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Abstract A new model of generalized rotation-thermoelastic in an isotropic elastic medium with voids and two-

temperature is established. The entire elastic medium is rotated with a uniform angular velocity. The 

formulation is applied under three theories of generalized thermoelasticity: Lord-Schulman with one relaxation 

time, Green-Lindsay with two relaxation times, as well as the coupled theory. The normal mode analysis is used 

to obtain the exact expressions for the considered variables. Some particular cases are also discussed in the 

context of the problem. Numerical results for the considered variables are obtained and illustrated graphically. 

Comparisons are also made with the results predicted by different theories (CD), (L-S), (G-L) in the absence and 

presence of rotation, initial, as well as two-temperature parameters. 

Keywords Rotation; Initial Stress; Two-temperature; Generalized  thermoelasticity; Voids; Normal mode 

analysis 

1. Introduction 

Generalized theories of thermoelasticity have been developed to overcome the infinite propagation speed of 

thermal signals predicted by the classical coupled dynamical theory of thermoelasticity [1]. The subject of 

generalized thermoelasticity covers a wide range of extensions of the classical theory of thermoelasticity. We 

recall the two earliest and most well-known generalized theories proposed by Lord and Shulman [2], Green and 

Lindsay [3]. In the model of (L-S), Fourier’s law of heat conduction is replaced by the Maxwell-Cattaneo law, 

which introduces one thermal relaxation time parameter in Fourier’s law, whereas in the model of (G-L), two 

relaxation parameters are introduced in the constitutive relations for the stress tensor and the entropy. Othman 

[4] studied the (L-S) theory under the dependence of the modulus of elasticity on the reference temperature in 

two-dimensional generalized thermoelasticity. Othman [5] investigated the effect of rotation on plane waves in 

generalized thermoelastic medium with two relaxation times. 

Theory of linear elastic materials with voids is an important generalization of the classical theory of elasticity. 

The theory is used for investigating various types of geological and biological materials for which classical 

theory of elasticity is not adequate.  Othman and Atwa [6] developed the response of micropolar thermoelastic 

medium with voids due to various sources under (G-N) theory, Othman et al. [7] studied the effect of the 

gravitational field and temperature dependent properties on a two-temperature thermoelastic medium with voids 

under (G-N) theory, Cowin and Nunziato [8] developed a theory of linear elastic materials with voids. Puri and 

Cowin [9] studied the behavior of the plane waves in a linear elastic material with voids. The domain of 

influence theorem in the linear theory of elastic materials with voids was discussed by Dhaliwal and Wang [10]. 

Dhaliwal and Wang [11] developed a heat flux dependent theory of thermoelasticity with voids. Ciarletta and 

Scarpetta [12] discussed some results on thermoelasticity for dielectric materials with voids.  

The initial stresses develop in the medium due to various reasons, and it is of paramount interest to study the 

effect of these stresses on the propagation of elastic waves. A lot of systematic studies have been made on the 

propagation of elastic waves. Abd-Alla and Alsheikh [13] showed the effect of the initial stresses on the 
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reflection and transmission of plane quasi-vertical transverse waves in piezoelectric materials. Recently, Abbas 

and Kumar [14] studied the response of the initially stressed generalized thermoelastic solid with voids to 

thermal source. 

The thermoelastic plane waves without energy dissipation in a rotating body have studied by 

Chanderashekhariah and Srinath [15]. Othman [16, 17] used the normal mode analysis to study the effect of 

rotation on plane waves in generalized thermo-elasticity with one and two relaxation times. Schoenberg and 

Censor [18] studied the effect of rotation on elastic waves.  

The two temperatures theory of thermoelasticity was introduced by Chen and Gurtin [19], Abbas and Zenkour 

[20] have studied the two-temperature generalized thermoelastic interaction in an infinite fiber-reinforced 

anisotropic plate containing a circular cavity with two relaxation times. Othman et al. [21] studied the effect of 

rotation on micropolar generalized thermoelasticity with two-temperature using a dual-phase-lag model. 

Youssef [22] has developed the theory of two-temperature generalized thermoelasticity based on the (L-S) 

model. Youssef and El-Bary [23] solved a two-temperature generalized thermoelasticity problem with the 

variable thermal conductivity. 

