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Abstract The result of total cross section for electron strontium collision shows the dependence on energy 

ranging from 100e V to 1000e V. The numerical calculations were performed with eikonal approximation and 

the FORTRAN Code developed by Koonin and Meredith (1989). The results obtained were significant at higher 

energies. 
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1. Introduction 

Strontium belongs to group two elements of the periodic table, it has an atomic number of 38, and it is most 

similar chemically to the heavier alkali earth elements. Strontium is a soft, silvery metallic element found in 

rock, soil, dust, coal and oil. Strontium found in nature is not radioactive but strontium-90 is a radioactive form 

of strontium [1]. Electron atom collision are always characterized by the differential cross section, the 

differential cross section is the main observable in quantum scattering experiments. The notion was introduced 

first to describe the Rayleigh scattering of sunlight and the Rutherford scattering of alpha particles. In both 

scattering process, the differential cross section is well established in the framework of the correspondingly 

dynamical equations: The Maxwell equations in the case of Rayleigh scattering and the Newton’s equations in 

the case of Rutherford scattering. On the other hand, a satisfactory justification of the quantum scattering cross 

section can be completely described by the framework of the Schrödinger wave equation.  

In scattering theory, the total cross section (TCS) is a measure of the probability that an interaction occurs, the 

larger the cross section the greater the probability that an interaction will take place when a particle is incident 

on a target [2]. Several processes might occur during collision, one of these processes is elastic scattering, in 

which the two particles are simply scattered without any change in their internal structure. Inelastic scattering is 

also one of the processes that can occur during collision, in this type of scattering, the two particles undergo a 

change in their internal quantal state. The problem of collision between an electron and an atom is of interest in 

quantum mechanics for which various methods have been found useful in describing the scattering processes, 

ranging from classical to quantal. Partial wave method is one of the methods applied to problem of scattering of 

electron by atom, there are various kinds of approximation methods which have been developed in collision 

theory, and these include Born and eikonal approximation. 

 

2. Scattering Theory 

Consider a particle of mass m and energy  

𝐸 =
ħ

2𝐾2

2𝑚
› 0         (1) 

 Described by a plane wave 
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 Ѱ𝑖𝑛 = 𝑒𝑖𝑘𝑧         (2) 

Traveling in the Z- direction that satisfy Schrödinger wave equation 

 −
ħ

2

2𝑚
𝛻2𝛹 + 𝑉𝛹 = 𝐸𝛹        (3) 

The free particle wave function becomes “distorted” in the presence of a potential 𝑉 𝑟 . the distorted wave 

function is composed of an incident plane wave and a scattered wave. 

 Ѱ𝑠𝑐 = 𝑒𝑖𝑘𝑧 + 𝑓 𝜃 
𝑒 𝑖𝑘𝑟

𝑟
       (4) 

Equation (4) can be calculated by solving the Schrödinger wave equation. Where 𝑓 𝜃  𝑖𝑠 the complex scattering 

amplitude embodies the observable scattering properties and is the basic function we seek to determine. 

Moreover, collisions are always characterized by the differential cross section (that is, measure of the 

probability distribution) given by: 
𝑑𝜎

𝑑𝛺  
=  𝑓 𝜃  2        (5) 

This has the simple interpretation of the probability of finding scattered particles within a given solid angle. The 

total cross section can be obtained by integrating the differential cross section on the whole sphere of 

observation (4π steradian). 

𝜎 =  
𝑑𝜎

𝑑𝛺
 𝑑𝛺 =  𝑑ф  𝑑𝜃 sin 𝜃

𝜋

𝑜

2𝜋

0

𝑑𝜎

𝑑𝛺  
     (6) 

 

3. Eikonal approximation 

For scattering problems where the potential V(x) is much smaller than the energy, one can make use of the 

Eikonal approximation in order to solve the problem. This approximation covers a situation in which the 

potential varies very little over distances of the order of Compton wavelength. This approximation is semi 

classical in nature; it is essence is that each ray of the incident plane wave suffers a phase shift as it passes 

through the potential on a straight line trajectory as shown in Fig. 1.were, r= (b
2
+z

2
)

1/2
. 

