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Abstract The study of the risks of groundwater contamination is a major issue in the semi-arid regions. 

However, the role of the unsaturated zone is often overlooked in the assessment of groundwater recharge. In this 

paper, a literature review is presented to show the important role of the soil unsaturated zone in the process of 

groundwater recharge in semi-arid regions. 
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Introduction 

Groundwater is the major resource of water supply for about half of the countries. About 40% of the world’s 

population uses groundwater and about 50% of the world’s food production depends on irrigated agriculture in 

relation to pumping groundwater. In the 20th century, the water demand increased 6 times all over the world 

while population tripled; it is expected that this trend will continue into the next century [1]. Groundwater 

recharge in humid temperate and tropical climates typically accounts for more than 10% and in arid (dry-land) 

areas for less than 5% of the precipitation; in semi-arid and cold climates the values varies between these figures 

[2]. Globally, there are six approaches to determine groundwater recharge: bulk mass balance methods [3], 

methods based on outflow characteristics [4], mixing approaches [5], numerical and hydraulic [6], tracer 

methods [7], and mean-transit-time methods [8]. In general, groundwater recharge in humid temperate and 

tropical climates accounts for about 10% and in arid areas for less than 5% of the precipitation; in semi-arid and 

cold climates the values varies between these figures [9]. In this paper, a literature review is presented to show 

the important role of the soil unsaturated zone in the process of groundwater recharge in semi-arid regions. 

 

Role of the Vadose Zone 

The vadose zone extends from the topsoil to the groundwater surface. It is composed of three elements: the 

unsaturated zone, in which flow is governed by both capillary and gravitation, forces and in which most of the 

time capillary forces are dominant; the perched groundwater, which accumulates on very low hydraulic 

conductivity interfaces within the vadose zone; it is over- and underlain by an unsaturated zone; the capillary 

fringe on top of groundwater tables. Percolation is initiated by infiltration and directed by intrinsic parameters of 

the unsaturated soils; the parameters are the hydraulic functions, but also discontinuities of hydraulic 

conductivities in the unsaturated zone, which may both result from geologic, biotic and anthropogenic 

processes. As gravity, capillarity and intrinsic parameters modify the speed and direction of percolation, 

infiltration often exceeds groundwater recharge, because it is partially lost by ET or inter-flow [10]. The water 

balance in the vadose zone is triggered by infiltration and becomes modified by water storage and consumption. 

In this interaction, water storage close to the surface, within the effective root zone (from 0.5 m to 1 m). It can 

be described as: 
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Infiltration (I) = (Transpiration (TP) + Evaporation (EP)) + (Specific groundwater run-off (GS) + Specific inter-

flow run-off (GI)) + Soil water storage (S) 

In semi-arid and arid climates the soil water content varies between the water content at field capacity (fc) and 

the water content at wilting point (w) as: 

GS + GI > TP + EP  

S ≥ I 

w ≤  << fc 

 

Groundwater Recharge under Semi-Arid Climate  

Semi-arid areas are characterized by a rainfall of a value about 250 mm/year, but with a ratio of P/ET <0.5 [11]. 

Without the uneven distribution of precipitation the year around and the occasional heavy rainfall during the wet 

season [12], no excess water for either run-off or groundwater recharge would be available. Recharge is strongly 

correlated with the saturation deficit in the soil [13], it was established a threshold value of 140 mm of 

cumulative infiltration amounts that is necessary to make up for the moisture deficit in the soil incurred by the 

evapotranspiration during the rainless period. Under such conditions, recharge (and solute leeching) favors sites 

with a relatively thin soil layer. In valley terrains with deep soil and a rich vegetation cover, all of the soil 

moisture may be used up locally, except during an exceptionally rainy season [14]. This region, moreover, is 

characterized by large annual fluctuations as a result of the up to 50% variability of the precipitation amounts 

and their distribution during the rainy season, so that large fluctuations in the annual recharge are observed. The 

irrigation water input in these climate regions is another factor that needs to be considered in the water budget 

[15]. Conflicting effects of the irrigated agriculture come into play: On the one hand, the substitution of a rather 

dense plant cover for the sparse natural vegetation further decreases the P/ET ratio during the rainy season and 

potentially results in the accumulation of soil salinity, further acerbated by the irrigation’s water salinity [16]. 

On the other hand, the application of the irrigation water during the rainless period prevents the water deficiency 

in the soil during the dry period and enables a deep percolation already of the early rainfall [17]. Also, when 

applied in excess, the irrigation water may provide an additional percolation flux, alas accompanied by polluting 

chemicals [18].  

In, the Mediterranean region is characterized by sandy and calcareous sediments, which have a relatively high 

infiltration capacity [19]. Some ponding in surface depressions or local overflow reservoirs may occur during 

strong intensity downpours, which exceed the infiltration capacity. This effect is accentuated in areas 

characterized by high clay content, in which case one encounters a large variability of the run-off/infiltration 

relationship, which makes the assessment of the recharge potential very difficult [20]. From a geo-chemical 

aspect, the dominant process is the increase in the salinity deposited by the precipitation and infiltration, because 

of the low P/ET ratio. In an extreme case, the increase of salinity is due to the precipitation of the less soluble 

layers of the soil water salinity. In these regions, practice of irrigated agriculture expresses itself in the 

concentration of the residual flux and more extreme changes of the chemical process of the groundwater 

recharge flux. 

 

Conclusion 

Groundwater recharge occurs in semi-arid areas most commonly through infiltration of surface run-off. Water 

percolation through the unsaturated zone is a main process of groundwater recharge. Hydraulic properties of the 

unsaturated layers are the major parameters involved in the water infiltration. An approach based on the 

properties will be a powerful tool to assess aquifer recharge and contamination in the semi-arid areas.  
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