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Abstract With the dramatic improvement of computation ability in modern computers, a lot of new meta-

heuristic methods appear. All these meta-heuristic algorithms are originated from some mechanisms in nature, 

which are alike in composition and extensively adopted to solve combination optimization problems. However, 

meta-heuristic algorithm, such as BBO, is lack of strict theory foundation and hard to be analyzed in theory, 

because it comes from heuristic idea and has complicated random behavior. Therefore, in this paper, we propose 

some theoretical analysis to lay solid foundation for BBO application. To obtain the average first hitting time 

(AFHT) of BBO, firstly the relationship between AFHT and convergence rate is discussed, and then the upper 

bound and the lower bound of convergence rate are put forward. When BBO is adopted to solve an optimization 

problem with problem size n and population size n, if migration operation and Mutation-Constant or Mutation-

1/n operation are adopted, then the lower bound of AFHT is proposed. 

Keywords Meta-Heuristic, Global Optimization, NP Hard Problem. 

Introduction 

Since 1960s, a lot of researchers are interested in evolutionary computation with the development of computer 

technology. Some famous algorithms are proposed, such as Genetic Algorithm, Evolutionary Programming, and 

Evolutionary Strategy. Since the computation ability of computer improves dramatically, a lot of new meta-

heuristic methods arise, such as Ant Colony Optimization (ACO) [1], Particle swarm Optimization (PSO) [2], 

Differential Evolution (DE) [3], Grey Wolf Optimization (GWO) [4], Biogeography Based Optimization (BBO) 

[5], Hybrid Grey Wolf Optimization (HGWO) [6] ,et al. All those algorithms are originated from some 

mechanisms in nature, and are similar in structure. We call such algorithms as evolutionary algorithms. In 

general, evolutionary algorithms are random and heuristic optimization methods, which are widely used to solve 

combination optimization problems. As we use evolutionary algorithms to solve optimization problems, it is 

easy to add some heuristic ideas. Therefore, evolutionary algorithms demonstrate excellent performance in a lot 

of fields such as data mining, engineering optimization an industry design. 

However, evolutionary algorithm, such as BBO, is lack of strict theory foundation and hard to be analyzed in 

theory [7], because it comes from heuristic idea and has complicated random behavior. In this paper, we propose 

some theoretical analysis to lay solid foundation for BBO application. To obtain the average first hitting time 

(AFHT) of BBO, firstly the relationship between AFHT and convergence rate is discussed, and then the upper 

bound and the lower bound of convergence rate are put forward. When BBO is adopted to solve an optimization 

problem with problem size n and population size n, if migration operation and Mutation-Constant or Mutation-

1/n operation are adopted, then the lower bound of AFHT is proposed. 

Organization of the rest of this paper is as follows. The basic of BBO is briefly introduced in Section 2. Analysis 

of Convergence rate is presented in Section 3. Finally, concluding remarks is given in Section 4. 
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Basic of BBO  

Practical work about biogeography started their research in 1960s by Alfred Wallance [8] and Charles Darwin 

[9]. In 2008, Dan Simon [5] proposed a new optimization method based on biogeography called BBO, which 

are widely applied in Engineering Optimization [10-15].  

The mathematical model of biogeography demonstrates the process that species migrate from one island to 

another. Islands or habitats that are well suited for species obtain high Habitat Suitability Index (HSI). 

In BBO methodology, every individual has its own immigration rate Im and emigration rate Em. The 

immigration rate and emigration rate are both the function of number of species in the habitat. The immigration 

rate and the emigration rate are calculated as follows:  

m . /kE E k n ,                                   ⑴ 

Im .(1 / )k I k n  ,                                  ⑵ 

where k is the number of species in the habitat and n is the largest number of species contained in the habitat; E 

is the largest emigration rate when there are zero species in the habitat; I is the largest immigration rate when 

there are the largest number of species which can be contained in the habitat; Suppose all the habitats contain 

the same largest number of species.  