 
Figure 1: Geometry of Eikonal approximation 

The approximation can be derived by using the semi classical wave function 

Ѱ 𝑟 = 𝜙(𝑟)𝑒𝑖𝑘𝑖 .𝑟  
       (7) 

Where, ϕ(r) is a slowly-varying function, describing the distortion of the incident wave. The dynamic of the 

motion can be described by Schrödinger wave equation                                                                          

−ћ2

2𝑚
∇2Ѱ 𝑟 + 𝑉 𝑟 Ѱ 𝑟 = 𝐸Ѱ 𝑟       (8) 

Putting equation (7) in equation (8) give 

−ћ2

2𝑚
 2𝑖𝑘𝑖∇ + ∇2 𝜙 𝑟 + 𝑉𝜙 𝑟 = 0     (9) 

If we now assume that ϕ(r) varies slowly enough so that the  𝛻 2
ϕ term can be ignored (i.e. k is very large), we 

have 

 𝑖𝑘ħ2

𝑚

𝜕

𝜕𝑧
𝜙 𝑏, 𝑧 = 𝑉 𝑏, 𝑧 𝜙 𝑏, 𝑧       (10) 

Here, we have introduced the coordinate b in the plane transverse to the incident beam, so that; 

𝑉 𝑏, 𝑧 = 𝑉 𝑟         (11) 

From, Fig.1       
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 𝑟 = (𝑏2 + 𝑧2)
1
2
        (12) 

From symmetry considerations, we expect that 𝛹 will be azimuthally symmetric and so independent of b. 

equation (10) can be integrated immediately and using the boundary condition that 𝛹 →1 as Z→ ∞   since there 

is no distortion of the wave before the particle reaches the potential, we have  

𝜙 𝑏, 𝑧 = 𝑒2𝑖𝜒(𝑏,𝑧)       (13) 

𝜒 𝑏, 𝑧 = −
𝑚

2ћ2𝑘
 𝑉 𝑏, 𝑧 ′ 𝑑𝑧
∞

−∞
      (14) 

Having obtained the eikonal approximation to the scattering wave function, we can now obtain the eikonal 

scattering amplitude 𝑓(𝜃), inserting equation (8) in to an exact integral expression for the scattering amplitude. 

𝑓 𝜃 = −
𝑚

2𝜋ћ2  𝑒−𝑖𝑘𝑓 .𝑟𝑉 𝑟 Ѱ 𝑟 𝑑3 𝑟    (15) 

We have, 

𝑓𝑒 =
−𝑚

2𝜋ħ2  𝑑2𝑏  𝑑𝑧
∞

−∞
𝑒−𝑖𝑞 .𝑟𝑉 𝑏, 𝑧 𝜙 𝑏, 𝑧     (16) 

Using eqn. (9), we can relate V(r)ϕ(r) directly to 
𝜕ϕ

𝜕𝑧
. 

Furthermore, if we restrict our consideration to relatively small scattering angles, so that𝑞𝑧 = 0, then the Z 

integral in equation (17) can be done immediately and using eqn. (15) for φ(r), we obtain. 

𝑓𝑒 = −
𝑖𝑘

2𝜋
 𝑑2 𝑏𝑒−𝑖𝑞 .𝑏       (17) 

With the profile function 

𝜒 𝑏 = 𝜒 𝑏, 𝑧 = ∞ = −
𝑚

2ћ2𝑘
 𝑉 𝑏, 𝑧 𝑑𝑧
∞

−∞
     (18) 

Since χ is azimuthally symmetric, we can perform the azimuthally integration in equation (17) and obtain our 

final expression for the eikonal scattering amplitude. 

  𝑓𝑒 = −𝑖𝑘  𝑏𝑑𝑏𝐽𝑜
∞

0
 𝑞𝑏  𝑒2𝑖𝜒 𝑏 − 1      (19) 

In deriving this expression, we have used the identity of Bessel function. 

 𝐽𝑜 𝑞𝑏 =
1

2𝜋
 𝑒−𝑖𝑞𝑏𝑐𝑜𝑠𝜙2𝜋

0
𝑑𝜙      (20) 

Hence, 𝑓𝑒  depend upon both 𝐸 (through K) and q. 

An important property of the exact scattering amplitude is the optical theorem, which relates the total cross- 

section to the imaginary part of the forward scattering amplitude. After a bit of algebra, one can show that 𝑓𝑒  

satisfied this relation in the limit that the incident momentum becomes large compared to the length scale over 

which the potential varies. 

𝛿 =
4𝜋

𝑘
𝐼𝑚𝑓 𝑞 = 0 = 8𝜋  𝑏𝑑𝑏𝑠𝑖𝑛2𝜒 𝑏 

∞

0
     (21) 

 

4. Central Potential 

A three dimensional physical systems have a central potential i.e. a potential energy that depends only on the 

distance r from the origin 𝑉 𝑟 = 𝑉(𝑟). If we use spherical coordinates to parameterize our three dimensional 

space, a central potential does not depend on the angular variable 𝜃 and 𝛷. Therefore, in a scattering experiment 

it is easier to work in the Centre of mass frame, where a spherically symmetric potential has the form V(r) 

with 𝑟 = |𝑥    |, due to the quantum mechanical uncertainty (i.e. we can only predict the probability of scattering in 

a certain direction). 

