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Abstract A mathematical model is a tool used to obtain information about the behavior of a system. The 

mathematical models can be used to have a preliminary knowledge about the functioning of a system, reducing 

the product costs and improving the performance. In this study, the modified models of several existing models, 

Gompertz, Orskov, Logistic and Monomolecular were developed that basically divided gas production into two 

fractions, one arising from rapidly fermentable feed components and the other from slowly fermentable feed 

components. The aim of this study is related to how originally used models are converted into two fractions 

mentioned above. For this purpose, all steps of the transformations were given step by step. 
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Introduction 

A mathematical model is a powerful tool used to get valuable knowledge about the behavior of a system by 

using a mathematical technique. However, the main purpose of using the mathematical models is to obtain a 

preliminary knowledge about the functioning of a system, reducing the product costs and improving the 

performance [1-2]. However, the mathematical models are collected under two classes: empirical and 

mechanistic models [3-4]. Empirical models contain with the parameters a, b, c, etc. Therefore, these models do 

not give an idea about the behavior of system, but they are used only to fit data points. Therefore, since the 

parameters of the empirical models do not contain any biological meaning. It is difficult to estimate their initial 

values. In other words, it is difficult to estimate start values for the parameters if they have no biological 

meaning. Since it is easy to estimate the initial values of the parameters of mechanistic model and it is possible 

to calculate in 95% confidence intervals. Therefore, the researchers prefer mechanistic models in their studies 

[3, 5]. Whereas mechanistic models describe the behavior of a system that also contain the parameters with 

biological meaning such as upper asymptote, representing total gas production y ,  the value at the initial time, 

0y , specific initial rapid early gas production rate 0r , specific initial the slower gas production rate 0s ,  the 

decay in specific rapid early gas production rate rc , the decay in specific the slower gas production rate, sc  , 

etc. Mathematical models have been widely preferred in many disciplines such as economy, biology, chemistry 

and agriculture. Depending on the type of curve, the models used in these areas could be in forms which are 

linear, exponential, sigmoidal, logaritmic and etc. In agriculture, one of the widely used models is the model 

with logaritmic structure. Logaritmic models are considerably used in the studies of ruminant growth and gas 

production. The aim of this study is to discuss to how some of the models widely used in gas production are 

converted to mechanistic models which has biological meaning. In addition, more information on some new 

parameters of the models, namely, specific growth rate at the initial time, reached maximum value, fractional 

constants governing the decay and etc were also given.  

Akbas [6] showed how the important parameters mentioned above in terms of growth for  some growth models 

such as Logistic and Gompertz models may be obtained, but the equations of these parameters have not been 

integrated into the model. The aim of this study shows mathematically how the new parameters with biological 

meaning of the widely used four different logaritmic growth models which have empirical structures can be 
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integrated into the models. As a result, new mechanistic models that explain well the functioning of the system 

are obtained. 

 

Materials and Methods 

Applying Gompertz, Orskov, logistic and monomolecular models to gas production rate is assumed to be 

proportional to microbial activity, projected as gas production (y) with a proportionally parameter (  ) [7]. 

While dy/dt shows the gas production rate, the equation 

 
/dy dt

y
                                                  (1) 

shows the specific gas production rate. 

First of all, we need to change Gompertz, Orskov, logistic and monomolecular models from the classical form to 

the other form including the parameters with biological meaning, the gas production as t goes to infinity (

t  ), y , the specific gas production at the initial time (t=0), 0 , the decay in the specific gas production, c. 

The modified models of several existing models, Gompertz, Orskov, logistic, and monomolecular were 

developed that basically divided gas production into two fractions, one arising from rapidly fermentable feed 

components and the other from slowly fermentable feed components. 

A model having empirical form can define the curve very well, however it does not give any idea about the 

phases. To define these phases, the form of mechanistic model should be created by adding several parameters 

to empirical models using mathematical transformations [8]. As a result, these phases can be determined. It is 

possible to define these phases containing the parameters:  upper asymptote, representing total gas production 

y ,  the value at the initial time, 0y , specific initial rapid early gas production rate 0r , specific initial the 

slower gas production rate 0s ,  the decay in specific rapid early gas production rate rc , the decay in specific 

the slower gas production rate, sc . 

There are many kinds of logaritmic models as empirical form. Four of the commonly models are given in table 

1. 

The following steps of the modification of these four models: Gompertz, Orskov, Logistic and Monomolecular 

are given; 

Step 1: To obtain the specific gas production rate, the first derivatives of the function with respect to t are given 

in table 2, respectively. 

Step 2: The specific gas production rate,  , of the models used can be found by the formula  
dy / dt

y

 
  
 

 

in table 3.  

Step 3: Specific initial gas production rate, 0 , the parameters, b, a and gas production, y(t), of the models used 

in the study is given in table 4. 