Suppose the probability that a habitat has exactly k species is Prk, and Prk changes from time t to time t +⊿t as 

follows [5] :  

Pr ( ) Pr ( ).(1 m . . )k k k kt t t I t Em t      1 1 1 1Pr ( ).Im . Pr ( ). .k k k kt t t Em t       ,              ⑶ 

where Imk is immigration rate when the current habitat has k species; Imk-1 is immigration rate when the current 

habitat has k-1 species; Emk is emigration rate when the current habitat has k species; Emk-1 is emigration rate 

when the current habitat has k-1 species; Prk+1 is the probability that the current habitat has exactly k+1 species; 

Prk-1 is the probability that the current habitat has exactly k-1 species.  

Suppose ⊿ t is small enough such that we can ignore the probability of more than one emigration and 

immigration. Calculating the limit of equation (3) as ⊿  t→0 obtain equation (4): 

 

              -(Imk + Emk).Prk + Emk+1. Prk+1,        k=0 

Prk =      -(Imk + Emk).Prk + Imk-1. Prk-1, + Emk+1. Prk+1,                kε[1, Smax-1]  (4) 

              -(Imk + Emk).Prk + Imk-1. Prk-1,                                                 k=Smax  
  

where Smax is the maximum number of species in a single habitat, the rest are the same as equation (3). If a given 

solution S with k species has a low probability Prk, it is amazing that it is regarded as a solution. The  mutation 

rate mk is as follows.  

max max.(1 Pr ) / Prk km m                            (5) 

Where mmax is the maximum number of mutation rate.  

Analysis of Convergence rate 

We name a population an optimal population, which contains one optimal individual at least. There may be 

more than one optimal population. An objective subspace
*

0 ( )B   is consists of all the optimal populations. 

  is the population space. The aim of BBO is to find a population which is in
*

0 ( )B  . 

Definition 1 The optimal value is defined as ( ) min{cos ( ), 1,2,..., }iS t x i NP X . An objective subspace

*

0 { | ( ) min{cos ( ), }}B s t x x S  X X , where S is the solution space. 

 

Definition 2 Given a Markov population series { , 0,1,2,...}( )t tt    and An objective subspace 

*

0B  , where   is the population space. We define tu  as the probability of t  being in the objective 

subspace 
*

0B , i.e., 

*

0

( )t t

y B

u P y



  ,  0,1,2,...t            (6)   
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Definition 3 Given a Markov population series { , 0,1,2,...}( )t tt    and an objective subspace 

*

0B  , where   is the population space[20]. The Markov population series could converge to objective 

subspace 
*

0B  , if 

lim 1t
t

u


 .                  (7)     

Definition 4  Given a Markov population series { , 0,1,2,...}( )t tt    and an objective subspace 

*

0B  , where   is the population space [7]. We define tp  as the convergence rate to 
*

0B   at time t, 

i.e., 

*

0

1 ( )t t

y B

p P y


   ,  0,1,2,...t                                  (8) 

From the Definition 4, we could get a new relationship as follows: 

1t tp u  , 0,1,2,...t                          

Suppose there is a random variable  ， which denotes the following events:  

00 : X  
*

0B ； 

11: X  
* *

0 0 ( 0)jB X B j   ； 

22 : X  
* *

0 0 ( {0,1})jB X B j    ； 

33: X  
* *

0 0 ( {0,1,2})jB X B j    ； 

… 

11: tt X   
* *

0 0 ( {0,1,..., 2})jB X B j t     ； 

: tt X  
* *

0 0 ( {0,1,..., 1})jB X B j t     ； 

The random variable   indicates the first hitting time, and [ ]E   denotes the average first hitting time (AFHT) 

or expected first hitting time (EFHT). 

Definition 5  The distribution function of the random variable   could be defined as 

( ) ( ) ( ) ( )D t P t P t P t         .                  (9) 

Because the Markov chain in BBO is an absorbing Markov chain, we can obtain 

* *

0 0

1 1( ) ( )t t t t

y B y B

u u P y P y 

 

     X X  

( )P t  .                                                      (10) 

From above equation, we can get 

1( )t tu P t u                                  (11)  

By comparing Eq.() and Eq.(), we can obtain 

tu  ( )D t                                        (12) 

According to definition 4，we can obtain 

( ) 1t tD t u p                               (13) 

The following Lemma 3 is to uncover the relationship [7] between AFHT and convergence rate. 

