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Abstract A 149-point realization of daily exchange rates of the Uganda shilling (UGX) — Nigerian naira (NGN)
from 4" October, 2014 to 1% March, 2015, is analyzed by Box-Jenkins methods. By a new fitting algorithm, it is
concluded that the time series follows the subset SARIMA (1,1,0)x(1,1,0); model. Daily exchange rates between
the two currencies may be simulated or forecasted by the model.
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Introduction

Foreign exchange is a major issue in the discussion of world economy. Any trade relationship between the
country Uganda and the country Nigeria is based on the relative value of the Uganda Shilling (UGX) and the
Nigerian Naira (NGN). In this write-up the daily exchange rates shall be modelled by Box-Jenkins methods. The
particular approach shall be the seasonal autoregressive integrated moving average (SARIMA) approach
proposed by Box et al. [1].

In recent times, many authors have adopted the SARIMA modelling approach to model real life data. Jianfeng
(2013) noticed that SARIMA modelling results in closer forecasts to the real data than dynamic linear modelling
in forecasting monthly cases of mumps in Hong Kong. He fitted a SARIMA(2,1,1)x(1,1,1);, model to the time
series [2] . Li et al. (2013) modelled monthly outpatient numbers in China by a SARIMA(0,1,1)x(0,1,1);, [3].
Kibunja et al. (2014) forecasted monthly precipitation in Mount Kenya region using a SARIMA(1,0,1)x(1,0,0) 1,
model [4]. Valipour (2015) observed that SARIMA modelling outdid its non-linear counterpart ARIMA in long-
term runoff forecasting [5]. Hassan and Mohamed (2015) found that a SARIMA(0,0,5)x(1,0,1);, was the most
adequate in the simulation of monthly rainfall drought in the Gadaref region of Sudan [6]. Gikungu et al. (2015)
fitted a SARIMA(0,1,0)x(0,0,1), to quarterly Kenyan inflation rates [7].

The purpose of this write-up is to fit a model to the daily exchange rates of Ugandan shilling (UGX) and
Nigerian Naira (NGN). Because of the observed seasonal nature of the series, a SARIMA approach is adopted.

Material and Methods
Data
The data for this work are 149 values of daily UGX / NGN exchange rates of October 4, 2014 through March 1,
2015. They were obtained from the website www.exchangerates.org/UGX-NGN-exchange-rate-history.html
accessed on March 2, 2015. These numbers are interpreted as the quantities of NGN per UGX.
Seasonal Autoregressive Integrated Moving Average (SARIMA) Models
The definition of a SARIMA model as proposed by Box et al. [1] is as follows:
A stationary time series {X} is said to follow a multiplicative seasonal autoregressive integrated moving
average model of order p, d, g, P, D, Q, s designated SARIMA(p,d,q)x(P,D,Q); if
AL)D(LF) V4VPX, = B(L)O(L)s, (1)
A
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where A(L) is a p-order polynomial in L and is called the autoregressive (AR) operator; B(L) is a g-order
polynomial in L and is called the moving average (MA) operator; ®(L) is a P-order polynomial in L called the
seasonal AR operator; ©(L) is a Q-order polynomial in L called the seasonal MA operator. The numbers d and
D are the non-seasonal and the seasonal differencing orders respectively. L is the backward shift operator
defined by L"Xt = Xk the number s is the period of the seasonality of the time series. V and V; are the non-
seasonal and the seasonal differencing operators respectively. {:} is a white noise process.

SARIMA Modelling

Generally the model (1) is estimated beginning with the determination of the orders: p, d, q, P, D, Q and s. The
AR orders p and P are estimated by the non-seasonal and seasonal cut-off lags of the partial autocorrelation
function, respectively. Similarly the MA orders q and Q are estimated by the non-seasonal and the seasonal
cut-off lags of the autocorrelation function respectively. The seasonal period often suggests itself by the known
nature of the series. Otherwise it may be suggestive by the correlogram or an analytical inspection of the series.
The differencing orders d and D are such that they sum up to 2 at most.