Step 4: The parameter,  , is governed by a constant c describing the decay in specific gas production rate ( 

caused by diminishing growth rate of microorganisms and increasing substrate as reflected in gas production) 

with specific initial gas production, 0 , being the value of   at t=0 in table 5. 

Step 5: For getting better describing any data, especially for the samples that showed a rapid gas production 

during early stages of fermentation and slowly increasing asymtote: To obtain better fit, the parameter  was 

modified and divided into two parts, one for rapid early gas production rates, r , and one for the slower gas 

production rates, s , and its own fractional decay constants, rc for rapid early gas production and sc  for the 

slower gas production, respectively in table 6 for specific gas production rate ( ). 

Step 6: Substituting the equations in table 6 into table 3 and integrating gives firstly table 7  for gas production 

(y) and then table 8 for the initial time gas production ( 0y  ) and finally table 9 for the new equation of gas 

production (y) with 0y . 

Step 7: As t goes to infinity, the gas  production (y) is found with the asymptote y in table 10, it is more 

convenient to work with them.  
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Table 1: The models used 

Models Equation 

1. Gompertz y=aexp(-exp(b-ct)) 

2. Orskov y=a+b(1-exp(-ct)) 

3. Logistic y=a/(1+exp(b-ct)) 

4. Monomolecular y= a(1-bexp(-ct)) 

y: gas production, 

exp:exponential  
 

 

Table 2: The first derivative of the models used in the study 

Models 
The First derivative  

 dy / dt
 

1. Gompertz acexp(b-ct)exp(-exp(b-ct)) 

2. Orskov -bcexp(ct) 

3. Logistic acexp(b-ct)/(1+exp(b-ct))^2 

4. Monomolecular abcexp(-ct) 

 

Table 3: The specific gas production rate of the models used in the study 

Models 
The specific gas production rate dy / dt

y

 
  
 

 

1. Gompertz cexp(b-ct) 

2. Orskov -bcexp(ct)/(a+b(1-exp(ct))) 

3. Logistic cexp(b-ct)/(1+exp(b-ct)) 

4.Monomolecular bcexp(-ct)/(1-bexp(-ct)) 

 

Table 4: Specific initial gas production rate, 0 , the parameters b, a and  gas production, y(t),  

of the models used in the study 

Models 
0  b a y(t) 

Gompertz cexp(b) 
0ln( / c)  y  0exp( exp( ) / )y ct c    

Orskov bc/a 
0 /a c  0/ ( )cy c  

 

0 0( / ( ))(1 ( / )(1 exp( )))cy c c ct     

 

Logistic cexp(b)/(1+exp(b)) 
0 0ln( / (c ))   y  0 0/ (1 exp( ) / ( ))y ct c      

Mono-

molecular 

bc/(1-b) 
0 0/ ( )c   y  0 0(1 exp( ) / ( ))y ct c      

y : upper asymtote, representing total gas production 

0 ,the specific gas production rate the initial time (t=0); y , the gas production as t goes to infinity ( t  ); c, the 

decay in the specific gas production. 

Table 5. Specific gas production rate  , represented by 0 , specific initial gas production rate and c, the decay 

in specific gas production rate of the models used in the study 

Models   

Gompertz 
0 exp( )ct   

Orskov 
0 0 0exp( ) / ( exp( ))c ct c ct       

Logistic 
0 0 0exp( ) / ( exp( ))c ct c ct       

Mono-

molecular 
0 0 0exp( ) / ( exp( ))c ct c ct       
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Table 6: Specific gas production rate  , represented by 0r , specific initial rapid early gas production rate, 

0s , specific initial the slower gas production rate and  rc , the decay in specific rapid early gas production rate,  

sc , the decay in specific the slower gas production rate,  of the models used in the study ( 0 0r s   and 

0 0r sc c ) 

Models   

Gompertz 
0 0exp( ) exp( )r r s sc t c t     

Orskov 
0 0 0 0 0 0exp( ) / ( exp( )) exp( ) / ( exp( ))r r r r r r r s s s s s s sc c t c c t c c t c c t               

Logistic 
0 0 0 0 0 0exp( ) / ( exp( )) exp( ) / ( exp( ))r r r r r r r s s s s s s sc c t c c t c c t c c t               

Mono-

molecular 
0 0 0 0 0 0exp( ) / ( exp( )) exp( ) / ( exp( ))r r r r r r r s s s s s s sc c t c c t c c t c c t               

 

Table 7: Gas production y(t) represented by 0r , specific initial rapid early gas production rate, 0s , specific 

initial the slower gas production rate and  rc , the decay in specific rapid early gas production rate,  sc , the 

decay in specific the slower gas production rate,  of the models used in the study ( 0 0r s   and 0 0r sc c )  (

1 2 3 4, , ,k k k k  are constants of the models) 

Models y(t) 

Gompertz 
0 0

1

exp( ) exp( )
exp( ).exp( )r r s s

r s

c t c t
k

c c

   
  