In the present paper, we will study two-temperature generalized rotation-thermoelastic medium with void and 

initial stress comparison of different theories. The normal mode method is used to obtain the exact expression 

for the considered variables. A comparison is carried out between the considered variables as calculated from 

the generalized thermoelastic pours medium based on (L-S), (G-L), and coupled theories in the absence and 

presence of rotation. A comparison is also made between the three theories with and without initial stress and 

two-temperature. 

2.  Formulation of the Problem 

We consider a homogeneous thermoelastic half-space under hydrostatic initial stress and two-temperature 

rotating uniformly with angular velocity Ω n , where n  is a unit vector representing the direction of the 

axis of rotation. All quantities considered are functions of the time t and the coordinates x  and y . The 

displacement equation of motion in the rotating frame has two additional terms [23]:  the centripetal acceleration 

( ) Ω Ω u  due to the time-varying motion only and the Coriolis acceleration 2 ,tΩ u where 

( , ,0)u u  is the dynamic displacement vector and (0,0, )Ω  is the angular velocity. These terms, do 

not appear in non-rotating media. The rectangular coordinate system ( , , )x y z  has originated on the surface 

0,y   and y-axis pointing vertically into the considered medium.  

     

3. Basic Equations 

The basic governing equations of a linear thermoelastic rotation medium and initial stress with voids two-

temperature under three theories are: 

, ,[ { ( )} (2 ) ],,tji j i tt i iu      Ω Ω u Ω u                                                                              (1) 

[ { ( )} 2( ) ]i,tt i ,t iu     u u                                                                                          (2) 

. ..
2

0 0(1 ) ,b e b m T ρ
t

      


     


=                                                             (3) 

2
0 0 0 0 0 0 0(1+ ) + (1+ ) (1+ ) .EK T ρC T T n e mT n

t t t
    

  
 

  
 +                                           (4) 

02 [ (1 ) ] ( ),ij ij ij ije e T p ij
t

       


     


                                                    (5) 

1
( ).

2
ij i, j j,ie = u +u

                                                                                                                                  

(6) 

1
, ,2

( ), i, j=1,2,3.ij j i i ju u                                                                                                         (7) 
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The thermodynamic temperature, T is related to the conductive temperature,   as  

,iiT a                                                                                                                                              (8) 

,   
are the Lame' constants,

 0, , , , ,b m     are the material constants due to the presence of voids,
 

(3 2 ) t    
 
such that 

t  
is the coefficient of thermal expansion, e is the dilation,

 
ije  components of 

strain tensor, ij is the Kronecker delta,
 , , ,i j x y 

 
is the density,

 EC
 
is the specific heat at constant 

strain,
 0n  is a parameter, 00 ,   are the thermal relaxation times, K is the thermal conductivity, 0T  is the 

reference temperature is chosen so that  0 0( ) / 1,T T T 
   is the change in the volume fraction field, ijσ

are the components of stress tensor, p
 
is the initial stress,

 ij
 
is the rotation tensor, a is the two temperature 

parameter.
 

                 
,i j

x y

 
  

         

2 2
2

2 2
.

x y

 
  

   

The components of stress tensor are 

 

( ) 2 (1 )xx
u u

b p
x y x t


       

   
     

   
                                                                 (9) 

( ) 2 (1 ) ,yy

u
b p

x y y t

 
       

   
     

                                                                   

(10) 

 

( ) ( ).
2

xy

u p

y x x y

  
 

   
   

   
                                                                                                 (11) 

The basic governing equations of a rotating initially stressed linear thermoelastic material with voids under the 

influence of two-temperature will be 

2
0( ) + ( ) (1+ ) [ 2 ],

2 2

p p e T u v
u b u

x x t x tt


       






     
      

    
 =                    (12) 

2
0( ) + ( ) (1+ ) [ 2 ],

2 2

p p e T v u
b v +

y y t y tt


        






     
     

    



=                    (13) 

. ..
2

0 0(1 ) ,b e b m T ρ
t

      


     


=                                                                       (14) 

2
0 0 0 0 0 0 0(1+ ) + (1+ ) (1+ ) .EK T ρC T T n e mT n

t t t
    

  
 

  
 +                        (15) 

To facilitate the solution of the problem, introduce the following dimensionless variables 

1

0

( ) ( ),x , y' = x, y
c

 

  

 

1

1

( , ) ( ),u = u,
c


 