Lemma 1 Given two random variable   and  ，where E[ ]   and E[ ] ，the distribution 

functions of    and   at time t are ( )D t and ( )D t , respectively, i.e., 

0

( ) ( ) ( ),
t

j

D t P t P j  


     
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0

( ) ( ) ( )
t

j

D t P t P j  


    . 

if {0,1,2,3...}t  ， ( ) ( )D t D t   ，then 

E[ ] E[ ]  ,                             (14) 

Where 

0

E[ ] . ( )
t

t P t 




    ；
0

E[ ] . ( )
t

t P t 




    . 

Proof. According to the definition of expected value of random variable   ,which is 

0

E[ ] . ( )
t

t P t 




  , 

we can get 

0

1

E[ ] . ( )

=0. ( 0) . ( )

t

t

t P t

P t P t

 

 









 

  




 

0

0 1

=0. ( 0) .( ( ) ( 1))
t t

P t P t P t  


 

        

0 1

0 1 0 0

=0. ( 0) .( ( ) ( ))
t t

t t j j

P t P j P j  
 

   

         

1

=0. (0) .( ( ) ( 1))
t

D t D t D t  





    

1

= .( ( ) ( 1))
t

t D t D t 





   

1

= ( ( ) ( 1))
j t j

D t D t 

 

 

   

0

= lim( ( ) ( ))
t

j

D t D j 






  

0

= (1 ( ))
j

D j





 . 

In the above equations, the second and the third equations is according to  the definition of distribution function. 

The last equation is due to  

0

lim ( ) lim ( ) 1
t

t t
j

D t P j 
 



   . 

By the same way, 
0

E[ ] (1 ( ))
j

D j




  . 

To compare E[ ]  and E[ ] , we subtract E[ ]  with E[ ] . 

0 0

E[ ] E[ ] (1 ( )) (1 ( ))
j j

D j D j  
 

 

       

0

( ( ) ( ))
j

D j D j 





   

0  

■ 

The following Lemma 2 is to get the upper bound and the lower bound of convergence rate, which is applied in 
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discrete space[16] . 

Lemma 2 Given an absorbing Markov chain{ , 0,1,2,...}( )t tt  X X  and an objective subspace 

*

0B  , where   is the population space. If there are { , 0,1,2,...}t t  and { , 0,1,2,...}t t  , which can 

satisfy the following conditions: 

(1) 

0

(1 ) 0t

t






    

(2) 
*

*

0

1 0

( )
( | ) t

t t t t

ty B

P y
P B y

p
 




   

X
X X   

Then the absorbing Markov chain can reach the objective subspace
*

0 ( )B   with a convergence rate tp  

which is as following 
1 1

0 0

0 0

(1 ) (1 )
t t

j t j

j j

p p p 
 

 

                            (15) 

Proof. According to the definition of tp  we can obtain 

1 1(1 ) (1 )t t t tp p         

1( )t t      

*

0

( ( )t

y B

P y



   X -
*

0

1( ))t

y B

P y



 X  

( )P t    

*

*

0

0 1 1( | ) ( )t t t

y B

P B y P y 



     X X X  

The above equation is divided by 1tp  ，then we get 

1

1

t t

t

p p

p








*

*

0

1
0 1

1

( )
( | ) t

t t

ty B

P y
P B y

p







  

X
X X  

Because of the condition (2), we obtain 

1
1 1

1

t t
t t

t

p p

p
 

 




     

1 1 1 1 1t t t t t tp p p p           

 1 1 1 1 1 1t t t t t t tp p p p p             

 1 1 1 1 1 1(1 ) (1 ) 1 (1 ) (1 )t t t t t t t                       

 1 1 1 1(1 )(1 ) 1 (1 )(1 )t t t t t               

 1 1 1 1(1 ) (1 )t t t t tp p p         

The above inequality is unfolded with recursion, and we get 
1 1

0 0

0 0

(1 ) (1 )
t t

j t j

j j

p p p 
 

 

     . 

