
Available online www.jsaer.com 
 

Journal of Scientific and Engineering Research 

221 

 

Journal of Scientific and Engineering Research, 2016, 3(5):221-225 

 

    

  

Research Article 

ISSN: 2394-2630 

CODEN(USA): JSERBR  

    

 

6-Perfect Number 

Zhiwei Liu, Ganwen Tang, Guang mei Wang, Yan Huang 

School of Science, Hezhou University, Hezhou, 542899, PR China 

Abstract Let  denote the sum of all divisors of a positive integer  and let  be a given positive 

integer. If a positive integer satisfies , then  is called —Perfect number.  In 

this paper we investigate the existence of 6-Perfect number by using the basic properties of  and prove 

that 13 is a unique 6-Perfect number. 
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1. Introduction 

Let N be a set of positive integers and let  denote the sum of all divisors of a positive integer . In 

number theory the properties of  have been received an extensive concern for a long time [1,2,3,4]. For 

example, if a positive integer satisfies , then  is a perfect number. So far, it still remains a 

difficult problem far from solved that whether there exist one or more odd perfect numbers or not. 

If a integer point  in elliptic curve (1.1) satisfies , then it is a trivial integer point, otherwise  a 

nontrivial integer point.  It is obvious that there only exists a trivial integer point  in elliptic 

curve (1.1).  If a integer point  in elliptic curve (1.1) is a nontrivial integer point, then so is , and 

they , denoted  with , are  together referred to as a pair of  nontrivial integer points in elliptic 

curve (1.1). Let  be a nonnegative integer and let  be a positive integer with . In this paper we 

determine all nontrivial integer points in elliptic curve (1.1) for the case where is a positive odd number, in 

other words, we prove the following theorem.  

Theorem For a positive integer , there only exist the following kinds of  nontrivial integer points in elliptic 

curve (1.1): 

 (I)  

(II) . 

(III)  

   . 

(IV) 
. 

(V) is a solution of the 

equation  
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Let  denote the pair number of nontrivial integer points  in elliptic curve (1.1).  According to 

the above theorem we can obtain that the following upper bound of . 

 

Corollary For a positive odd , when ,  

 

When p is an odd number,  

 

2.  Lemma  

Let  be a non-square positive integer. It follows from Theorem 10.9.1 and 10.9.2 of [5]  

that the equation                  

                                              (2.1) 

 has solutions  and  has a unique solution  such that  

where  is an arbitrary solution of  (2.1).  Therefore,  is the minimal solution of (2.1) 

 

Lemma 2.1 The equation  

                                  (2.2) 

has at most two solutions. If it has indeed two solutions and  such that , then 

when 1785 or 28560 , we have that 

， ，           (2.3) 

where  is the minimal solution of  (2.1). 

Proof  See Lemma 2 of  [6]. 

 

Lemma 2.2  For a given integer , if , then the equation 

                                                 (2.4) 

has a solution =(3，1) only if . If , equation (2.4) has two solutions =(2，1) 

and （7，2）only if .  If ,  then equation (2.4) has at most a solution . 

Proof  By the fact that when  all solutions of equation (2.2) of [7] can be obtained,   we can deduce 

that  this lemma holds for the case of .  When , since 1785 or  28560, it follows 

from Lemma 2.1 that if equation(2.4) has two solutions  and such that , these 

solutions must satisfies (2.3) where  is the minimal solution of     

                                               (2.5) 

From (2.3) we know that  and  

                            ,                              (2.6) 

which means that  
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and  from (2.5) and (2.7) we also know that 

                                                  (2.8) 

Since  is an odd prime number and ,  it follows from (2.8) that 

               (2.9) 

However, we can deduce from [8] that the first equality in (2.9) does not hold for the case of ,  infer from 

[9]  that when  the first equality in (2.9) holds only if , and thus obtain from the second 

equality in  (2.9) that  at this moment,  which contradicts . Therefore equation (2.5) has at most 

a solution. The proof is completed. 

 

Lemma 2.3 The equation 

                                    (2.10) 

has only a solution . 

Proof See [10]. 

 

Lemma 2.4  The equation 

，                 (2.11) 

has only three solutions and , where  is a 

positive integer. 

Proof Let  be a solution of equation (2.1). when , since and  are coprime positive 

odd numbers , we obtain that  , and also obtain that  and 

 from（2.11）.  Therefore, 

                          ，                         (2.12) 

Due to  it follows from (2.12) that equation (2.11) has only a solution

. 

When  is an odd prime number, since  is relatively prime to and  and are respectively odd 

and even, we have that . Therefore it is deduced from (2.11)  that , 

 and 

                         ，                          (2.13) 

Due to ，it can follows from Lemma 2.3 and (2.13) that equation (2.11) has only two solutions 

（3,5,122,11)和 .  The proof is completed. 

 

3. Proof 

Proof of the above theorem Let  denote a pair of nontrivial integer points in elliptic curve (1.1).  Due 

to  , we know that  and  can be uniquely expressed as  

                       ，                     (3.1) 

Substituting (3.1) into (1.1) yields that  

                            (3.2) 
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Since   is a positive odd number, . Therefore,  all that is required is to consider the following two 

case: 

Case Ｉ：  

It follows from (3.2) that  

                                                   (3.3) 

Due to , we have that  and , and thus derive  from (3.3) that  

   (3.4) 

which gives that  

                                 .                           (3.5) 

When , it is inferred from Lemma2.4 and (3.5) that , and thus  is  

inferred from (3.4) that  

                   ， ，               (3.6) 

When p is an odd number, it follows from Lemma2.4, (3.4) and (3.5) 

            ， ，              (3.7) 

and  

           ， ，            (3.8) 

Case II:  

It follows from (3.2) that  

                                                  (3.9) 

Since  and , it is inferred from (3.9) that 

 (3.10) 

which yields that  

                                                           (3.11) 

 The above equality (3.11) also means that equation (1.2) has a solution  such that  

                                                     (3.12) 

Since it is deduced from the first equality in (3.10) that  is a positive odd number, we have  

where is a nonnegative integer. Since it is also deduced from (3.12) that , we obtain from 

 that . Therefore, according to Lemma2.2, (3.10) and (3.11) , 

we know that there only exist these integer points  

                ， ，               (3.13) 

               ， ，                (3.14) 

              ， ，                (3.15) 

and integer points of (V). 

In conclusion, several kinds of integer points mentioned above are obtained by the following way. These integer 

points of (I) are generated by combining (3.6) and (3.13), these integer points of (II) are obtained by taking 

and  in (3.8) and and  in (3.15) and combing them, these integer points of (III) are 

gained by taking  and  in (3.8),  taking  in (3.14) and (3.15) and combining them with (3.7),  

and these integer points of (IV) are obtained by taking  in (3.8).  The proof is completed. 
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The proof of corollary   It follows from the foregoing theorem that the  corollary holds for the case of . 

Let and  be respectively the pair number of nontrivial integer points  of  (IV) and (V)  in elliptic 

curve(1.1). Obviously, it follows from the foregoing theorem that                         

                                                    (3.16) 

Since  is given,  is given when , and  we have . Together with the fact that  is 

given, we obtain from Lemma 2.2, and thus obtain from (3.16).  The proof is completed. 
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