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Abstract The effect ofvariable suction on unsteady MHD oscillatory flow of Jeffrey fluid in a horizontal 

channel with heat and mass transfer has been studied. The temperature prescribed at plates is uniform and 

asymmetric. A perturbation method is employed to solve the momentum and energy equations. The effects of 

various dimensionless parameters on velocity and temperature profiles are considered and discussed in details 

through graphs. It is found that, the velocity 𝑢 increases with increase in ℎ2 , 𝛼1, 𝜆1, 𝐺𝑟, 𝐺𝑐, 𝑁, 𝑅𝑒 𝑎𝑛𝑑 𝑆𝑐. The 

velocity also increases with decrease in ℎ1, 𝛼2 , 𝐻𝑎, 𝑎𝑛𝑑 𝐾𝑐 . It is also observed that the temperature 𝜃 increases 

with increase in 𝑁 𝑎𝑛𝑑 𝑃𝑒. Increase in Schmidt number 𝑆𝑐 and chemical parameter 𝐾𝑐  respectively increase and 

decrease the species concentration or the concentration boundary layer thickness of the flow field. 
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1. Introduction 

The effect of heat and mass transfer on unsteady MHD oscillatory flow of Jeffrey fluid in horizontal media with 

variable suction are encountered in a wide range of engineering and industrial applications such as molten iron 

flow, recovery extraction of crude oil, geothermal systems. Many chemical engineering processes like 

metallurgical and polymer extrusion processes involve cooling of a molten liquid being stretched in cooling 

systems; the fluid mechanical properties of penultimate product depend mainly on the cooling liquid used and 

the rate of stretching. Some polymers fluids like polyethylene oxide and polysobutylene solutions in a cetane, 

having better electromagnetic properties are normally used as cooling liquid as their flow can be regulated by 

external magnetic fields in order to improve the quality of the final product. Also, the radiative heat transfer is 

an important factor of thermodynamics of very high temperature systems such as electric furnaces, solar 

collectors, storage of nuclear wastes packed bed catalytic reactors, satellites, steel rolling, cryogenic engineering 

etc. Mass transfer processes are evaporation of water from a pond to the atmosphere, the diffusion of chemical 

impurities in lakes, rivers and ocean from natural or artificial sources. 

The study of such flow under the influence of magnetic field and heat transfer has attracted the interest of many 

investigators and researchers. 

Asadullah et al (2013) consider the MHD flow of a Jeffrey fluid in converging and diverging channels [1]. The 

flows between non parallel walls have a very significant role in physical and biological sciences. 

Kavita et al (2012) investigated the influence of heat transfer on MHD oscillatory flow of Jeffery fluid in a 

Channel [2]. They found out that an analysis of first order homogeneous chemical reaction and heat source on 

MHD oscillatory flow of viscous–elastic fluid through a channel filled with saturated porous medium are 

reported by Devika et al (2013) [3]. 

An oscillatory flow of a Jeffrey Fluid in an elastic tube of variable cross – section has been investigated at low 

Reynolds number by Badari et al (2012) [4]. Their main concentration is on the excess pressure of the tube. The 

equation has been solved numerically and investigations are made for different cases on the tube. 

Kumari et al (2012) studied the effect of heat transfer on MHD oscillatory flow of Jeffrey fluid in a channel with 

slip effect at a lower wall where the expressions for the velocity and temperature are obtained analytically. 
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Unsteady Flow of a Jeffrey Fluid in an elastic tube with stenosis was investigated by Sreenadh et al [5]. The 

governing equation for the excess pressure is obtained for Jeffrey model. The governing equations was solved 

numerically and investigations are made for different cases for strength, tapered and constricted tubes.  

An oscillatory flow of a Jeffrey fluid in an elastic tube of variable cross section at low Reynolds number has 

been investigated by Badari et al (2012) [4]. The main concentration is on the excess pressure of the tube. The 

equations have been solved numerically. 

Hayat et al (2012) analyzed the effects of Newtonian heating and magnetohydrodynamic (MHD) in a flow of 

Jeffrey fluid in stagnation point of view over radially stretching surface [6]. 

The effect of heat transfer through radiation on velocity, magnetic and temperature fields in the case of two 

dimensional hydromagnetic oscillatory flow of a viscous incompressible and electrically conducting fluid past a 

porous, a limiting surface, subjected to variable suction and moving impulsively with a constant velocity in the 

presence of transverse magnetic field has been analyzed. 

Idowu et al (2013) studied the effect of heat and mass transfer on unsteady MHD oscillatory flow of Jeffrey 

fluid in a horizontal channel with chemical reaction. They found that the velocity is more of Jeffrey fluid [7]. 

The effect of heat and mass transfer on MHD oscillatory flow of Jeffrey fluid with variable viscosity through 

porous medium was investigated. He found out that the velocity for Jeffrey fluid with variable viscosity is less 

than velocity of Jeffrey fluid zith constant velocity. This result is in agreement with Kavita (2012) [2]. 

This present work focused oneffect ofvariable suction on unsteady MHD oscillatory flow of Jeffrey fluid in a 

horizontal channel with heat and mass transfer.This study is expected to help in understanding the concept of 

Jeffrey fluid as a non – Newtonian fluid and the effect of heat and mass on unsteady oscillatory flow of Jeffrey 

fluid with variable suction and slip flow parameters. 

The study have potential applications in oil recovery, filtration systems, geophysical, astrophysical, cosmical 

studies and in medicine especially in finding remedy for atherosclerosis and several applications.   

 

2. Problem Formulation  

We consider the flow of Jeffrey fluid in horizontal infinite parallel plates channel. The channel width is ℎ. 

The constitute equation for 𝑆 Jeffrey fluid [2] is  

𝑆 =
𝜇

1+𝜆1
 
𝑑𝜂

𝑑𝑡 ′
+ 𝜆2

𝑑2𝜂

𝑑𝑡 ′2
                                                                              (2.1) 

Where 𝜇 is the dynamic viscosity, 𝜆1 is the ratio of relaxation to retardation times, 𝜆2 is the retardation time and 
𝑑𝜂

𝑑𝑡 ′
 is the shear rate. 