■ 

Through the above two lemmas, the relationship between AFHT and convergence rate is obtained. the upper and 

low bound of  the convergence rate is also got. Based on the two lemmas [7], the following theorem gives 

boundary of AFHT. 

Theorem 1 Given an absorbing Markov chain{ , 0,1,2,...}( )t tt  X X  and an objective subspace 

*

0B  , where   is the population space. If there are { , 0,1,2,...}t t  and { , 0,1,2,...}t t  , which can 
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satisfy the following conditions: 

(1) 

0

(1 ) 0t

t






    

(2) 
*

*

0

1 0

( )
( | ) t

t t t t

ty B

P y
P B y

p
 




   

X
X X   

Then the absorbing Markov chain can reach the objective subspace
*

0B  with the average first hitting time AFHT,  

which is as following 
2 2

0 0 1 0 0 1

2 20 0

( (1 )) E[ ] ( (1 ))
t t

t j t j

t tj j

p t p t      
  

 

  

                   (16) 

Proof. According to the lemma 2, we get 
1

0

0

(1 )
t

t j

j

p p 




   

Due to 1t tp   ，let  t=0，we get 0 01p   . 

As the t  is essentially the distribution of random variable  , which is ( ) tD t  . Then the lower bound 

can be described using t  

0

1

0

0

1

( )
1 (1 )

t

j

j

p

D t
p 








 
 




    
0

0

t

t




 

Suppose there is a flabby variable  ，which is exactly the lower bound of D . The expectation of   can be 

calculated as following. 

0 0 0 0

0

E[ ] . ( ) 0.(1 ) 1.( (1 ))
t

t P t p p p  




        

2 1

0 0

2 0 0

.( (1 ) (1 ))
t t

j j

t j j

t p p 
 

  

       


2

0 0 1 0

2 0

. (1 )
t

t j

t j

p t p  




 

    


2

0 0 1

2 0

( . (1 ))
t

t j

t j

p t  




 

    

Due to ( ) ( )D t D t   and lemma 1, we get 

E[ ] E[ ]  . 

Then we get the upper bound of AFHT 
2

0 0 1

2 0

E[ ] ( . (1 ))
t

t j

t j

p t   




 

    . 

There is a special case when the initial population does not contain the optimal solution. In such case, 0 1p  . 

As the initial population in most evolutionary algorithms do not contain the optimal solution, the above equation 

can be simplified with 0 1p  . 

Similarly, we can get the lower bound of AFHT. 

■ 

In general, there are several mutation operation in evolutionary algorithms, such as Mutation-

Constant，Mutation-1/n and Mutation-random-1. 
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Definition 6 if every bit in the solution can mutate with constant probability, such mutation is called Mutation-

Constant. ( if the candidate solution is binary, then every bit can mutate with probability cp ; if the candidate 

solution is coded with d-nary, then every gene can mutate with probability 
( 1)

cp

d 
  ) 

Definition 7 if every bit in the solution can mutate with probability 1/n, such mutation is called Mutation-1/n. ( 

if the candidate solution is binary, then every bit can mutate with probability 1/n; if the candidate solution is 

coded with d-nary, then every gene can mutate with probability 
1

( 1)n d 
  ) 

Definition 8 if a gene in the solution is selected randomly, and would mutate, such mutation is called Mutation- 

random-1. ( if the candidate solution is binary, then every bit can mutate with probability 1/n; if the candidate 

solution is coded with d-nary, then every gene can mutate with probability 
1

( 1)n d 
  ) 

If the population size is one, then the population space equals the solution space; If a candidate solution is coded 

with d-nary, both the population space and the solution space are 
nd . 

If the population size is greater than one, then the population space does not equal the solution space; If a 

candidate solution is coded with d-nary the solution space are 
nd . While the population space is associated with 

the definition of population, such as unordered population and ordered population. 

