A Necessary and Sufficient Condition for the Equation $x^{3}+1=2 p y^{2}$ Has Positive Integer Solutions

Zhiwei Liu, Guang mei Wang, Yan Huang

College of Application Technology, Hezhou University, Hezhou 542899, Guangxi, China

Abstract

Let p be an odd prime with $p \equiv 1(\bmod 6)$. In this paper, using some elementary number theory methods, a necessary and sufficient condition for the equation $x^{3}+1=2 p y^{2}$ has positive integer solutions (x, y) is given. Thus it can be seen that if $p \equiv 13(\bmod 24)$, then equation has no positive integer solution.

Keywords Cubic diophantine equation; Positive integer solution; Necessary and sufficient condition.

1. Introduction

Let \mathbb{N} be the set of all integers and D is an positive integer with no square factors. For a long time, to solve of the equation

$$
\begin{equation*}
x^{3}-1=D y^{2}, \text { x,y } \in \mathbb{N} \tag{1.1}
\end{equation*}
$$

is a very interesting problem in number theory. In the history, many scholars of number theory such as T. Nagell [1] and W. Ljunggren [2] et al. have researched such problems in depth. In 1981, Ke and Sun [3] prove that if $D>6$ and prime factor P of D satisfies $p \neq 1(\bmod 6)$, equation (1.1) has no solution (x, y). Hereafter, J.H.E. Cohn [4] prove above results again together with the case $D \leq 6$.Therefore, so far we only need to consider the case that the prime factor P of D satisfies $p \equiv 1(\bmod 6)$. At this time, to find the solution of the equation is a very difficult problem.
Let p is an odd prime number satisfying $p \equiv 1(\bmod 6)$. This paper will discuss the equation (1.1) under the case $D=2 p$, this time the equation can be expressed as follows

$$
\begin{equation*}
x^{3}+1=2 p y^{2}, \mathrm{x}, \mathrm{y} \in \mathbb{N} . \tag{1.2}
\end{equation*}
$$

For smaller number p, the equation(1.2) have been solved for the following cases:
1 (Luo M. [5]) If $p=7$, (1.2) only has a solution $(x, y)=(5,3)$.
2 (Wang Y. [6]) If $p=13$, (1.2) has no solution.
3 (Duan H. [7]) If $p=19$, (1.2) has and only has a solution $(x, y)=(31,28)$.
4 (Duan H. [8]) If $p=43$, (1.2) has a solution $(x, y)=(7,2)$. Besides, if p satisfies the following conditions, the equation(1.2)has no solution:
(1) (Zhou W. [9]) $p=12 r^{2}+1$, where r is a positive odd number.
(2) (Du X., Zhao D. and Zhao J. [10]) $p=3 r(r+1)+1$ and $p \equiv 13(\bmod 24)$, where r is a positive integer.
(3) (Guan X. [11]) $p=6(4 r+2)+1$, where r is a nonnegative integer.

For a given positive integer n, n can be only expressed as the form $n=d m^{2}$, where d and m are positive integer, d has no square factor. Such d called quadratfrei of n, denoted by $Q(n)$. In this paper, we will apply the method of elementary number theory to prove the following generalized results:
Theorem If $p \equiv 1(\bmod 24)$, equation (1.2) has solution if and only if

$$
\begin{equation*}
p=Q\left(4 r^{4}-6 r^{2}+3\right), \mathrm{r} \in \mathbb{N}, \operatorname{gcd}(6, r)=1 \tag{1.3}
\end{equation*}
$$

or

$$
\begin{equation*}
p=Q\left(192 r^{4}-24 r^{2}+1\right), \mathrm{r} \in \mathbb{N} . \tag{1.4}
\end{equation*}
$$

If the condition (1.3) or (1.4) hold, then (1.2) has solution $(x, y)=\left(2 r^{2}-1, r s\right)$ or $(x, y)=\left(24 r^{2}-1,6 r s\right)$ respectively, where s is a positive integer satisfying

$$
\begin{equation*}
p s^{2}=4 r^{4}-6 r^{2}+3 \tag{1.5}
\end{equation*}
$$

or

$$
\begin{equation*}
p s^{2}=192 r^{4}-24 r^{2}+1 \tag{1.6}
\end{equation*}
$$

respectively. If $p \equiv 7(\bmod 24),(1.2)$ has solution if and only if

$$
\begin{equation*}
p=Q\left(12 r^{4}-6 r^{2}+1\right), \mathrm{r} \in \mathbb{N}, 2 \nmid r . \tag{1.7}
\end{equation*}
$$

If condition (1.7) holds, then (1.2) has solution $(x, y)=\left(6 r^{2}-1,3 r s\right)$, where s is a positive integer satisfying

$$
\begin{equation*}
p s^{2}=12 r^{4}-6 r^{2}+1 \tag{1.8}
\end{equation*}
$$

If $p \equiv 13(\bmod 24),(1.2)$ has no solution. If $p \equiv 19(\bmod 24),(1.2)$ has solution if and only if

$$
\begin{equation*}
p=Q\left(64 r^{4}-24 r^{2}+3\right), \mathrm{r} \in \mathbb{N}, 3 \nmid r . \tag{1.9}
\end{equation*}
$$

If condition (1.9) holds, then (1.2) has solution $(x, y)=\left(8 r^{2}-1,2 r s\right)$, where s is a positive integer satisfying

$$
\begin{equation*}
p s^{2}=64 r^{4}-24 r+3 . \tag{1.10}
\end{equation*}
$$

Due to the discussion in paper [6], [9], [10] and [11], all odd prime numbers p satisfy $p \equiv 13(\bmod 24)$, thus from above theorem, we can directly to know that the equation (1.2) has no solution. Therefore, all these results are the particular case of the theorem of this paper.