Now, let 𝑢′ be the velocity of the fluid in 𝑥 ′ direction taken along the horizontal infinite parallel plate channel 

under a chemical reaction with species concentration 𝐶 ′and 𝑦′ −  𝑎𝑥𝑖𝑠 is taken normal to the direction of flow. 

The radiative heat term in 𝑥 ′ direction is considered negligible in comparison with 𝑦′ direction. The upper and 

lower plates are kept at 𝑇 ′ = 𝑇∞
′  and 𝑇 ′ = 𝑇𝑤

′  respectively. The Cartesian coordinate system and the flow 

configuration are shown in figure 1. At a time  𝑡 ′ > 0, the plate is given an impulsive motion in a horizontal 

direction with uniform mean velocity 𝑈. Moreover at this stage an unsteady component 𝜀𝑇 ′𝑒𝑖𝑤𝑡 ′ where 𝜀 ≪ 1 is 

the amplitude of oscillation, is assumed to be superimposed on the temperatures of the plates.  

 

        𝑇 ′ = 𝑇∞
′     

   

𝑔  
             

          ℎ𝑦′  

     𝑢′ 

                     
 

𝐵0𝑇
′ = 𝑇𝑤

′ 𝑥 ′ 

Figure 1: Physical schematic of the flow configuration 

A magnetic field of uniform strength 𝐵0 is applied normal to the plate along 𝑥 ′ direction and the induced 

magnetic field is assumed negligible. It is also assumed that the fluid has small electrical conductivity and the 

electromagnetic force produced is very small. The pressure gradient is also assumed negligible. Since the plate 
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is considered infinite in 𝑥 ′ direction, all the physical quantities will be independent of 𝑥 ′. Under these 

assumptions, the physical variables are functions of 𝑦′ 𝑎𝑛𝑑 𝑡 ′ only. 

The time dependent suction is  

𝑉 ′ 𝑡 = −𝑉0
′ 1 + 𝜀𝐴𝑒𝑖𝜔𝑡                                                                                    (2.2) 

The basic equations of momentum, energy and species concentration govern such a flow, subject to Boussinesq 

approximation, are 
𝜕𝑢 ′

𝜕𝑡 ′
−𝑉0

′ 1 + 𝜀𝐴𝑒𝑖𝜔𝑡  
𝜕𝑢 ′

𝜕𝑦 ′
−

𝜕𝑝

𝜕𝑥 ′
+

𝜇

𝜌 1+𝜆1 

𝜕2𝑢 ′

𝜕𝑦 ′2 −
𝜎𝐵0𝑢

′

𝜌
+ 𝑔𝛽 𝑇 ′ − 𝑇∞

′  + 𝑔𝛽′ 𝐶 ′ − 𝐶∞
′       (2.3) 

𝜕𝑇 ′

𝜕𝑡 ′
−𝑉0

′ 1 + 𝜀𝐴𝑒𝑖𝜔𝑡  
𝜕𝑢 ′

𝜕𝑦 ′
=

𝑘

𝜌𝑐𝑝

𝜕2𝑇 ′

𝜕𝑦 ′2 −
1

𝜌𝑐𝑝

𝜕𝑞

𝜕𝑦 ′
 (2.4) 

𝜕𝐶 ′

𝜕𝑡 ′
−𝑉0

′ 1 + 𝜀𝐴𝑒𝑖𝜔𝑡  
𝜕𝑢 ′

𝜕𝑦 ′
= 𝐷

𝜕2𝐶 ′

𝜕𝑦 ′2 − 𝐾𝑐
′  𝐶 ′ − 𝐶∞

′                           (2.5) 

The  𝑞 in (2.4) is called the radiative heat flux. It is given by 
𝜕𝑞

𝜕𝑦 ′
= 4𝛼2 𝑇𝑤

′ − 𝑇 ′           (2.6) 

Where, 𝑢′ is the axial velocity, 𝑇 ′ is the fluid temperature, 𝜌 is the fluid density, 𝜆1 is the ratio of relaxation to 

retardation times, 𝐵0 is the magnetic field strength, 𝜎 is the conductivity of the fluid, 𝑔 is the acceleration due to 

gravity, 𝛽 is the coefficient of volume expansion due to temperature,𝛽′ the coefficient of volume expansion due 

to species concentration,𝑐𝑝  is the specific heat at constant pressure, 𝑘 is the thermal conductivity, 𝐷 is the mass 

diffusion coefficient, 𝐾𝑐  is the chemical reaction parameter. 

The boundary conditions are given by 

𝑢′ − 𝑈1 = 𝐿1
𝜕𝑢 ′

𝜕𝑦 ′
,           𝑇 ′ = 𝑇𝑤

′ ,   𝐶 ′ = 𝐶𝑤
′        𝑎𝑡 𝑦′ = 0,  𝑡 ′ ≤ 0  

𝑢′ − 𝑈2 = 𝐿2
𝜕𝑢 ′

𝜕𝑦 ′
,           𝑇 ′ = 𝑇∞

′ ,   𝐶 ′ = 𝐶∞
′        𝑎𝑡 𝑦′ = ℎ,  𝑡 ′ ≥ 0      (2.7)                                             

