
 
are some constants. 

To obtain the components of the displacement vector, from (63) and (64) in (12) 

3
* n
1 3n n

n=1

,
k z

u = L M e


                                              (66) 

n

3
*
3 4n n

n=1

.
k z

u = L M e


                                                                                               (67) 

From Eqs. (63)-(65) in (54)-(56) to obtain the components of the stress vector 
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3
* n

5n n

n=1

,
z

xx
k

= L M e


                                                           (68)

 
3

* n
6n n

n=1

,
z

zz
k

= H M e


                                                                                          (69) 

n

3
*

7n n

n=1

.
z

xz
k

= H M e 
                                                                          (70) 

Where 5
1n 2

n 6

,
( )

F
L =

k F




    

2 2
7 n

2n 2
n 8

( )
,

( )

F k c
L =

k S

 


 
   

3n n 1n= i + ,L c k L
   

4n n 1n= ( i ),L k cL      

5 3n n 4n 3n 6 2n= (i ) + 2i ,5nL E cL k L cL E L 
  5 3 n n 4 n n 4 n 6 2 n= ( i ) 2 ,6nH E cL k L k L E L  

   

3 4= ( ).7n n n nL k L icL 

  

5. Boundary Conditions 

In this section, we need to consider the boundary conditions at 0,z   in order to determine the constants 

n (n 1,2,3).M   

(1)  The mechanical boundary conditions 

 

( )
1  ,      = 0,i t + cx

zz xzσ Pe σ                                                                 (71)  

 (2)   The thermal boundary condition that the surface of the half-space subjected to 

( )
2 .i t+cxT = P e 

                                                                                             (72) 

Where 1P
 
is the magnitude of the applied force in of the half-space and 2P

 
is the applied constant temperature 

to the boundary. 

Using the expressions of the variables into the above boundary conditions (71), (72), we obtain 

3

6n n 1

n=1

L M = P ,                                                                                            (73) 

3

7n n

n=1

= 0,L M                                                                 (74) 

3

2n n 2

n=1

= .L M P                                                                                                      (75) 

Invoking boundary conditions (73)-(75) at the surface 0z   of the plate, we obtain a system of three equations. 

After applying the inverse of matrix method, we can get the values of the three constants n (n 1,2,3).M   

6. Numerical results and discussion 

In order to illustrate the obtained theoretical results in the preceding section, following Dhaliwal and Singh [15] 

the magnesium material chosen for purposes of numerical evaluations. The constants of the problem taken as 

10 22.14 10 /. ,N m   10 23.278 10 / ,N m   21.7 10 / deg,K W m  5 21.78 10 / ,t N m   0 298 ,T K         

3 31.74 10 / ,Kg m   31.04 10 / deg,EC J Kg 
6 22.68 10 / deg,N m   * 11

1 3.58 10 / .s      

The voids parameters are  

15 21.753 10 ,m       
10 21.475 10 / ,N m     

10 21.13849 10 / ,b N m    
53.688 10 ,N        

 
6 22 10 / deg,m N m     3 2

0 0.0787 10 / .N m s  
     

 

The comparisons carried out for  
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0.5,x  0.03, 0.2,t c 
  0 1 0 1i , 0 . 6 , 1,         

  1 20.1, 2,p p 
 0 0.05 ,s 

 
0.5 ,s      

0 7.z    

The computations were carried out at 0.03.t   The numerical technique, outlined above, was used for the 

distribution of the real part of the displacement 3 ,u  the stresses ,zz xz and the change in the volume fraction 

field   with the distance z , for the problem under consideration. All the considered variables depend not only 

on the variables
 

,t z and ,x
 
but also on the thermal relaxation times 0  

and .   The results are shown in Figs. 

1-6. The graphs show the six curves predicted by three different theories of thermoelasticity (CD, L-S, and G-

L). In these figures, the solid lines represent the solution in the CD theory, the dashed lines represent the 

solution with the G-L theory, and the dashed-dotted lines represent the solution with the L-S theory.
 
 Here, all 

the variables are taken in non-dimensional forms and we consider four cases: 

(1) Equations of the CD theory, when  0n 0,
 0 0.     

(2) Lord and Shulman L-S theory when  0n 1,  00, 0,     

(3) Green and Lindsay G-L theory when  0n 0,
 0 0.     

(4) The three theories in the absence of a gravity field from the above mentioned by taking 0.g     

Figs. 1-3 show comparisons among the considered variables in the absence and presence of the gravity effect 

( 0,g  9.8).g    

Fig. 1 shows that the distribution of the vertical displacement 3u
 
always begins from a positive value with 

gravity, in the context of the three theories CD, L-S, and G-L, it decreases in the range 0 1.5z ,  then 

increases in the range 4 7,z   while increases in the range
 
1.5 4.z   However  without gravity it begins 

from zero, and increases in the range 0 1.5z ,  then, decreases in the range 1.5 3.5.z   Fig. 2 depicts the 

distribution of the change in the volume fraction field with and without gravity under the three theories. The 

values of   with gravity are decreasing in the range 0 1.8,z 
 
then increasing in the range 1.8 4.5.z    

The values of   without gravity is greater than that with gravity in the range 0 1.8,z   while the vice versa 

in the range 1.8 6.z 
 
Fig. 3 shows that the distribution of the stress component ,xz

 
begins from zero in the 

context of the three theories, and satisfies the boundary conditions at 0.z   The values of ,xz  with gravity 

are greater than that without gravity.  

Figs. 4-6 show the comparisons among the considered variables in the absence and presence of voids in the case 

of material with gravity. Fig. 4 exhibits that the distribution of the vertical displacement 3u begins from positive 

values in the presence and absence of voids.  In the context of the three theories, we notice that the values of  3u
 

with voids are greater than that without voids in the range 0 1.5z ,   while the vice versa in the range 

1.5 5.5z ,   then converges to zero.  Fig. 5 determines the distribution of stress component
 

,zz  in the 

context the three theories in the presence and absence of voids. It explained that the distribution of zz

increases with the increase of the values of voids in the range 0 2,z   then decreases with the increase of the 

void in the range 2 6.z   Fig. 6 demonstrates that the distribution of the stress component ,xz  in the 

context of the three theories begins from zero and satisfies the boundary conditions at 0z   with and without 

voids. It is noticed that the value of xz  with voids is greater than that without voids in the range  0 3.7,z   

and the vice versa in the range
 
3.7 7.z     

 

7. Conclusion 

By comparing the figures that were obtained for the three thermoelastic theories, important phenomena are 

observed: 

1.  The values of all physical quantities converge to zero with increasing distance ,z  and all functions are 

continuous. 
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2.   The normal mode analysis technique has been used is applied to a wide range of problems in 

thermodynamics and thermoelasticity. 

3.   All the physical quantities satisfy the boundary conditions. 

4.   The gravity has a significant effect on the variation of the considered physical quantities, since they make 

great changes in the behavior of the functions, also the same observation of the absence and presence of the 

voids in the thermoelastic  solid. 

  

Figure 1: The displacement component 3u  distribution against z with and without gravity 

 
Figure 2: The displacement of volume fraction field  against  z   with and without gravity 

 

Figure 3: The displacement of the stress tensor xzσ  against  z   with and without gravity 
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Figure 4: The displacement component 3u  distribution against z  with and without voids 

 

Figure 5: The displacement of the stress tensor zzσ  against z with and without voids 

 

Figure 6: The displacement of the stress tensor xzσ against  z  with and without void 
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