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Abstract Many economic and business time series exhibit seasonal tendencies. Analytical techniques for such
series which take into account these tendencies have engaged the attention of researchers of recent. One such
modelling technique is the Box- Jenkins seasonal autoregressive integrated moving average (SARIMA)
technique. A novel algorithm is hereby proposed. This algorithm which is based on autoregressive-moving
average duality arguments is applied to model daily exchange rates of the British pound sterling and the
European Euro currencies. The data analyzed are 178 daily pound/euro exchange rates 13" December 2015 to
7" June 2016. Application of the algorithm using the SARIMA(1,1,1)x(1,1,1); template as proposed yields a
SARIMA(1,1,1)x(0,1,1); model. Further 8 values from 8" June to 15" June 2016 are used for out-of-sample
comparison of observations with forecasts. The adequacy of the chosen model is not in doubt since the residuals
are uncorrelated and are normally distributed. Moreover out-of-sample forecasts closely agree with the observed
values. This additive-multiplicative model may be used for forecasting and simulation purposes.
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Introduction

Global economy rests on foreign exchange amongst countries. This work involves the modelling of the daily
exchange rates of the British pound (GBP) and the European Euro (EUR). The pound sterling is the world’s
oldest currency that is still in use since its introduction on October 8, 1990 [1]. Official users of the pound
sterling include nine British colonies: British Antarctic Territory, Falkland Islands, Gibraltar, Saint Helena,
Ascension and Tristan da Cunha, South Georgia and the South Sandwich Islands, British Indian Ocean
Territory, Guernsey, Isle of Man and Jersey. Unofficial users include Uganda, Zimbabwe, Zambia, Sierra
Leone, Tanzania, Rwanda, Malawi and Botswana.

On the other hand the euro was officially adopted on 16 December 1995 and introduced to the world markets as
an accounting currency on 1 January 1999. Official users of the currency are countries within the eurozone:
Austria, Belgium, Cyprus, Estonia, Finland, France, Germany, Greece, Ireland, Italy, Latvia, Lithuania,
Luxembourg, Malta, Netherlands, Portugal, Slovakia, Slovenia,and Spain. Unofficial users include Kosovo,
Montgenero, Northern Cyprus and Zimbabwe [1].

This paper examines the possibility of modelling the daily exchange rates of the GBP and the EUR with a view
to proposing a model for their forecasting and simulation. This can go a long way to help in management and
planning. The approach which shall be adopted is the seasonal autoregressive integrated moving average
(SARIMA) approach.

The SARIMA approach is an adaptation of the general autoregressive integrated moving average (ARIMA)
modelling both proposed by Box and Jenkins [2]. It has been extensively applied to model time series
especially those which show evidence of seasonality. For instance, Wongkoon et al. [3] modelled monthly DHF

A

Py
{3\;

Journal of Scientific and Engineering Research

378



Etuk EH Journal of Scientific and Engineering Research, 2016, 3(6):378-386

incidence in Northern Thailand as a SARIMA(2,0,1)x(0,2,0);, model, Shitan et al. [4] modelled Bangladesh
export values by a SARIMA(1,1,0)x(0,1,1),,, Cuhadar [5] forecasted tourism demand to Istanbul using a
SARIMA(2,0,0)x(1,1,0);,, Asamoah-Boaheng [6] fitted a SARIMA(2,1,1)x(1,1,2);, model to monthly mean
surface air temperature in the Ashanti Region of Ghana and Alvarez-Diaz and Gupta [7] proposed a
SARIMA(3,1,1)x(2,1,2),, forecasting model for the United States Consumer Price Indices . Some others who
have applied SARIMA modelling in recent times are Papmichail and Georgiou [8], Brida and Garrido [9],
Khajavi et al. [10], Mombeni et al. [11] and Maarof et al. [12], to mention but a few.

ARIMA and SARIMA modelling have been applied of recent to model foreign exchange rates. For instance,
Appiah and Adetunde [13] fitted an ARIMA(1,1,1) to the exchange rates of Ghana cedi and the US Dollar.
Osarumwense and Waziri [14] modelled Nigerian Naira and the US Dollar exchange rates as an ARIMA(1,1,1).
Martinez and Gaw [15] modelled the Philippine/ US Dollar exchange rate as an ARIMA(1,1,2). Etuk et al. [16]
have fitted an additive SARIMA model to daily Ugandan shilling — Nigerian Naira exchange rates.