In order to write the governing equations and the relevant boundary conditions in non – dimensional form, the 

following dimensionless quantities are introduced 

𝑥 =
𝑥 ′

ℎ
 ,    𝑦 =

𝑦 ′

ℎ
 ,    𝑢 =

𝑢 ′

𝑉0
 ,       𝜃 =

𝑇 ′−𝑇𝑤
′

𝑇∞
′ −𝑇𝑤

′  ,      𝑡 =
𝑡 ′𝑉0

ℎ
 ,      𝐻𝑎2 =

𝜎ℎ2𝐵0
2

𝜇
 ,                     𝐺𝑟 =

𝜌ℎ2𝑔𝛽  𝑇∞
′ −𝑇𝑤

′  

𝜇𝑉0
 , 

𝐺𝑐 =
𝜌ℎ2𝑔𝛽 ′ 𝑇∞

′ −𝑇𝑤
′  

𝜇𝑉0
 ‘𝑅𝑒 =

𝜌ℎ𝑉0

𝜇
 ,    𝑃𝑒 =

𝜌ℎ𝑉0𝑐𝑝

𝑘
 ,   𝑁2 =

4𝛼2ℎ2

𝑘
 , 𝐾𝑐 =

𝐾𝑐
′ 𝜈

𝑉0
 , 𝛼1 =

𝑈1

𝑉0
 , 𝛼2 =

𝑈2

𝑉0
 , ℎ1 =

𝐿1𝑉0

𝜈
 , 

ℎ2 =
𝐿2𝑉0

𝜈
 

𝑆𝑐 =
𝑈

𝐷
 , 𝐺𝑐 =

𝜌ℎ2𝛽 ′ 𝐶∞
′ −𝐶𝑤

′  

𝜇𝑉0
                                                                                  (2.8) 

The momentum equation (2.2), the energy equation (2.3) and the species concentration equation (2.4) now 

become 

𝑅𝑒
𝜕𝑢

𝜕𝑡
− 𝑅𝑒 1 + 𝜀𝐴𝑒𝑖𝜔𝑡  =

1

1+𝜆1

𝜕2𝑢

𝜕𝑦2 − 𝐻𝑎2𝑢 + 𝐺𝑟𝜃 + 𝐺𝑐𝐶      (2.9) 

𝑃𝑒
𝜕𝜃

𝜕𝑡
− 𝑃𝑒 1 + 𝜀𝐴𝑒𝑖𝜔𝑡  =

𝜕2𝜃

𝜕𝑦2 − 𝑁2𝜃                   (2.10) 

𝑆𝑐
𝜕𝐶

𝜕𝑡
− 𝑆𝑐 1 + 𝜀𝐴𝑒𝑖𝜔𝑡  =

1

𝑆𝑐

𝜕2𝐶

𝜕𝑦2 − 𝐾𝑐𝐶                   (2.11) 

The boundary conditions in dimensionless form are 

𝑢 = 𝛼1 + ℎ1
𝜕𝑢

𝜕𝑢
 ,    𝜃 = 0,     𝐶 = 0             𝑎𝑡  𝑦 = 0, 𝑡 ≤ 0  

𝑢 = 𝛼2 + ℎ2
𝜕𝑢

𝜕𝑢
,       𝜃 = 1,     𝐶 = 1             𝑎𝑡  𝑦 = 0, 𝑡 ≥ 0                 (2.12) 

3. Solution of the Problem      

To solve equations (2.9) – (2.11) subject to the boundary conditions (2.12), we expand the functions 

𝑢 𝑦, 𝑡 𝑎𝑛𝑑 𝜃(𝑦, 𝑡) as a power series in the perturbative parameter𝜀. Here we assumed small amplitude of 

oscillations 𝜀 ≪ 1 , thus 

𝑢 𝑦, 𝑡 = 𝑢0 𝑦 + 𝜀𝑢1 𝑦 𝑒
𝑖𝜔𝑡 + 𝑜(𝜀2)                                                         (3.1) 

𝜃 𝑦, 𝑡 = 𝜃0 𝑦 + 𝜀𝜃1 𝑦 𝑒
𝑖𝜔𝑡 + 𝑜(𝜀2)                                                          (3.2) 

𝐶 𝑦, 𝑡 = 𝐶0 𝑦 + 𝜀𝐶1 𝑦 𝑒
𝑖𝜔𝑡 + 𝑜(𝜀2)                                                          (3.3) 

The first terms in equations (3.1), (3.2) and (3.3) are called the harmonic terms while the second terms are called 

the non – harmonic terms. 

Substituting equations (3.1), (3.2) and (3.3) into equations (2.9), (2.10) and (2.11), equating the coefficients of 

the harmonic and non – harmonic terms and neglecting the coefficients of 𝜀2, we get: 

𝑎𝑢0
,,  𝑦 + 𝑅𝑒𝑢0

′ − 𝐻𝑎2𝑢0 𝑦 = −𝐺𝑟𝜃0 𝑦 − 𝐺𝑐𝐶0 𝑦       (3.4) 

𝑎𝑢1
,, 𝑦 + 𝑅𝑒𝑢1

′ − 𝑏2𝑢1 𝑦 = −𝐴𝑅𝑒𝑢0
′  𝑦 − 𝐺𝑟𝜃1 𝑦 − 𝐺𝑐𝐶1 𝑦      (3.5) 
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Where,  𝑎 =
1

1+𝜆1
 𝑎𝑛𝑑 𝑏2 = 𝐻𝑎2 + 𝑖𝜔𝑅𝑒 

𝜃0
′′ 𝑦 + 𝑃𝑒𝜃0

′  𝑦 + 𝜃0 𝑦 = 0          (3.6) 

𝜃1
′′ 𝑦 + 𝑎3𝜃1

′  𝑦 + 𝑎2𝜃1 𝑦 = −𝐴𝑃𝑒𝜃0
′  𝑦         (3.7) 

Where, 𝑎2 = 𝑁2 − 𝑖𝜔𝑃𝑒 𝑎𝑛𝑑 𝑎3 = 𝑖𝜔𝑃𝑒 

𝐶0
′′ 𝑦 + 𝑆𝑐𝐶0

′  𝑦 − 𝐾𝑐𝑆𝑐𝐶0 𝑦 = 0             (3.8) 

𝐶1
′′ 𝑦 + 𝑆𝑐𝐶1

′  𝑦 − 𝑎4𝐶1 𝑦 = −𝐴𝑆𝑐𝐶0
′  𝑦         (3.9) 

Where, 𝑎4 = 𝐾𝑐𝑆𝑐 + 𝑖𝑤𝑆𝑐 

The corresponding boundary conditions become 

𝑢0 = 𝛼1 + ℎ1
𝜕𝑢0

𝜕𝑦
 , 𝑢1 = ℎ1

𝜕𝑢1

𝜕𝑦
, 𝜃0 = 0, 𝐶0 = 0, 𝜃1 = 0, 𝐶1 = 0   𝑎𝑡  𝑦 = 0, 𝑡 ≤ 0  

𝑢0 = 𝛼2 + ℎ2
𝜕𝑢0

𝜕𝑦
, 𝑢1 = ℎ2

𝜕𝑢1

𝜕𝑦
, 𝜃0 = 1, 𝐶0 = 1, 𝜃1 = 0, 𝐶1 = 0 𝑎𝑡  𝑦 = 1, 𝑡 ≥ 0  (3.10) 

We now solved equations (3.4) – (3.9) under the relevant boundary conditions (3.10) for the mean flow and 

unsteady flow separately. 