Definition 9 if a candidate solution is denoted as (.)，while a population is denoted as {.}. if two populations 

with the same solution but different arranged order are equivalent, such population is called unordered 

population. 

Definition 10 if a candidate solution is denoted as (.)，while a population is denoted as {.}. if two populations 

with the same solution but different arranged order are not equivalent, such population is called ordered 

population. 

To distinguish unordered population with ordered population, the following example is shown. If the candidate 

solution is coded by binary, then suppose the problem size is three and the population size is 4. there are two 

population: 1 {(000),(111),(101),(001)}POP  , 2 {(000),(111),(001),(101)}POP  . If 1POP  and 

2POP  are unordered populations, then they are equivalent. Otherwise, they are not equivalent. 

A population space with problem size n and population size PopSize  is provided with 
d PopSize 1

PopSize

n  
 
 

 

different populations in the case of unordered population. Otherwise, it has 
PopSizedn

 different populations in 

the case of ordered population. 

Proposition 1 if BBO is adopted  to  solve a  optimization problem with problem size n and population size n 

and there is no optimal solution in the initial population, then the following lower bound is obtained in the case 

of migration operation and mutation operation independently  

(1) if migration operation and Mutation-Constant operation are adopted, then the lower bound of AFHT is as 

follows: 

1 1

1 1 1 1 1
E[ ] (max( , ))

(1 ) ( ) (1 ( ))n n

c c

d
O

n p p n k k


  


   

 
，        (17) 

Where cp  is a constant; n is dimension number of a candidate solution; d is  the code number of  every gene of 

a candidate solution (d is an integer and d 2 ); ( )k  is the normalized immigration rate; where k is the 

number of species in the habitat . 

(2) if migration operation and Mutation-1/n operation are adopted, then the lower bound of AFHT is as follows: 

2
E[ ] ( )

nd
O

n
  ，                                           (18) 

Where n is dimension number of a candidate solution; d is  the code number of  every gene of a candidate 

solution (d is an integer and d 2 ). 
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Proof. Because of the independent operation of migration and mutation, suppose  
1

Q

tX  is the population after 

migration operation and 
1

M

tX  is the population after migration mutation operation. The following is obtained: 
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X
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According to the features of mutation operation, we have  

 

*

*

0

1

1 0

2

(1 )
,Mutation-Constant

1( )
( | )

1 1
1 ,Mutation-1/n

n

n

c c
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t t
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n
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n

e d






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

 
   

            


X

X X  

As to the migration operation, the analysis is as follows. Compared to the optimal solution, the candidate 

solution is provided with only one gene which is not the same. In such case, only one gene is needed to 

immigrate and other genes keep the same. Then, the maximum probability for migration operation to get the 

optimal solution is as follows 

 
* ' ' 1

1 0( | ) 1 1 (1 )
n

Q n

t t k kP B y   

      X X ， 

where
'

min max min( )( ) / ( )k l u l k             and 0, 1;l u   max and min  are constants;

(1 / max)k I k n   , 1I   and maxn  the largest number of species contained in the habitat; k is the 

number of species in the habitat. After that, 
'

min max min(1 / max ) / ( )k k n       . Because of  maxn ,

max and min  are all constants,  then 
'

k  is denoted by a function 
' ( )k k  ： 
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Therefore, in the case of  Mutation-Constant we have 
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Suppose 
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，according to theorem 1，the lower bound of 

AFHT is as follows 
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While  in the case of  Mutation-Constant we have 
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AFHT is as follows 
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nd
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n
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■ 

Conclusions 

In this paper, we propose some theoretical analysis to lay solid foundation for BBO application. To obtain the 

average first hitting time (AFHT) of BBO, firstly the relationship between AFHT and convergence rate is 

discussed, and then the upper bound and the lower bound of convergence rate are put forward. When BBO is 

adopted to solve an optimization problem with problem size n and population size n, if migration operation and 

Mutation-Constant or Mutation-1/n operation are adopted, then the lower bound of AFHT is proposed. 
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