In Born and eikonal approximation calculations of the scattering of electrons from atoms, in general it is a 

complicated multi- channel scattering problem, since there are reactions leading to final states in which the atom 

is excited. However, as the reaction probabilities are small in comparison to elastic scattering, for many 

purposes the problem can be modeled by the scattering of an electron from a central potential [3]. This potential 

represents the combined influence of the attraction of the central nuclear charge (Z) and the screening of this 

attraction by the Z atomic electrons. For a target atom, the potential vanishes at large distances faster than 𝑟¯
1
. A 

very accurate approximation to this potential can be solved for the self-consistent Hartree Fock potential of the 

neutral atom. However a much simpler estimate can be obtained using an approximation to the Thomas Fermi 

model of the atom given by Lenz and Jensen (Blister and Hautala, 1979). 

𝑉 = −
𝑧𝑒2

𝑟
𝑒−𝑥 1 + 𝑥 + 𝑏2𝑥2 + 𝑏3𝑥3 + 𝑏4𝑥4     (22) 
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With, e²=14.409, b₂=0.3344, b₃=0.0485, b₄=2.647× 10¯
3
, and x=4.5397Z

1/6
 r

1/2
 

The potential is singular at the origin, However, if the potential is regularized by taking it to be a constant within 

some small radius rmin, (say the radius of the atom 1s shell), the  calculated cross section will be unaffected 

except at momentum transfers large enough so that  

𝑄𝑟𝑚𝑖𝑛 ≫ 1         (23) 

The incident particle is assumed to have the mass of the electron and is appropriate for atomic systems; all 

lengths are measured in angstrom (Å) and all energies in electron volt (eV). The potential is assumed to vanish 

beyond 2Å. Furthermore, the r
-1

 singularity in the potential is cut off inside the radius of the 1s shell of the atom. 

 

5. Methodology 

The computation of Eikonal approximation to the total   cross section of strontium for a given central potential 

at specified incident energy, a FORTAN program developed by Koonin and Meredith (1989) have been used. 

The program is made up of four categories of file: common utility program, physics source code, data files and 

include files [3]. 

The physics sources code is the main sources code which contains the routine for the actual computation. The 

data files contain data to be read into the main program at run-time and have the exertion. DAT. The first thing 

done was the successful installation of the FORTRAN codes in the computer. This requires familiarity with the 

linker, editor and the graphics package to be used in plotting. The program runs interactively. It begins with a 

title page describing the physical problem to be investigated and the output that will be produced; next, the 

menu is displayed, giving the choice of entering parameter values, examining parameter values, running the 

program or terminating the program. When the calculation is finished, all values are zeroed (except default 

parameter), and the main menu is redisplayed, giving us the opportunity to redo the calculation with a new set of 

parameters or to end execution. Data generated from the program were saved in a file which would be imported 

into the graphics software for plotting [4-5]. 

Table 1: Table of total cross section using eikonal together with data obtained from Born and NIST SRD 64 

Energy (eV) Approximation 

Eikonal Born NIST 

10 4.494 301.70  

20 5.006 208.80  

30 7.087 161.60  

40 5.788 132.30  

50 4.707 112.30 18.933 

60 3.923 97.65 17.115 

70 3.305 86.48 15.535 

80 3.187 77.64 14.197 

90 3.155 70.47 13.071 

100 3.246 64.53 12.122 

200 3.469 35.20 7.472 

300 3.567 24.26 5.814 

400 3.374 18.39 4.927 

500 3.559 15.09 4.347 

600 4.057 13.14 3.925 

700 3.788 11.42 3.598 

800 3.704 9.997 3.334 

900 3.534 8.945 3.114 

1000 3.496 8.059 2.929 
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Figure 2: Graph of total cross section using eikonal together with data obtained from Born and NIST SRD 64 

                                                             

6. Discussion 

Fig. 2 shows that, the present result and NIST SRD 64 data is much closer and converges at incidence energy 

above 400 eV, but in comparison with the Born approximation, the total cross section is high at lower energy, 

this indication shows that it valid at higher energy. Again, as we observed the curve for Born approximation is 

superior to the other curves. Hence the present result is in agreement to NIST SRD 64 and Born approximation 

at higher energy. This is because an eikonal approximation, valid at high energies and small scattering angles. 

 

7. Conclusion 

The computation of total cross section were carried out at impact energies ranging from 1.0 to 1000.0eV, using 

FORTRAN Source Code of Koonin and Meredith, The eikonal result and NIST SRD (64) show good 

agreement, the eikonal and Born approximation there is a discrepancy from 1.0eV to 400.0eV. 
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