The mean flows are governed by the equations (3.4), (3.6) and (3.8) where 𝑢0, 𝜃0, 𝐶0 are respectively called the 

mean velocity, mean temperature and mean species concentration. The unsteady flows are governed by 

equations (3.5), (3.7) and (3.9) where 𝑢1,  𝜃1and 𝐶1 are the unsteady components. 

These equations are solved analytically under the relevant boundary conditions (3.10) as follows; 

Solving equations (3.6) and (3.8) subject to the corresponding relevant boundary conditions in (3.10), we obtain 

the mean temperature as 

𝜃0 𝑦 = 𝐴1𝑒
𝑚1𝑦 + 𝐴2𝑒

𝑚2𝑦                     (3.11) 

𝐶0 𝑦 = 𝐴5𝑒
𝑚5𝑦 + 𝐴6𝑒

𝑚6𝑦                       (3.12) 

Similarly, solving equations (3.7) and (3.9) under the relevant boundary conditions in (3.10), the unsteady 

temperature becomes 

𝜃1 𝑦 = 𝐴3𝑒
𝑚3𝑦 + 𝐴4𝑒

𝑚4𝑦 + 𝐾1𝑒
𝑚1𝑦 + 𝐾2𝑒

𝑚2𝑦                   (3.13) 

𝐶1 𝑦 = 𝐴7𝑒
𝑚7𝑦 + 𝐴8𝑒

𝑚9𝑦 + 𝐾3𝑒
𝑚5𝑦 + 𝐾4𝑒

𝑚6𝑦                   (3.14) 

Putting equations (3.11), (3.12) and equations (3.13) and (3.14) into equations (3.4) and (3.5) respectively and 

using the corresponding boundary conditions in (3.10), we obtain the mean velocity 𝑢0(𝑦) and the unsteady 

velocity component 𝑢1 𝑦  as follows; 

𝑢0 𝑦 = 𝐴9𝑒
𝑚9𝑦 + 𝐴10𝑒

𝑚10𝑦 + 𝐾5𝑒
𝑚1𝑦 + 𝐾6𝑒

𝑚2𝑦 + 𝐾7𝑒
𝑚5𝑦 + 𝐾8𝑒

𝑚6𝑦                (3.15) 

𝑢1 𝑦 = 𝐴11𝑒
𝑚11𝑦 + 𝐴12𝑒

𝑚12𝑦 + 𝐾9𝑒
𝑚1𝑦 + 𝐾10𝑒

𝑚2𝑦 + 𝐾11𝑒
𝑚3𝑦 + 𝐾12𝑒

𝑚4𝑦 + 𝐾13𝑒
𝑚5𝑦 + 𝐾14𝑒

𝑚6𝑦 +
𝐾15𝑒

𝑚7𝑦 + 𝐾16𝑒
𝑚8𝑦 + 𝐾17𝑒

𝑚9𝑦 + 𝐾18𝑒
𝑚10𝑦                    (3.16) 

Therefore, the solutions for the velocity and temperature profiles are 

𝑢 𝑦, 𝑡 = 𝐴9𝑒
𝑚9𝑦 + 𝐴10𝑒

𝑚10𝑦 + 𝐾5𝑒
𝑚1𝑦 + 𝐾6𝑒

𝑚2𝑦 + 𝐾7𝑒
𝑚5𝑦 + 𝐾8𝑒

𝑚6𝑦 + 𝜀 𝐴11𝑒
𝑚11𝑦 + 𝐴12𝑒

𝑚12𝑦 +
𝐾9𝑒𝑚1𝑦+𝐾10𝑒𝑚2𝑦+𝐾11𝑒𝑚3𝑦+𝐾12𝑒𝑚4𝑦+𝐾13𝑒𝑚5𝑦+𝐾14𝑒𝑚6𝑦+𝐾15𝑒𝑚7𝑦+𝐾16𝑒𝑚8𝑦+𝐾17𝑒𝑚9𝑦+
𝐾18𝑒𝑚10𝑦𝑒𝑖𝜔𝑡                      (3.17) 

𝜃 𝑦, 𝑡 = 𝐴1𝑒
𝑚1𝑦 + 𝐴2𝑒

𝑚2𝑦 + 𝜀 𝐴3𝑒
𝑚3𝑦 + 𝐴4𝑒

𝑚4𝑦 + 𝐾1𝑒
𝑚1𝑦 + 𝐾2𝑒

𝑚2𝑦  𝑒𝑖𝜔𝑡                (3.18) 

𝐶 𝑦, 𝑡 = 𝐴5𝑒
𝑚5𝑦 + 𝐴6𝑒

𝑚6𝑦 + 𝜀 𝐴7𝑒
𝑚7𝑦 + 𝐴8𝑒

𝑚9𝑦 + 𝐾3𝑒
𝑚5𝑦 + 𝐾4𝑒

𝑚6𝑦  𝑒𝑖𝜔𝑡                (3.19) 

Where, 𝑚1 =
−𝑃𝑒+ 𝑃𝑒2−4𝑁2

2
,  𝑚2 =

−𝑃𝑒− 𝑃𝑒2−4𝑁2

2
,𝐴1 =

1

𝑒𝑚1−𝑒𝑚2
 

𝐴2 =
−1

𝑒𝑚1−𝑒𝑚2
, 𝑚3 =

−𝑎3+ 𝑎3
2−4𝑎2

2

2
,𝑚4 =

−𝑎3− 𝑎3
2−4𝑎2

2

2
 

𝐴51 = −𝐴𝐴1𝑚1𝑃𝑒, 𝐴61 = −𝐴𝐴2𝑚2𝑃𝑒, 𝐾1 =
𝐴51

𝑚1
2+𝑎3𝑚1+𝑎2

 

