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Abstract An illustration of how first order ordinary differential equations (ODEs) Runge-Kutta method can be 

modified for a second order ODEs was presented. The theory of Nyström method was adopted in the 

modification of the methods. Through this process a first order ODEs numerical method can be extended to the 

case in which the approximate solution to a second order ODEs (special or general), as well as first order Initial 

Value Problems (IVPs) can be calculated. Numerical experiment to illustrate its efficiency and the method can 

be extended to solve higher order differential equations. The scheme is simple to implement and converges 

better with the exact solution.  
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Introduction 

There is a vast body of literature addressing the numerical solution of the so called special second order initial 

value problems (IVP). 

),( yxfy        yxy o )(   )( oxy     (1.1) 

(see for example(14 and 15) but not so much for the general second order IVP with a dissipative term 

),,( yyxfy        yxy o )(   )( oxy     (1.2) 

(Different approaches appear in [1-3]). 

Although it is possible to integrate a second order IVP by reducing it to first order system and apply one of the 

method available for such system it seem more natural to provide commercial method in order to integrate the 

problem directly. The advantage of these approaches lies in the fact that they are able to exploit special 

information about ODEs and this result in an increase in efficiency (that is, high accuracy at low cost) For 

instance ,it is well know that Runge-Kutta Nystrom(RKN) method for (1.2) involve a real improvement as 

compared to standard Runge-Kutta(RK) method for a given number of stages [4].        

In this paper, we present an eight-stage Runge-Kutta Nystrom method for direct integration of second order 

ODEs with the following advantage such as high order and stage order and low implementation cost.       

The RKN method is an extension of RK method for first order ODEs of the form 

 

𝑦′ = 𝑓 𝑥, 𝑦 ,            𝑦 𝑥0 = 𝑦0       (1.3) 

There are many kinds of RK methods of different Orders, i.e the RK of order 2, 3, 4 etc. The higher the order of the 

scheme the better the accuracy. 

 

The most popular RK method or classical RK method of order four is good since it has it has local error bounds 0

which is small enough (h . The classical RK methods of order four for the initial value problem (1.1) is given by 

    )22(
6

1
43211 kkkkyy nn 

                                    (1.4) 

where,  
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h is the  step-size vector chosen , usually h [1]   

The method (1.2) in Butcher-array form can be written as 
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The RKN method for second order ODEs of the form (1.2) is given by 

)(
6

1
3211 kkkyhyy nnn 

                                     (1.5) 

)22(
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
 

    where,  

    

 

      

                                      

The method (1.4) in Butcher-array form can be written as 
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Both the RK and RKN methods could be expanded into Taylor’s series [1]. 
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The work is organized as follows: In section 2 we will show how the Butcher’s Runge-Kutta methods for the 

first order differential equations tableau are modified to include second derivative(that is RKN method), this 

idea will be used in section 3 to illustrate the main derivation of the fifth order explicit Runge-Kutta method for 

solution of second order ODEs, some numerical experiments are presented in section 4, finally, the conclusion 

section 5. 

Butcher’s Runge-kutta methods for the first order differential equations 

Butcher [5], defined an s-stage implicit Runge-Kutta methods for the first order differential equations (1.1) in 

the form 

i

s

1i

i1 kw 


  hyy nn
                                                          (1.6) 

Where for i = 1, 2 - - - -   s. 

)ka , ( j

s

1j

ij


 hyhxfk njii                                         

The real parameters 
ijij ak ,,  define the method. The method (1.6) in Butcher-array form can be written as 

TW


                                                                                             

Where 
ija =   

An s-stage Runge-Kutta Nyström for direct integration of second order IVPs (1.2) is defined in the form 

j

1-i

1j
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2

1 ka 


  hyhyy ninn                                                         (1.7) 


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Where for i = 1, 2 - - - -   s. 
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The real parameters 
ijijij aak ,,,  define the method, the method (1.7) in Butcher – array form. 

bb

AA
T



                                                                 

 

A = 
ija = 

2
   Ā = 

ija  = 

 = e    b  = W   b  = W
T
                                                        

(see [6-8]) 

Definition 1   Order and Error Constant of Runge-Kutta Methods 

A first and second order ODEs methods are said to be of order p if p is the largest integer for which 

)(0)),(,()()( 1 phhxyxhxyhxy                                                            (1.8) 

)(0)),(),(,()()( 222  phhxyxyxhxyhxy                                               (1.9) 

)(0)),(),(),(,()()( 333  phhxyxyxyxhxyhxy                                      (2.0) 

Holds respectively. Where 

)(
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.........)(
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)()()(
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xy
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xy

h
xyhxyhxy s

s

                                     (2.1) 

))(,()()),(,( xyxfhxyhxyx  , ))(),(,()()),(),(,( 2 xyxyxfhxyhxyxyx  and

))(),(),(,()()),(),(),(,( 3 xyxyxyxfhxyhxyxyxyx   in the Taylor series expansion 

about ox  and compare coefficients of )( o

kk xyh , )( oxy  is the interval value. The coefficients for which p is 

the largest integer is known as the error constant (See Lambert [9]). 
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Proposisition 1  

An order P method for a G(N) order ODEs extended for a higher order G(N+1) ODEs has order P-1,where 

G(1),G(2),….,G(N) denote first order, second order, …nth order respectively. 

Proof: From definition 1 let )( o

kk xyh  represent the largest integer for which G(N) equation(1.8) holds, 

implies )(01 1 phpk then for G(N+1) equation(1.9) ))(01(2 1 phpk and for G(N+2) 

equation (2.0)  ))(02(3 1 phpk  such that )(0 1ph , )(0))(01( 21   pp hh  and 

)(0))(02( 31   pp hh are the order of G(N), G(N+1) and G(N+2) respectively. 

Derivation of the Fifth Order Explicit Runge-Kutta Method 

Consider the sixth-order eight-stage Runge-Kutta Method for (1.1) 

)41216272722721641(
840

87654311 kkkkkkk
h

yy nn 
                 (2.2)             

where 
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Using (1.7) we obtain in Butcher – array form  
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Putting the array coefficients in equation form(1.7) we obtained a fifth order explicit Runge-Kutta method for 

direct integration of second order ODEs everywhere on the interval of solution Yakub etal [10] and Chollom 

and Jackiewicz [11] given by 
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Numerical Experiment 

Problem 1 

    𝑦′′ − 𝑥𝑦′ + 4𝑦 = 0      𝑦 0 = 3, 𝑦′ 0 = 0,    ℎ = 0.1 

                   Exact solution is    𝑦 𝑥 = 𝑥4 − 6𝑥2 + 3      
Table 1: Approximate error of Problem 1 

T RKN ERKM 

0.1 2.E-07 1.E-09 

0.2 4.E-07 3.E-09 

0.3 6.E-07 3.E-09 

0.4 7.E-06 2.E-09 

Problem 2 (Theresa and Danny [12]). The classical harmonic oscillator                  

)()( tx
m

k
tx 

,
          1)0(      ,1)0(  xx 

,
 k=1,m=1   h=0.1,   4.00  t  

 Theoretical Solution:  )(sin)(cos)( txtxtx   

Table 2: Approximate error of Problem 2 

T 

NUMEROV 

(Yusuph[11]) ERKM 

0.1 2.E-07 8.E-11 

0.2 4.E-07 4.E-10 

0.3 6.E-07 1.E-09 

0.4 7.E-06 2.E-09 

Conclusion 
Through the approach presented in this paper, the ERKM method can be extended to solve higher order 

differential equations. The method requires less work with very little cost (when compared with classical RK) 

and possesses a gain in efficiency (when compared with RKN). 
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