Materials and Methods

Data: The data for this work are daily exchange rates between British Pound and the European Euro from 13
December, 2015 to 7 June, 2016 obtained from the website www.exchangerates.org.uk/GBP-EUR-exchange-
rate-history.html . The website was accessed on 8 June, 2016 for the sample and on 16 June, 2016 for the out-of-
sample observation/forecast comparison. It is interpreted as the amount of the Euro in one pound.

Sarima Methodology
A time series {X¢} is said to follow a SARIMA (p,d,q)x(P,D,Q);s if
AL) A(L°)VIV (X,) = B(L) (L*)e, 1
where {&} is a white noise process, A(L) is the non-seasonal autoregressive operator — a p-order polynomial in
L, B(L) is the non-seasonal moving average operator — a g-order polynomial in L, ®(L) is the seasonal
autoregressive operator — a P-order polynomial in L, ®(L) is the seasonal moving average operator — Q-order
polynomial in L, V is the non-seasonal difference operator and V; is the seasonal difference operator, d is the
non-seasonal differencing order, D is the seasonal differencing order, L is the backshift operator defined by L*X;
= Xk and s is the seasonality period(Box and Jenkins, 1976).
Suhartono [17] has proposed an algorithm for SARIMA modelling. This is given by
1. Fit the moving average (MA) model
Xi= &+ Biers + Bsrs + Psrbrsa (2
2. If Bsq =0, then the model is said to be additive. If not,
if B1Bs = Bs+1, then the model is said to be multiplicative, otherwise it is said to be subset.
On the basis of autoregressive-moving average duality properties, Etuk and Ojekudo [18] proposed an algorithm
based on the autoregressive dual of Suhartono’s [17] algorithm.
That is,
1. Fitthe autoregressive (AR) model
Xi+ 0 Xeg + 05X + 013Xps1 = & 3)
2. If agq = 0, then the model is said to be additive. If not,
If oyos = o+, then the model is said to be multiplicative, otherwise it is said to be subset.
The Novel Algorithm:
A stationary time series may be represented as a general linear process which may be defined as a moving
average model of infinite dimension. It may be shown that both an AR(p) and an MA(Q) are finite
approximations of the process. The ARMA model resulted as a more parsimonious representation of the
process.
A merger of the two algorithms is hereby proposed as the novel algorithm. That is:
Fit the SARIMA(1,0,1)x(1,0,1)s model:
Xi+ 0 Xeg + 05X + 01 X1 = & + Pagrr + Pstrs + Psra€rst 4)
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The left hand side (lhs) of (4) is the AR component and the right hand side (rhs) the MA component. If both
components are subset in the respective sense of (2) and (3), the resultant model may be called a subset-subset
SARIMA model. If the Ihs is additive and the rhs subset then the model may be called an additive-subset
SARIMA model. Similarly, a multiplicative-subset, a subset-additive, an additive-additive, a multiplicative-
additive, a subset-multiplicative, an additive-multiplicative and a multiplicative-multiplicative SARIMA model
may be defined. It is also possible that the AR or MA component is not statistically significant. The word nil
may be used to denote this possibility. For instance, by a nil-additive SARIMA model it is meant the model

Xy =g+ PBrera + Pstrs

and by a multiplicative-nil SARIMA model it is meant the Ihs of (3) such that oo = agq. Similarly a nil-
multiplicative, a nil-subset, an additive-nil or a subset-nil SARIMA model may be defined.

Sarima Modelling

Stationarity of time series shall be tested by Augmented Dickey Fuller (ADF) Test. It is often enough to
difference the series such that D + d is not more than 2, for stationarity to be achieved.

The autocorrelation structure associated with the model (4) is such that there is a significant spike in the
autocorrelation function at lag s and comparable spikes at lags s-1 and s+1. Similarly, the partial autocorrelation
function is such that there is a significant spike at lag s and comparable ones at lags s-1 and s+1.