    

0

ij

ij ij

σ
σ = σ ,


  

*

1 0

2

01

' , ' ,
T

= T
Tc

 
   *

1 ,t' = t

*

1

' ,







 

2
2 *0 0 1
1 1 0 0 0 0

0

2
, , , ' , ' , '* *E

1 1

C c p
c ' = p

k T

   
       

 


               (16)            

In terms of non-dimensional quantities defined in Eq. (16) the governing Eqs. (12)-(15) reduce to (dropping the 

prime for convenience) 

2
2

1 2 3 0 4 2
+ (1+ ) ,

e T u
u A A A A

x x t x t




    
 

    
=                                                     (17) 
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2
2

1 2 3 0 4 2
+ (1+ ) ,

e T
A A A A

y y t y t

 
 

    
 

    
=                                           (18) 

2
2

25 6 7 8 0 9e (1+ ) ,A A A T A
t t t

 
   

  
    

  
=                           (19) 

2
10 0 0 0 0 0

2 2 2

( + n ) ( + n ) ( + ) .
2 2 2

A e T
t t tt t t

     
     

   
    

                    (20) 

Also, the constitutive Eqs. (9)-(11) reduces to 

11 12 13 02 (1 ) ,xx

u u
σ A A A Τ p

x y x t


 

   
     

   
= [ ]                                                     (21) 

11 12 13 02 (1 ) ,yy

u
σ T p

x y y t

 
    

   
     

   
= [ ]                                                  (22) 

( ) ( ).
2

xy

u p

y x x y

  


   
   

   
                                                                             (23) 

Where 

2 2

01 1
1 2 3 4*2

1

22 22 (2 )
, , , ,

(2 ) (2 ) (2 ) (2 )

Tbc cp
A A A A

p p p p

  

    

 
   

   
5 ,

b
A






2

1
6 *2

1

,
c

A





   

2

0 1
7 *

1

,
c

A





 

2

0 1

8 9, ,
mT c

A A
  

 
 

 

2

1

10 *2

1

,
E

mc
A

C  
   11 ,







2
1

12 *2
1

,
bc

A
 

  
0

13

2
,

(2 )

T
A

p







     

.
EC





  

We define displacement potentials 
1  and the vector potential 

2  which related to displacement components 

u and  as, 

1 2 ,u
x y

  
 
 

       1 2 ,
y x

 


 
 
 

                                                                                         (24) 

2

1,e              
2

2( ) .
u

y x




 
 

 
                                                                                             (25) 

By substituting from Eq. (25) in Eqs. (17)-(20), this yields 

*

1 4 1 4 2

2
2 2 2

4 2 3 02
[(1 ) ] 2 (1 )(1 0,A A A A A A a )

t t t
      

  
       

  
  =              (26) 

4 1 4 2

2
2 2

2
2 +[ ] = 0,A A

t t
    

 
  

 
                                                       (27) 

2
2 2

02

*
5 1 6 7 9 8( ) (1 )(1 0,2A A A A A a )

t tt
   

  
           

 
                    (28) 

2 2 2
0 0 10 0 0 02 2 2

2 2 2
*

1( + n ) ( + n ) ( + )(1 a ) 0.A
t t tt t t

       
     

       
    

       (29) 

* 2(1 ) ,T a          

* *2
1

2
1

.
a

a
c


                                                                                                     (30)  

3. NORMAL MODE ANALYSIS 
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The solution of the considered physical variable can be decomposed in terms of normal modes as the following 

form 

* * * * * * * *
1 2 1 2[ , , , , , , , ]( , , ) [ , , , , , , , ]( )exp[ ( )],ij iju T x y t u T y i t cx                   (31) 

Where 
* * * * * * * *

1 2[ , , , , , , , ]iju T     
 
are the amplitudes of the function 1 2[ , , , , , , , ],iju T     

 
  is the 

complex time constant, i 1   and  c  is the wave number in x-direction.
 