𝐾2 =
𝐴61

𝑚2
2+𝑎3𝑚2+𝑎2

, 𝑎5 = − 𝐾1 + 𝐾2 , 𝑙1 = − 𝐾1𝑒
𝑚1 + 𝐾2𝑒

𝑚2  

𝑙2 = 𝑙1 − 𝑎5𝑒
𝑚2 , 𝐴3 =

𝑙2

𝑒𝑚3−𝑒𝑚4
, 𝐴4 = 𝑎5 − 𝐴3, 𝑚5 =

−𝑆𝑐+ 𝑆𝑐2+4𝐾𝑐𝑆𝑐

2
 

𝑚6 =
−𝑆𝑐− 𝑆𝑐2+4𝐾𝑐𝑆𝑐

2
, 𝐴5 =

1

𝑒𝑚5−𝑒𝑚6
, 𝐴6 = −𝐴5, 𝑚7 =

−𝑆𝑐+ 𝑆𝑐2+4𝑎4

2
 

𝑚8 =
−𝑆𝑐− 𝑆𝑐2+4𝑎4

2
, 𝐾3 =

−𝐴𝐴5𝑚5𝑆𝑐

𝑚5
2+𝑚5𝑆𝑐−𝑎4

, 𝐾4 =
−𝐴𝐴6𝑚5𝑆𝑐

𝑚6
2+𝑚6𝑆𝑐−𝑎4

,  

𝑙23 = − 𝐾3 + 𝐾4 , 𝑙24 = − 𝐾3𝑒
𝑚5 + 𝐾4𝑒

𝑚6 , 𝐴8 =
𝑙23𝑒

𝑚7−𝑙24

𝑒𝑚7−𝑒𝑚8
, 

𝐴7 = 𝑙23 − 𝐴8, 𝑚9 =
−𝑅𝑒+ 𝑅𝑒2+4𝑎𝐻𝑎2

2𝑎
, 𝑚10 =

−𝑅𝑒− 𝑅𝑒2+4𝑎𝐻𝑎2

2𝑎
, 

𝐾5 =
−𝐴1𝐺𝑟

𝑎𝑚 1
2+𝑅𝑒𝑚1−𝐻𝑎2, 𝐾6 =

−𝐴2𝐺𝑟

𝑎𝑚 2
2+𝑅𝑒𝑚2−𝐻𝑎2, 𝐾7 =

−𝐴5𝐺𝑐

𝑎𝑚 5
2+𝑅𝑒𝑚5−𝐻𝑎2, 

𝐾8 =
−𝐴6𝐺𝑐

𝑎𝑚 6
2+𝑅𝑒𝑚6−𝐻𝑎2, 𝑙3 = 𝐾5 + 𝐾6 + 𝐾7 + 𝐾8, 
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𝑙4 = 𝛼1 + ℎ1(𝐾5𝑚1 + 𝐾6𝑚2 + 𝐾7𝑚5 + 𝐾8𝑚6), 𝑙5 = 𝑙4 − 𝑙3, 