The reviews package shall be used to fit the model (4) by the least error sum of squares criterion. Model
discrimination and selection shall be done by automatic model selection criteria like Akaike’s Information
Criteria (AIC) [19], Schwarz Criterion [20] and Hannan-Quinn criterion [21].

Results and Discussion

The time-plot of Figure 1 shows an overall slightly negative trend up to the first week of April, 2016 after which
it shows an overall positive trend. This may be interpreted to mean that the GBP relatively depreciated from
December 2015 to March 2016 after which it appreciated. The ADF test statistic for the pound-to-euro exchange
rate series, is equal to -2.50 and the 1%, 5% and 10% critical values are respectively -3.47, -2.88 and -2.58.
Therefore the rates are non-stationary. A weakly differencing of the series yields another series which has a
slightly upward overall trend (See Fig. 2). With an ADF test statistic of -3.27, it is non-stationary at 1% level of
significance. Besides, its correlogram of Fig. 3 shows evidence of seasonality. Therefore a non-seasonal
differencing of the seasonal differences was done to obtain a series which shows no trend (See Fig. 4) and a
correlogram showing suggestive of seasonality with s = 7 (See Fig. 5).

Estimation of the SARIMA(1,1,1)x(1,1,1); model in Table 1 yields
X -0.5075X;4 +0.1083X;7; +0.0337X; g = & - 0.4659¢;; — 0.9483¢,; + 0.4143¢, 4 (5)
(+0.1252) (£0,0791) (+0.0943) (£0.1596) (£0.0179) (£0.1408)

Clearly for model (5) only the lags 7 and 8 coefficients of the Ihs are not statistically significant.
The resultant model is an additive-multiplicative SARIMA model. Traditionally it is a SARIMA(1,1,1)x(0,1,1),
model. It is as estimated in Table 2 by

X¢—0.4760X 1 = g — 0.4698¢.1 - 0.9417¢,; + 0.4115¢. 4 (6)

(£0.0552) (+0.0883) (£0.0195) (+0.0852)
The information criteria AIC, Schwarz Criterion and Hannan-Quinn criterion unanimously choose model (6) in
preference to (5).
It is noteworthy that the additive-multiplicative model (6) has residuals which are uncorrelated as evident from
Figure 6 and are normally distributed as evident from the Jarque-Bera test of Figure 7. In addition the Table 3
results show that there is a close enough agreement between the observations and forecasts of the exchange rate
values of 8" June 2016 through 15™ June 2016 which are out-of-sample.
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Figure 1: Time Plot of the Series
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Figure 2: Seasonal Differences
Autocorrelation Partial Correlation AC PAC Q-Stat  Prob
L — LI — 1 0.846 0.846 12460 0.000
L — g 2 0700 -0.056 21043 0.000
| — | [ 2 0539 -0139 261.58 0.000
L O 4 0375 -0.119 286.42 0.000
L | g 5 0228 -0.053 29569 0.000
[ | [ | & 0115 0.009 298.07 0.000
g 7 -0.051 -0.300 29854 0.000
g | | 8 -0.078 0.357 299.65 0.000
g L/ 9 -0.095 -0.025 3201.29 0.000
O O 10 -0.116 -0125 303.76 0.000
O [N 11 -0.125 -0.039 306.66 0.000
O O 12 -0.153 -0.137 311.01 0.000
= O 13 -0.221 -0116 32014 0.000
=1 L/ 14 -0.229 -0.035 330.05 0.000
= L | 15 -0.209 0293 338.31 0.000
| L 16 -0.185 -0.005 34481 0.000
O O 17 -0.157 -0.144 34955 0.000
0 g 18 -0150 -0.080 353.91 0.000
O g 19 -0.148 -0.054 35815 0.000
O [N 20 -0115 -0.041 36073 0.000
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) i 26 0115 0.034 366.70 0.000
[y | [ | 27 0168 0017 37253 0.000
[ | O 28 0197 -0135 38058 0.000
3 3 29 0182 0191 38745 0.000
[y | L 30 0158 00329 39269 0.000
| 1 31 0133 -0.005 39643 0.000
[ | g 32 0122 -0.093 39959 0.000
A 1 32 0101 0.018 40176 0.000
[l [l 34 0090 0112 40352 0.000
nll o 35 0097 -0.021 40557 0.000
L]l L]l 36 0108 0108 40811 0.000