Using Eq. (31) into Eqs. (26)-(29), then we have, 
* *

1 2 5

2 * 2 *
2 3 4(D ) + [ D 0,S S S SS =                                                                              (32) 

* *

7 1 8 2

2S +(D ) = 0,S                                                                                                                  (33) 

2 2 22 * * *
5 1 9 10 11(D ) +(D ) ( D 0,A c S S S ) =                                                              (34) 

2 2 2
12 13

* * *
1 14 15(D ) +(S D ) 0.S c S S =                                                                          (35) 

Where, 

 
* * 2

3 0
6

1

(1 i )(1 )
,

a A a c
S

S

  


   

7 42i ,S A  
2 2 2

8 4 4 ,S c A A     
2 2

9 6 7 9i ,S c A A A      

* * 2
10 8 0 11 8 0(1 i ), (1 i )(1 ),S A a S A a c        12 0 0i (1 in ) ,S       

13 11 0i (1 ),S A i     
*

14 01 i (1 i ),S a    
  

2 * 2
1 5 0i ( 1 i ) ( 1 ) ,S c a c        

d
D .

dy
  

Eliminating  * *

2 ,   and 
*Τ  between Eqs. (32)-(35), we get the following eighth ordinary differential 

equation satisfied with  
*

1 :  

8 6 4 2 *
1[ D D + D D + ] (y) = 0.A B E F                                                                              (36) 

In a similar manner we arrive at 

8 6 4 2 * * * *
1 2[ D D + D D + ]( )(y) = 0.A B F , , ,E                                                               (37) 

Where 

    

                        5 5 13 5 8 12 6 12]A S S S S S S S  

 
9 8 8 9 14 8 10 13 14 2 10 13 8 14

14 5 12

15 11 13 15 2 15 2 9 2

1
[

( )
B S S S S S S S S S S S S S S S S S S S S S S S

S S S
        



    

2 2 2

3 7 14 12 4 10 8 8 12 5 95 5 54 15 4 14 4 11 12 4 14 4 10 12S S S A S S A S S c S S S S S S c A S S S S S S S S S S c       

 

      

2 2 2

6 9 5 8 9 12 5 8 12 5 8 6 9 6 5 6 6 8512 13 12 12 13 12]S S S c S S S S S S S c A S S S S S S S S c A S S S S S       

 

*2 2
2 3 04 4 4 2

1 1 2 3 4 5
1 1 1 1

(1 i )2i
1 , [ ], , , ,

A aA A A A
S A S c S S S

S S S S

    
      

2

14 10 13 8 14 14 14 4 10 5 9 12 5 12

14 5 12

515 9 2 4 12

1
[

( )
A S S S S S S S S S A S S S S S S S S S S c

S S S
        


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8 9 15 8 11 13 2 9 15 2 11 13 2 8 15 2 8 9 14 2 8 10 13
14 5 12

1
[

( )
E S S S S S S S S S S S S S S S S S S S S S S S

S S S
      



    

2 2 2
3 7 15 3 7 9 14 3 7 10 13 5 4 15 4 11 12 5 4 8 15 5 4 8 14 4 8 11 12S S S S S S S S S S S A S S c S S S c A S S S A S S S c S S S S       

2 2 2 2 2 2
4 8 10 12 5 8 9 12 5 5 8 13 6 9 12 5 6 13 6 8 9 12 6 8 12S S S S c S S S S c A S S S c S S S c A S S c S S S S S S S c      

5 6 8 13]A S S S

 
2 2

2 8 9 15 2 8 11 13 3 7 9 15 3 7 11 13 5 4 8 15 4 8 11 12
14 5 12

1
[

( )
F S S S S S S S S S S S S S S S S A S S S c S S S S c

S S S
     



 

  

2 2
6 8 9 12 5 6 8 13 ].S S S S c A S S S c 

 

Equation (36) can be factored as 

2 2 2 2 2 2 2 2 *
1 2 3 4 1[(D )(D )(D )(D )] (y) = 0.k k k k    

                                                               
(38) 

Where  
2
n (n 1,2,3,4)k   are the roots of the characteristic equation of Eq. (36). 

The solution of Eq. (36) bound as ,y 
 
 is given by: 

4
* n
1 n

n 1

= ,
y

=

k
R e 

                                                                                                                                (39)  

4
* n
2 1n n

n 1

=
y

=

k
H R e , 

                                                                                                                          (40) 

4
n

2n n

n 1

,
y*

=

k
= H R e 
                                                                                                                        (41) 

4
n

3n n

n 1

.
y*

=

k
= H R e 
                                                                                                                         (42) 

4
n

4n n

n 1

.
y*

=

k
T = H R e


                                                                                                                        (43) 

Where, n (n 1,2,3,4)R   are some constants. 