In this work the subset SARIMA modelling algorithm proposed by Etuk and Ojekudo (2015) shall be used [8].
It is the autoregressive-moving-average-duality-based version of the algorithm of Suhartono [9].

Suhartono’s algorithm is as follows:

Fit to {X} the following SARIMA(0,0,1)x(0,0,1)s model

Xe= &+ Br&o1 + o+ Bs€os + Bsi1€—5-1 2

If Bs+s = O then the model is said to be additive. Otherwise if Bs;; = Bifs, then the model is said to be
multiplicative. Otherwise it is said to be subset.

Etuk and Ojekudo’s algorithm which is the dual version of (2) is as follows:

Fit to {X} the following SARIMA(1,0,0)x(1,0,0)s model

Xt + alxt—l +t ath—s + aS+1Xt—S—1 (3)

If as; = 0 the model is said to be additive. If not, if as = oyas, the model is said to be multiplicative.
Otherwise it is said to be subset. Additivity is ascertained if

011 < 2SE(0G57)

where SE(.) is the standard error of and ~ denotes the estimate of Multiplicativity is ascertained if

T = (@41 — &5 a7 )/SE(@s41)

is not statistically significant where T is t-distributed.

Estimation of the model parameters is done via a non-linear optimization process for the mixed ARMA process.
The Eviews software which uses the least squares technique is to be used for this work.

Results and Discussion
The time-plot of Figure 1 shows a generally positive trend depicting relative depreciation of the
Naira within the time period of interest. A seven-day differencing yields a series with the time-plot of Figure 2
which depicts a generally horizontal trend and a correlogram of figure 3 showing a seasonal nature of period 7
days. A further non-seasonal differencing yields a series with the plot of Figure 4 and the correlogram of Figure
5. Evident is a stationary nature and a correlation structure suggestive of a SARIMA(1,1,0)x(1,1,0); . Applying
the algorithm of Etuk and Ojekudo (3) becomes naturally suggestive [8].
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Figure 1: Time Plot of Exchange Rates
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Figure 2: Time Plot of the seasonal differences
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Figure 3: Correlogram of the seasonal differences
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Figure 4: Time Plot of Difference of the seasonal Differences
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Applying algorithm (3) yields as estimated in Table 1 the SARIMA(1,1,0)x(1,1,0); model
X;=0.1616X;; — 0.5983X;; + 0.1802X.g + &
(£0.0740) (£0.0920)

(+ 0.0932)

(4)

Clearly the model is neither additive nor multiplicative. It is subset. From Figure 6, by the Jarque-Bera test, the
residuals may be said to follow a normal distribution at 1% level of significance. This implies that the model
may be considered as adequate.
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Figure 5: Correlogram of Difference of the Seasonal Differences
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Figure 6: Histogram of The Sarima(1,1,0)X(1,1,0),, Residuals
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Table 1: Estimation of the Sarima(1,1,0)X(1,1,0); Model
Method: Least Squares

Date: 10/03M15 Time: 16:09

Sample (adjusted): 17 149

Included observations: 116 after adjustments
Convergence achieved after 3 iterations

Wariable Coefficient Std. Error t-Statistic Prob.

AR(1) 0.161555 0.093165 1.734076 0.0856

AR(T) -0.598328 0074033  -8.081868 0.0000

AR(E) 0108211 0.0920149 1.175960 02421
R-squared 0373022 Mean dependentvar G.90E-06
Adjusted R-squared 0.361926 S.0. dependentwvar 0.000733
S.E. of regression 0.000586 Akaike info criterion 1202211
Sum squared resid 3.88E-05 Schwarz criterion -11.85090
Log likelihood 7002825 Hannan-Cwinn criter. -11.89320
Durbin-Watson stat 1.984381
Inverted AR Roots B3-40i B3+.40i 20+.91i 20-91i

8 -BE+ 73 -58-73i -83

Conclusion
It may be concluded that daily UGX-NGN exchange rates follow a subset SARIMA(1,1,0)x(1,1,0); model.
Forecasting and simulation of the series may therefore be based on the proposed model (4).
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