𝑙6 = 1 − ℎ1𝑚9, 𝑙7 = 1 − ℎ1𝑚10 , 𝑙8 = 𝐾5𝑒
𝑚1 + 𝐾6𝑒

𝑚2 + 𝐾7𝑒
𝑚5 + 𝐾8𝑒

𝑚6 , 

𝑙9 = 𝛼2 + ℎ2(𝐾5𝑚1𝑒
𝑚1 + 𝐾6𝑚2𝑒

𝑚2 + 𝐾7𝑚5𝑒
𝑚5 + 𝐾8𝑚6𝑒

𝑚6 ), 

𝑙10 = 𝑙9 − 𝑙8, 𝑙11 = 𝑒𝑚9 − ℎ2𝑚9𝑒
𝑚9 , 𝑙12 = 𝑒𝑚10 − ℎ2𝑚10𝑒

𝑚10 , 

𝐴10 =
𝑙5𝑙11−𝑙6𝑙10

𝑙7𝑙11−𝑙6𝑙12
, 𝐴9 =

𝑙5−𝐴10 𝑙7

𝑙6
, 𝑚11 =

−𝑅𝑒+ 𝑅𝑒2+4𝑎

2𝑎
,𝑚12 =

−𝑅𝑒− 𝑅𝑒2+4𝑎

2𝑎
 

𝐾9 =
−𝐴𝑅𝑒𝐾5𝑚1−𝐺𝑟𝐾1

𝑎𝑚 1
2+𝑅𝑒𝑚1−𝑏

, 𝐾10 =
−𝐴𝑅𝑒𝐾6𝑚2−𝐺𝑟𝐾2

𝑎𝑚 2
2+𝑅𝑒𝑚2−𝑏

, 𝐾11 =
−𝐺𝑟𝐴3

𝑎𝑚 3
2+𝑅𝑒𝑚3−𝑏

, 

𝐾12 =
−𝐺𝑟𝐴4

𝑎𝑚 4
2+𝑅𝑒𝑚4−𝑏

, 𝐾13 =
−𝐴𝑅𝑒𝐾7𝑚5−𝐺𝑐𝐾3

𝑎𝑚 5
2+𝑅𝑒𝑚5−𝑏

, 𝐾14 =
−𝐴𝑅𝑒𝐾8𝑚6−𝐺𝑐𝐾4

𝑎𝑚 6
2+𝑅𝑒𝑚6−𝑏

, 

𝐾15 =
−𝐺𝑐𝐴7

𝑎𝑚 7
2+𝑅𝑒𝑚7−𝑏

, 𝐾16 =
−𝐺𝑐𝐴8

𝑎𝑚 8
2+𝑅𝑒𝑚8−𝑏

, 𝐾17 =
−𝐴𝑅𝑒𝐴9𝑚9

𝑎𝑚 9
2+𝑅𝑒𝑚9−𝑏

, 

𝐾18 =
−𝐴𝑅𝑒𝐴10𝑚10

𝑎𝑚 10
2 +𝑅𝑒𝑚10−𝑏

, 𝑙13 = ℎ1 𝐾9𝑚1 + 𝐾10𝑚2 + 𝐾11𝑚3 + 𝐾12𝑚4 + 𝐾13𝑚5 + 𝐾15𝑚7 + 𝐾16𝑚8 + 𝐾17𝑚9 +

𝐾18𝑚10,  

𝑙14 = ℎ2 𝐾9𝑚1𝑒
𝑚1 + 𝐾10𝑚2𝑒

𝑚2 + 𝐾11𝑚3𝑒
𝑚3 + 𝐾12𝑚4𝑒

𝑚4 + 𝐾13𝑚5𝑒
𝑚5 + 𝐾14𝑚6𝑒

𝑚6 + 𝐾15𝑚7𝑒
𝑚7 +

𝐾16𝑚8𝑒𝑚8+𝐾17𝑚9𝑒𝑚9+𝐾18𝑚10𝑒𝑚10  

𝑙15 = 𝐾9 + 𝐾10 + 𝐾11 + 𝐾12 + 𝐾13 + 𝐾15 + 𝐾16 + 𝐾17 + 𝐾18 , 

𝑙16 = 1 − ℎ1𝑚11 , 𝑙17 = 1 − ℎ1𝑚12 , 𝑙18 = 𝑙13 − 𝑙15 , 

𝑙19 = 𝐾9𝑚1𝑒
𝑚1 + 𝐾10𝑚2𝑒

𝑚2 + 𝐾11𝑚3𝑒
𝑚3 + 𝐾12𝑚4𝑒

𝑚4 + 𝐾13𝑚5𝑒
𝑚5 + 𝐾14𝑚6𝑒

𝑚6 + 𝐾15𝑚7𝑒
𝑚7 +

𝐾16𝑚8𝑒
𝑚8 + 𝐾17𝑚9𝑒

𝑚9 + 𝐾18𝑚10𝑒
𝑚10 , 

𝑙20 = 𝑒𝑚11 − ℎ2𝑚11𝑒
𝑚11 , 𝑙21 = 𝑒𝑚12 − ℎ2𝑚12𝑒

𝑚12 , 𝑙22 = 𝑙14 − 𝑙19, 

𝐴12 =
𝑙18 𝑙20−𝑙16 𝑙22

𝑙17 𝑙20−𝑙16 𝑙21
, 𝐴11 =

𝑙18−𝐴12 𝑙17

𝑙16
 

 

4. Analysis and Discussion of Results 

In this section, 2-term perturbation series are employed to evaluate the dimensionless velocity, dimensionless 

temperature and the dimensionless species concentration profiles.  

To study the effect of variable suction on unsteady MHD oscillatory flow of Jeffrey fluid in a horizontal channel 

with heat and mass transfer, the velocity 𝑢, temperature 𝜃 and the species concentration𝐶 profiles are depicted 

graphically against 𝑦 for different values of different parameters; Slip flow parameters ℎ1  𝑎𝑛𝑑 ℎ2 , Suction 

parameters 𝛼1  𝑎𝑛𝑑 𝛼2, material parameter 𝜆1, Grashof numbers 𝐺𝑟 𝑎𝑛𝑑 𝐺𝑐, Hartman number 𝐻𝑎, Reynolds 

number 𝑅𝑒, radiation parameter 𝑁, Schmidt number 𝑆𝑐, chemical reaction parameter 𝐾𝑐  and Peclet number 𝑃𝑒. 

The velocity of the flow field varies to a great extend with the variation of the flow parameters. The main factors 

affecting the velocity are Slip flow parameters ℎ1  𝑎𝑛𝑑 ℎ2 , Suction parameters 𝛼1 𝑎𝑛𝑑 𝛼2, material parameter 

𝜆1, Grashof numbers 𝐺𝑟 𝑎𝑛𝑑 𝐺𝑐, Hartman number 𝐻𝑎, Reynolds number 𝑅𝑒, radiation parameter 𝑁, Schmidt 

number 𝑆𝑐 and chemical reaction parameter 𝐾𝑐 . The effects of these parmeters on the velocity flow field are 

analyzed in figures 2 – 13. These effects are discussed quantitatively.  

Figures 2 and 3 demonstrate the effect of slip flow parametersℎ1𝑎𝑛𝑑 ℎ2 on velocity 𝑢. It is observe in figure 2 

that the velocity 𝑢decreases with increase inℎ1 while figure 3 shows that the velocity 𝑢 increases with increase 

in ℎ2.  

Figures 4 and 5 show the effect of suction parameters 𝛼1 𝑎𝑛𝑑 𝛼2. It can be seen in figure 4 that the velocity 𝑢 

increases with increase in 𝛼1. While the velocity 𝑢 decreases with increase in 𝛼2 in figure 5. 

Figure 6 shows the effect of Grashof number 𝐺𝑟 on velocity 𝑢. It is observed that as 𝐺𝑟 increases, the velocity 

increases. To this effect, at higher Grashof number 𝐺𝑟 the flow at the boundary is turbulent while at lower 𝐺𝑟 

the flow at the boundary is laminar. 

Figure 7 depicts the effect of Grashof number 𝐺𝑐 for mass transfer on velocity 𝑢. It is observed that the velocity 

𝑢 increases with increase in 𝐺𝑐. 

The effect of Reynolds number 𝑅𝑒 on velocity 𝑢 is shown in figure 8. It is shown that the velocity 𝑢 increases 

with increasing𝑅𝑒. 