To obtain the components of the displacement vector, from (39) and (40) in (24) 

4
* n

1n n

n 1

,
y

=

k
u = G R e


                                                                                                                           (44)

 
4

* n
2n n

n 1

,
y

=

k
= G R e 
                                                                                                                         (45) 

From Eqs. (39)-(45) in (21)-(23) to obtain the components of the stresses 

4
* n

5n n

n 1

,
y

xx

=

k
= H R e 
                                                                                                                        (46) 

 

4
* n

6n n

n=1

,
y

yy
k

= H R e 
                                                                                                                       (47) 
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4
* n

7n n

n=1

.
y

xy
k

= H R e 
                                                                                                                    (48) 

Where   

 

7
1n 2

n 8

S
,

( )
H =

k S




        

1n
2 2 2 2

5 10 11 3 2
2n 2 2

9 4 10 11

( ) + ( )[ ( )]
,

( ) + (S )

n n n

n n

A k c S k S S H k S
H =

k S S k S

   

   
2

3 1n 2 4 2n
3n 2

5 6

S ( ) S
,n

n

H k S H
H =

S k S

  

   4n
2 2

1n,[1 )]nH = a(k c H  ,  1n n 1n= ,G ic k H
 

2n n 2n= ,G k icH
 11 1n n 2n 1n 12 2n 13 4n= (icG ) + 2ic + ,5nH A + k G G A H A H

 
11 1n n 2n n 2n 12 2n 13 4n= (icG ) 2k + ,6nH A + k G G A H A H 

  

7n n 1n 2n n 1n 2n( ) ( ).
2

p
H = k G icG k G icG    

4.   Boundary conditions 

In this section, we need to consider the boundary conditions at 0y  , in order to determine the parameter 

n (n 1,2,3,4).R   

(1) The thermal boundary condition that the surface of the half-space is subjected to 

1
( + ) .i ωt c xT = P e                                                                                                                                  (49) 

 (2) The mechanical boundary condition 

( + )
2  ,      = 0, 0. i t cx

yy xyσ P e σ =
y

 
 


                                                                        (50)  

Where, 1P is the applied constant temperature to the boundary 2P  and is the magnitude of the applied force in 

of the half-space. 

Using the expressions of the variables into the above boundary conditions (49), (50), we obtain 

4

4n n 1

n=1

H R = P ,                                                                                                                                     (51) 

4

6n n

n=1

0H R = ,                                                                                                                                          (52) 

4

n 2n n

n=1

= 0k H R ,                                                                                                                                  (53) 

4

7n n 2

n=1

.H R = P                                                                                                                                         (54) 

Invoking boundary conditions (51)-(54) at the surface 0y   of the plate, we obtain a system of four 

equations, (51)-(54). After applying the inverse of matrix method, then get the values of the four constants 

n (n 1,2,3,4).R   



Othman MIA & Edeeb ERM                      Journal of Scientific and Engineering Research, 2016, 3(5):10-25 

 

Journal of Scientific and Engineering Research 

17 

 

1

41 42 43 441 1

2 61 61 61 61

3 1 21 1 21 1 21 1 21

24 71 71 71 71

0

0

H H H HR p

R H H H H

R k H k H k H k H

pR H H H H


    

    
    
       
      

   

 (55) 

Hence, we obtain the expressions for the displacements, the temperature distribution, and the other physical 

quantities of the plate surface. 

5.   Numerical results and discussion 

Copper material was chosen for purposes of numerical evaluations and the constants of the problem were taken 

as follows: 

10 27.76 10 . ,N m  
 

10 1 23.86 10 . . ,kg m s   
 

5 11.78 10 ,t k   
 

38954 . ,kg m 
 

1 1383.1 . . ,EC J kg k 
    0 293 ,T K

   
6 22.68 10 / deg,N m  

     
* 11

1 3.58 10 / .s    

The voids parameters are  

15 21.753 10 ,m  
   

1 0 21 . 4 7 5 1 0 / ,N m  
 

10 21.13849 10 / ,b N m 
 

53.688 10 ,N  
  

6 22 10 / deg,m N m 
      

3 2

0 0.0787 10 / .N m s    

The comparisons were carried out for 

0.1,x 
  

0.1,t 
  0 1,i   

  0 0.1,  
  1 1, 

  1 2,p 
  2 0.01,p 

  0 0.05, 
 0 0.5, 

   