2. The Proof of Theorem

Assume that (x, y) is a group solution of equation (1.2). From the analysis of the papers [3] and [12], we know that x and y are sure to satisfy

$$
\begin{equation*}
x+1=2 a^{2}, x^{2}-x+1=p b^{2}, y=a b, \mathrm{a}, \mathrm{~b} \in \mathbb{N}, 3 \nmid a, 2 \nmid b . \tag{2.1}
\end{equation*}
$$

or

$$
\begin{equation*}
x+1=6 a^{2}, x^{2}-x+1=3 p b^{2}, y=3 a b, \mathrm{a}, \mathrm{~b} \in \mathbb{N}, 2 \nmid b . \tag{2.2}
\end{equation*}
$$

When (2.1) holds, by
$x \equiv 2 a^{2}-1 \equiv\left\{\begin{array}{l}7(\bmod 8), \text { if } 2 \mid \mathrm{a}, \\ 1(\bmod 8), \text { if } 2 \nmid \mathrm{a}\end{array}\right.$
then from (2.1) and (2.3), we have
$p \equiv p b^{2} \equiv x^{2}-\mathrm{x}-1 \equiv\left\{\begin{array}{l}3(\bmod 8), \text { if } 2 \mid \mathrm{a}, \\ 1(\bmod 8), \text { if } 2 \nmid \mathrm{a}\end{array}\right.$
When (2.2) holds, because of
$x \equiv 6 a^{2}-1 \equiv\left\{\begin{array}{l}7(\bmod 8), \text { if } 2 \mid a, \\ 5(\bmod 8), \text { if } 2 \nmid \mathrm{a}\end{array}\right.$
then, by (2.2) and (2.5), we get
$p \equiv p b^{2} \equiv \frac{1}{3}\left(x^{2}-\mathrm{x}-1\right) \equiv\left\{\begin{array}{l}1(\bmod 8), \text { if } 2 \mid \mathrm{a}, \\ 7(\bmod 8), \text { if } 2 \nmid \mathrm{a}\end{array}\right.$
Due to $p \equiv 1(\bmod 6)$, then according to the definition of no existence of quadratfrei for positive integers, and from (2.1), (2.2), (2.4) and (2.6), we obtain the theorem. The proof of theorem is complete.

References

[1]. Nagell T., Über die rationaler punkte auf einigen kuhischen kurven [J], Tohoku Math. J., 1924, 24(1): 48-53.
[2]. Ljunggren W., Sätze Über unbestimmte Gleichungen [J], Skr. Norske Vid. Akad. Oslo, 1942, 9(1): 155.
[3]. Ke S., Sun Q., About Diophantine equation $x^{3} \pm 1=D y^{2}[J]$, Scientia Sinica, 1981, 24(12): 14531457.
[4]. Cohn J.H.E., The diophantine equations $x^{3}=N y^{2} \pm 1[J]$, Quart. J. Math. Oxford(2), 1991, 42(1): 2730.
[5]. Luo M., About indefinite equation $x^{3} \pm 1=14 y^{2}$ [J], Journal of Chongqing Jiaotong University, 1995, 14(3): 112-116.
[6]. Wang Y., About indefinite equation $x^{3}+1=26 y^{2}[J]$, Journal of Shaanxi University of Technology (Natural Science Edition), 2007, 23(3): 68-70.
[7]. Duan H., About indefinite equation $x^{3}+1=38 y^{2}[\mathrm{~J}]$, Journal of East China Normal University (Natural Science), 2006, (1): 35-39.
[8]. Duan H., About indefinite equation $x^{3}+1=86 y^{2}$ [J], Journal of Science of Teachers' College and University, 2007, 27(2): 3-5.
[9]. Zhou W., About a note of Diophantine equation $x^{3}+1=2 p y^{2}$ [J], Journal of Anqing Teachers College (Natural Science Edition), 2010, 16(1): 14-15.
[10]. Du X., Zhao D., Zhao J., About indefinite equation $x^{3} \pm 1=2 p y^{2}$ [J], Journal of Qufu Normal University (Natural Science), 2013, 39(1): 42-43.
[11]. Guan X., About Diophantine equation $x^{3} \pm 1=2 p y^{2}$ [J], Journal of Yunnan Minzu University (Natural Sciences Edition), 2012, 21(6):438-441.
[12]. Zhang T., Pan J., About Diophantine equation $x \pm 1=3 D y_{1}^{2}, x^{2} \mp x+1=3 y_{2}^{2}$ [J], Journal of Henan Institute of Education (Natural Science Edition) , 1999, 8(3): 1-3