Figure 9 depicts the effect of Hartman number 𝐻𝑎 on velocity 𝑢. It is shown that the velocity 𝑢 icreases with 

decrease in 𝐻𝑎. This shows the effect of magnetic field on the fluid flow and this effect suppresses the 

turbulence flow of the Jeffrey fluid. Physically, when magnetic field is applied to any fluid, then the apparent 

viscosity of the fluid increases to the point of becoming visco elastic solid. It is of great interest that yield stress 

of the fluid can be controlled very accurately through variation of the magnetic field intensity. The result is that 

the ability of the fluid to transmit force can be controlled with the help of electromagnet which give rise to many 

possible control – based applications, including MHD power generation, electromagnetic casting of metals, 

MHD ion propulsion etc. 
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Figure 10 demonstrates the effect of material parameter 𝜆1 on velocity 𝑢. It is evident that the velocity 𝑢 

increases with increase in𝜆1. To this effect the ratio of relaxation to retardation enhances the increase flow of 

velocity when it becomes small.    

The effect of the radiation parameter 𝑁 on velocity 𝑢 is depicted in figure 11. It is observed that the velocity 𝑢 

increases as the radiation parameter 𝑁 increases. 

Figure 12 illustrates the effect of chemical reaction parameter 𝐾𝑐  on velocity 𝑢. It is observed that as the 

chemical reaction parameter decreases, the velocity increases.  

Figure 13 demonstrate the effect of Schmidt number 𝑆𝑐 on velocity 𝑢. It shows that the velocity increases with 

increase in 𝑆𝑐. 

The temperature field suffers a major change in magnitude due to the variation of radiation parameter 𝑁 and 

Pecletnumber 𝑃𝑒. The effects of these parameters on the temperature field are discussed in figures 14-15.  

Figure 14 depicts the effect of radiation parameter 𝑁 on temperature 𝜃. It is found out that the temperature 

increases with increase in 𝑁. 

The effect of Reynolds number 𝑃𝑒 on temperature 𝜃 is shown in figure 15. It is observed that the temperature 𝜃 

increases with increase in 𝑃𝑒. 

The presence of foreign mass in the flow field greatly affects the species concentration of the flow field. The 

factors or parameters responsible for this variations are Schmidt number 𝑆𝑐 and chemical reaction parameter 𝐾𝑐 . 

The effect of Schmidt number 𝑆𝑐 on species concentration 𝐶 is shown in figure 16. It is shown that the species 

concentration 𝐶 increases with increase in 𝑆𝑐. 

Figure 17 reveals the effect of chemical reaction 𝐾𝑐  on species concentration 𝐶. It is observed that increase in 𝐾𝑐  

decreases the species concentration 𝐶. 

 

 
Figure 2: Effect of slip flowℎ1 parameter on velocity withℎ2 = 1, 𝛼1 = 1, 𝛼2 = 1, 𝜆1 = 0.3, 𝐺𝑟 = 1, 𝐺𝑐 =

1, 𝐻𝑎 = 1,𝑁 = 1, 𝜔 = 1, 𝑃𝑒 = 1, 𝑅𝑒 = 1, 𝑆𝑐 = 1, 𝐾𝑐 = 1, 𝜀 = 0.02, 𝐴 = 0.5 𝑎𝑛𝑑𝑡 = 0.5. 

 
Figure 3: Effect of slip flow ℎ2 parameter on velocity with ℎ1 = 1, 𝛼1 = 1, 𝛼2 = 1, 𝜆1 = 0.3, 𝐺𝑟 = 1, 𝐺𝑐 =

1, 𝐻𝑎 = 1,𝑁 = 1, 𝜔 = 1, 𝑃𝑒 = 1, 𝑅𝑒 = 1, 𝑆𝑐 = 1, 𝐾𝑐 = 1, 𝜀 = 0.02, 𝐴 = 0.5 𝑎𝑛𝑑𝑡 = 0.5. 
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Figure 4: Effect of slip flow 𝛼1 parameter on velocity with ℎ1 = 1, ℎ2 = 1, 𝛼2 = 1, 𝜆1 = 0.3, 𝐺𝑟 = 1, 𝐺𝑐 =

1, 𝐻𝑎 = 1,𝑁 = 1, 𝜔 = 1, 𝑃𝑒 = 1, 𝑅𝑒 = 1, 𝑆𝑐 = 1, 𝐾𝑐 = 1, 𝜀 = 0.02, 𝐴 = 0.5 𝑎𝑛𝑑𝑡 = 0.5. 

 
Figure 5: Effect of slip flow 𝛼2 parameter on velocity with ℎ1 = 1, ℎ2 = 1, 𝛼1 = 1, 𝜆1 = 0.3, 𝐺𝑟 = 1, 𝐺𝑐 =

1, 𝐻𝑎 = 1,𝑁 = 1, 𝜔 = 1, 𝑃𝑒 = 1, 𝑅𝑒 = 1, 𝑆𝑐 = 1, 𝐾𝑐 = 1, 𝜀 = 0.02, 𝐴 = 0.5 𝑎𝑛𝑑𝑡 = 0.5. 

 
Figure 6: Effect of Grashof number 𝐺𝑟 on velocity with ℎ1 = 1, ℎ2 = 1, 𝛼1 = 1, 𝛼2 = 1, 𝜆1 = 0.3, 𝐺𝑐 = 1, 𝐻𝑎 =

1,𝑁 = 1,𝜔 = 1, 𝑃𝑒 = 1, 𝑅𝑒 = 1, 𝑆𝑐 = 1, 𝐾𝑐 = 1, 𝜀 = 0.02, 𝐴 = 0.5 𝑎𝑛𝑑𝑡 = 0.5. 
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Figure 7: Effect of Grashof number 𝐺𝑐due to mass transferon velocity with ℎ1 = 1, ℎ2 = 1, 𝛼1 = 1, 𝛼2 =

1, 𝜆1 = 0.3, 𝐺𝑐 = 1, 𝐻𝑎 = 1,𝑁 = 1,𝜔 = 1, 𝑃𝑒 = 1, 𝑅𝑒 = 1, 𝑆𝑐 = 1, 𝐾𝑐 = 1, 𝜀 = 0.02, 𝐴 = 0.5 𝑎𝑛𝑑𝑡 = 0.5. 