2,c 
  

0.1, 
  

0.1,p     0.1,a      
0 3.y   

The above numerical technique, was used for the distribution of the real parts of the displacement component 

,u  thermodynamic temperature distribution ,  the conductive temperature ,T  the stress components
 yy , 

xy and the change in the volume fraction field   with distance in three theories, for the following cases: 

(i)   Figs. 1-6 show the comparisons between the considered variables in the absence and presence  

 of initial stress (i.e. 0,0.1P  ) at 0.1, 0.1a  
 

(ii)  Figures 7-12 show comparisons among the considered variables for two different values of the non-

dimensional, two-temperature parameter a ( 0,0.1)a   where 0a   indicates one-type of temperature 

and 0.1a   indicates two-type of temperature in the presence of an initial stress (i.e. 0.1P  ) and 

rotation (i.e. 0.1  ).     

With and without rotation effect are shown graphically in Figs. 13-18 in the case of two different values of 

rotation ( 0,0.1  ) at 0.1, 0.1P a  . 

 
Figure 1: Horizontal displacement distribution u in the absence and presence of initial stress 
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Figure 2: The distribution of the conductive temperature  in the absence and presence of initial stress 

 

 Figure 3:  Conductive temperature distribution T in the absence and presence of initial stress 

 

Figure 4:  Change in volume fraction field distribution in the absence and presence of initial stress 
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Figure 5:  Distribution of strain component yy in the absence and presence of initial stress 

  

Figure 6:  Distribution of stress component 
xy in the absence and presence of initial stress 

 
Figure 7:  Horizontal displacement distribution u for two different values  

of a two-temperature parameter 0, 0.1a   

 
Figure 8 (a): Conductive temperature distribution   for in the presence  

of two-temperature parameter 0.1a    
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Figure 8(b):Conductive temperature distribution   for in the absence  

of two-temperature parameter 0a   

 
Figure 9: Thermodynamic temperature distribution T for two different values 

of two-temperature parameter 0, 0.1a 
 

 

Figure 10(a:) The distribution of the volume fraction field
 
  in the presence 

of two-temperature parameter 0.1a   

 
Figure 10(b): The distribution of the volume fraction field   in the absence 

of two-temperature parameter 0a   
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Figure 11: Distribution of stress component 
yy for two different values 

of two-temperature parameter 0, 0.1a   

 

Figure 12: Distribution of stress component 
xy for two different values 

of two-temperature parameter  0, 0.1a   

 
Figure 13: Horizontal displacement distribution u in the absence and presence of rotation 

 
Figure 14: Conductive temperature distribution  in the absence and presence of rotation
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Figure 15: Thermodynamic temperature distribution T in the absence and presence of rotation 

 

Figure 16: Distribution of the volume fraction field   in the absence and presence of rotation 

 

Figure 17: Distribution of stress component yy in the absence and presence of rotation 

 

Figure 18: Distribution of stress component 
xy in the absence and presence of rotation 
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The  computations  were  carried  out  for  a  value  of  time 0.1.t   All the considered variables depend not 

only on the variables
 

,t x and ,y but also depend on the thermal relaxation times 0 and 0.   

Figure 1 depicts that the displacement component u  with distance y has been shown. In the context of the 

three theories, the values of u decreases in the range 0 0.3,y 
 
then increase in the range 0.3 3,y   

for 0.1,0.p   Figures 2 and 3 demonstrate that the distribution of the conductive temperature   and the 

thermodynamic temperature T  begin from a positive value and satisfies the boundary conditions at = 0.y  In 

the context of the three theories and in the absence and presence of initial stress (i.e. 0,0.1P  ),   and T  

decrease in the range 0 3.y   We also notice that the initial stress has no great effect on the distribution of 

the conductive temperature   and the thermodynamic temperature .T  Figure 4 expresses that the distribution 

of change in the volume fraction field   begins from a positive value for ( 0,0.1P  ),in the context of the 

three theories, however it decreases with the increase of the initial stress for 0.y   It was observed that the 

initial stress has a great effect on the distribution of  . Figure 5 depicts that the distribution of the stress 