Figure 3: Correlogram of the seasonal differences
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Figure 4: Difference of the Seasonal Differences
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Figure 5: Correlogram of the difference of the seasonal differences
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Table 1: Estimation of the sarima(1,1,1)X(1,1,1); model
Dependent Variable: DSODPELURA
Method: Least Squares
Date: 06/08M16 Time: 17.56
Sample (adjusted): 17 173
Included observations: 162 after adjustments
Convergence achieved after 24 iterations
MA Backcast: 9 16
Wariable Coefficient Std. Error t-Statistic Prob.
AR(1) 0.507523 0125212 4053304 0.0001
AR(T) -0.108317 0.079121 -1.369006 01730
AR(B) 0.033697 0.094264 0357476 07212
MAL1) -0.465932 0159644  -2.918576 0.0040
MA[T) -0.848280 0017852  -53.11885 0.0000
MA[E) 0414262 0140774 2942753 0.0037
R-squared 0523826 Mean dependentvar -8.09E-05
Adjusted R-squared 0.508564 S.0. dependentwvar 0.010002
S.E. of regression 0.007011  Akaike info criterion -7.046207
Sum squared resid 0.007669 Schwarz criterion -6.931852
Log likelihood AYE.7428 Hannan-Cwinn criter. -6.999777
Durbin-Watson stat 2034634
Inverted AR Roots T0-30i F0+.30i ey 19+ 700
A9-70i -43+ 56i -.43- 56i -71
Inverted MA Roots 1.00 B2-77i B2+ 77i A4
- 22-97i - 22+ 97i -.88-43i -.88+.43i
Table 2: Estimation of the additive-multiplicative model
Dependent Variable: DSDPELURA
Method: Least Squares
Date: 06/08MG6 Time: 18:03
Sample (adjusted); 10178
Included observations: 169 after adjustments
Convergence achieved after 18 iterations
MA Backcast: 29
Wariable Coefficient Std. Error t-Statistic Prob.
AR(1) 0476029 0.055180 8626840 0.0000
MAL1) -0.469752 0088332 -5.318030 0.0000
MA(T) -0.841714 0019506  -48.27826 0.0000
MA[E) 0.411494 0.0852149 4 828638 0.0000
R-squared 0.504452 Wean dependentwvar -4 38E-05
Adjusted R-squared 0.495442 35.D. dependentvar 0.009850
S.E. of regression 0.006997 Akaike info criterion -7.063337
Sum squared resid 0.008078 Schwarz criterion -G.989257
Log likelihood G00.8520 Hannan-Cuinn criter. -7.033274
Durbin-Watson stat 2012919
Inverted AR Roots 48
Inverted MA Roots 1.00 B2+ TTi B2-T77i A4
- 22+ 97i - 22-87i -.88-43i -88+.43i
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Figure 6: Correlogram of Sarima(1, 1, 1)X(0, 1, 1); Resiiduals
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Table 3: Out-of-sample comparison of forecasts with observations

Time Observation Forecast
8™ June, 2016  1.2730 1.2635
9™ June, 2016  1.2783 1.2619
10" June 2016  1.2675 1.2446
11" June 2016  1.2675 1.2392
12" June 2016  1.2646 1.2329
13" June 2016  1.2573 1.2333
14" June 2016  1.2587 1.2408
15" June 2016  1.2605 1.2237

Conclusion

The algorithm (4) is a merger of algorithms (2) and (3). It is therefore associated with a wider scope than either
(2) or (3). This means that more time series would be analysed using this new algorithm than either earlier one.
Corresponding notations and nomenclatures have been introduced.

The additive-additive SARIMA model fitted to the pound-euro exchange rates is shown to be adequate. The
correlogram of its residuals in Figure 6 shows that the residuals are all uncorrelated. Besides their histogram in
Figure 7 shows that at 1% level of significance the residuals are normally distributed.

The model (6) may therefore be used for the simulation and forecasting of the exchange rate series.
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