 
Figure 8: Effect of Reynolds number 𝑅𝑒 on velocity with ℎ1 = 1, ℎ2 = 1, 𝛼1 = 1, 𝛼2 = 1, 𝜆1 = 0.3, 𝐺𝑐 =

1, 𝐻𝑎 = 1,𝑁 = 1, 𝜔 = 1, 𝑃𝑒 = 1, 𝐺𝑐 = 1, 𝑆𝑐 = 1, 𝐾𝑐 = 1, 𝜀 = 0.02, 𝐴 = 0.5 𝑎𝑛𝑑𝑡 = 0.5. 

 
Figure 9: Effect of Hartmann number 𝐻𝑎 on velocity with ℎ1 = 1, ℎ2 = 1, 𝛼1 = 1, 𝛼2 = 1, 𝜆1 = 0.3, 𝐺𝑐 =

1, 𝑅𝑒 = 1,𝑁 = 1,𝜔 = 1, 𝑃𝑒 = 1, 𝐺𝑐 = 1, 𝑆𝑐 = 1, 𝐾𝑐 = 1, 𝜀 = 0.02, 𝐴 = 0.5 𝑎𝑛𝑑𝑡 = 0.5. 
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Figure 10: Effect of material parameter 𝜆1 on velocity with ℎ1 = 1, ℎ2 = 1, 𝛼1 = 1, 𝛼2 = 1, 𝐺𝑐 = 1, 𝑅𝑒 =

1,𝐻𝑎 = 1,𝑁 = 1, 𝜔 = 1, 𝑃𝑒 = 1, 𝐺𝑐 = 1, 𝑆𝑐 = 1, 𝐾𝑐 = 1, 𝜀 = 0.02, 𝐴 = 0.5 𝑎𝑛𝑑𝑡 = 0.5. 

 
Figure 11: Effect of Radiation Parameter 𝑁 on velocity with ℎ1 = 1, ℎ2 = 1, 𝛼1 = 1, 𝛼2 = 1, 𝜆1 = 0.3, 𝐺𝑐 =

1, 𝑅𝑒 = 1,𝜔 = 1, 𝑃𝑒 = 1, 𝐺𝑐 = 1, 𝑆𝑐 = 1, 𝐾𝑐 = 1, 𝜀 = 0.02, 𝐴 = 0.5 𝑎𝑛𝑑𝑡 = 0.5. 

 
Figure 12: Effect of Chemical Parameter 𝐾𝑐  on velocity with ℎ1 = 1, ℎ2 = 1, 𝛼1 = 1, 𝛼2 = 1, 𝐺𝑐 = 1, 𝑅𝑒 =

1,𝐻𝑎 = 1,𝑁 = 1, 𝜔 = 1, 𝑃𝑒 = 1, 𝑆𝑐 = 1, 𝐺𝑐 = 1, 𝜆1 = 1, 𝜀 = 0.02, 𝐴 = 0.5 𝑎𝑛𝑑𝑡 = 0.5. 
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Figure 13: Effect of Chemical Parameter 𝑆𝑐 on velocity with ℎ1 = 1, ℎ2 = 1, 𝛼1 = 1, 𝛼2 = 1, 𝐺𝑐 = 1, 𝑅𝑒 =
1,𝐻𝑎 = 1,𝑁 = 1,𝜔 = 1, 𝑃𝑒 = 1, 𝐺𝑐 = 1, 𝜆1 = 1,𝐾𝑐 = 1, 𝜀 = 0.02, 𝐴 = 0.5 𝑎𝑛𝑑𝑡 = 0.5. 

 
Figure 14: Effect of Radiation parameter 𝑁 on temperature with 𝜔 = 1, 𝑃𝑒 = 1, 𝜀 = 0.02, 𝐴 = 0.5 𝑎𝑛𝑑𝑡 = 0.5. 

 
Figure 15: Effect of Peclet number 𝑃𝑒 on temperature with 𝜔 = 1,𝑁 = 1, 𝜀 = 0.02, 𝐴 = 0.5 𝑎𝑛𝑑𝑡 = 0.5. 
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Figure 16: Effect of Schmidt number 𝑆𝑐 on species concentration with 𝜔 = 1, 𝐾𝑐 = 1, 𝜀 = 0.02, 𝐴 =

0.5 𝑎𝑛𝑑𝑡 = 0.5. 

 
Figure 17: Effect of chemical parameter 𝐾𝑐  on species concentration with 𝜔 = 1, 𝑆𝑐 = 1, 𝜀 = 0.02, 𝐴 =

0.5 𝑎𝑛𝑑𝑡 = 0.5. 

Summary and Conclusion 

In this section, we studied the effect of variable suction on unsteady MHD oscillatory flow of Jeffrey fluid in a 

horizontal channel with heat and mass transfer. 

The governing equations, the momentum, energy and species equations have been written in dimensionless 

form. 

A perturbation method has been employed to evaluate and solved the dimensionless equations for velocity 𝑢, the 

dimensionless temperature 𝜃 and the dimensionless species concentration 𝐶. 

The main findings are summarized below; 

i. Increase in slip flow parameter ℎ2, suction parameter 𝛼1,material parameter 𝜆1, Grashof number 

for heat transfer 𝐺𝑟, Grashof number for mass transfer 𝐺𝑐, Radiation parameter 𝑁, Reynolds 

number 𝑅𝑒and Schmidt number 𝑆𝑐 have accelerating effects on velocity of the flow field. 

ii. Decrease in slip flow parameter ℎ1, Hartman number 𝐻𝑎 and chemical parameter 𝐾𝑐  accelerates 

the velocity of the flow field. 

iii. Increase in the Radiation parameter 𝑁, Peclet number 𝑃𝑒 and  accelerate the magnitude of 

temperature of the flow field. 

iv. Increase in Schmidt number 𝑆𝑐 and chemical parameter 𝐾𝑐  respectively increase and decrease the 

species concentration or the concentration boundary layer thickness of the flow field. 

It is concluded that these results show that the velocity is more of Jeffrey fluid than the Newtonian fluid. 
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