component yy begins from negative value. In the context of the three theories, yy increases in the beginning 

to a maximum value in the range 0 0.4,y   then decreases in the range 0.4 3y   for 0,0.1.p   It 

shows that the values of yy at 0p 
 
are higher than that at 0.1.p   Figure 6 shows that the distribution of 

the stress component 
xy reaches a zero and satisfies the boundary conditions at 0.y   In the context of the 

three theories, the values of 
xy  increases in the beginning to a maximum value in the range 0 0.3,y   

then decreases in the range 0.3 3y   for ( 0,0.1).P   Figure 7 exhibits that the distribution of the vertical 

displacement u  begins from negative value in the case of 0a  . In the context of the three theories and in the 

absence and presence of two-temperature, the values of the displacement u start by decreasing, then increasing. 

Figures 8a, b depict that the distribution of the temperature   begins from a positive value for 0.1,0a  in the 

context of the three theories; it noticed that the distributions of   increases with the increase of the two-

temperature for 0,y   and finally goes to zero. Figure 9 demonstrates that the distribution of the temperature 

T  begins from a positive value and satisfies the boundary conditions at 0.y   In the context of the three 

theories and in the absence and presence of two-temperature, T  decreases in the range 0 3.y   The values 

of the temperature T  converge to zero as 3.y   It is noticed that the two-temperature has no great effect on 

the distribution of the temperature T.  Figure 10a, b show that the distribution of change in the volume fraction 

field   begins from a positive value for ( 0,0.1a  ), in the context of the three theories, however it decreases 

in the range 0 3y 
 
for 0.a   However, in the other cases,   increases in the range 0 3.y   It 

explains that all the curves converges to zero. Figure 11 shows that the distribution of stress component yy

begins from the negative value for 0,0.1a  , in the context of three theories. We observe that the distribution 

yy  increases with the decrease of the time value. Figure 12 explains that the distribution of the stress 

component ,xy  in the context of the three theories starts with zero for 0,0.1a  , and increases in the range 

0 0.3,y   then, it decreases until attaining zero for 0.1,a   which agrees with the boundary conditions. It 

is also clear that the two-temperature parameter a  acts to decrease the values of .xy  Figure 13 depicts that 

the distribution of the displacement u always begins from negative values. In the context of the three theories, in 

the absence and presence of the rotation, the values of u  increase with the increase of the rotation. We can also 
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observe from this figure that the values of u in the presence of rotation are lower than that in the absence of 

rotation for
 

0y  . Figure 14  demonstrates that the distribution of the conductive temperature ,  in the 

context of the three theories, decreases in the range 0 3y   for 0,0.1.   Figure 15 determines that the 

distribution of the thermodynamic temperature   always begins from a positive value and satisfies the 

boundary condition at 0.y   In the context of  the  three theories, the values of the temperature   decrease in 

the range 0 3y  , for 0,0.1.   Figure 16 expresses the distribution of the change in the volume fraction 

field   in the context of  the three theories, for 0.1,0  , decreasing with the increase of the rotation for 

0y  . It explained that all the curves converge to zero. Figures 17 depicts that the distribution of the stress 

component yy in the context of the three theories, for 0.1   decreases in the range 0 3,y  and 

increases in the range 0 3,y  for 0  . It is observed that the distribution of yy in the context of the 

three theories, is inversely proportional to the rotation for 0.y 
 
Figure 18 shows that the distribution of the 

stress component xy with distance in the context of the three theories, increases in the range
 
0 0.4,y 

 

then decreases in the range 0.4 3,y 
 0.1,0.   

 

6. Conclusion 

By comparing the figures obtained under the three theories, important phenomena are observed: 

1. Analytical solutions based upon the normal mode analysis for thermoelastic problem in solids  have 

been developed and utilized. 

2. The value of all the physical quantities converges to zero with an increase in the distance y and  

 all functions are continuous. 

3. There are significant differences in the field quantities under (CD), (L-S) and (G-L) theories.  

4.   The presence and absence of rotation and initial stress effect in the current model is of  significance. 

5.   The two-temperature effect for thermoelastic medium with voids is an interesting problem of 

 thermo-mechanical. 

6.  The initial stress, the rotation and the two-temperature effect are significant in the current model 

 since the amplitudes of these quantities are varying (increasing or decreasing) under the effect  of 

the used fields. 
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