Orskov 
0 0 0 0 2( exp( ))( exp( ))exp( )r r r r s s s sc c t c c t k          

Logistic 
3

0 0 0 0

exp( )

( exp( ))( exp( ))r r r r s s s s

k

c c t c c t        
 

Mono-

molecular 
0 0 0 0 4( exp( ))( exp( ))exp( )r r r r s s s sc c t c c t k          

 

Table 8: The initial time gas production 0y  represented by 0r , specific initial rapid early gas production rate, 

0s , specific initial the slower gas production rate and  rc , the decay in specific rapid early gas production rate,  

sc , the decay in specific the slower gas production rate,  of the models used in the study ( 0 0r s   and 

0 0r sc c )  ( 1 2 3 4, , ,k k k k  are constants of the models) 

Gompertz 
0 0

1exp( ).exp( )r s

r s

k
c c

 
  

Orskov 
2exp( )r sc c k  

Logistic 
3exp( )

r s

k

c c
 

Mono-

molecular 
4exp( )r sc c k  

 

Table 9: Gas production y(t) with 0y , gas production at t=0, represented by 0r , specific initial rapid early gas 

production rate, 0s , specific initial the slower gas production rate and  rc , the decay in specific rapid early gas 

production rate,  sc , the decay in specific the slower gas production rate,  of the models used in the study (

0 0r s   and 0 0r sc c ) 
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Models y(t) 

Gompertz 
0 0

0 exp( (1 exp( )) (1 exp( )))r s
r s

r s

y c t c t
c c

 
      

Orskov 
0 0 0 0 0( exp( ))( exp( ))r r r r s s s s

r s

y c c t c c t

c c

        
 

Logistic 
0

0 0 0 0( exp( ))( exp( ))

r s

r r r r s s s s

y c c

c c t c c t        
 

Mono-

molecular 
0 0 0 0 0( exp( ))( exp( ))r r r r s s s s

r s

y c c t c c t

c c

        
 

 

Table 10: Gas production y(t) with y , gas production at t  , represented by 0r , specific initial rapid 

early gas production rate, 0s , specific initial the slower gas production rate and  rc , the decay in specific rapid 

early gas production rate,  sc , the decay in specific the slower gas production rate,  of the models used in the 

study ( 0 0r s   and 0 0r sc c ) 

Models y(t) 

Gompertz 
0 0exp( exp( ) exp( ))r s

r s

r s

y c t c t
c c

 
      

Orskov 
0 0 0 0

0 0

( exp( ))( exp( ))

( )( )

r r r r s s s s

r r s s

y c c t c c t

c c

   

 
      

 
 

Logistic 
0 0

0 0 0 0

( )( )

( exp( ))( exp( ))

r r s s

r r r r s s s s

y c c

c c t c c t

 

   
  

     
 

Mono-

molecular 
0 0 0 0

0 0

( exp( ))( exp( ))

( )( )

r r r r s s s s

r r s s

y c c t c c t

c c

   

 
      

 
 

Results 

The first derivatives and the specific gas production rate of the models used in this study were presented in 

tables 2 and 3, respectively. The specific initial gas production rate, 0 , the parameters, b, a and gas production 

of the models were presented in table 4. The specific gas production rate,  , represented by 0 , specific initial 

rapid early gas production rate and  c, the decay in specific gas production rate of the models were represented 

in table 5. The specific gas production rate,  , represented by 0r , specific initial rapid early gas production 

rate, 0s , specific initial the slower gas production rate,  and  rc  , the decay in specific rapid early gas 

production rate, sc  , the decay in specific the slower gas production rate, of the models were represented in 

table 6. The gas production y(t),  represented by 0r , 0s , rc , sc  and constants of the models, 1 2 3 4, , ,k k k k , 

respectively were given in Table 7. 

The gas production at the initial time ( 0y ), represented by 0r , 0s , rc , sc  and constants of the models, 

1 2 3 4, , ,k k k k , respectively were given in table 8. 

Then, the gas production y(t) with the initial time ( 0y ),  represented by 0r , 0s , rc  and sc  were given in 

Table 9. 

Finally, The gas production y(t) with y , gas production at t  , represented by 0r , 0s , rc  and sc  

were given in table 10. 
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Discussion 

The first and second partial derivatives of the models are given in Tables 2 and 3, respectively. The first partial 

derivatives and the specific gas production rate are necessary not only to convert the model from the empirical 

form into mecanistic form, but also to find the values of parameters of the model in the algorithm of some 

computer programs [5,9].  Many authors such as Akbas and Oğuz [10]; Narinc et al. [11] described the time and 

values of the inflection point in different forms of the models of Gompertz and Richard in their studies. In 

addition, Sezer and Tarhan [12] conducted a similar study for the model of Richard to calculate the time and 

values of the inflection point in their studies.  

The mechanistic models of the studied four empirical models are given in table 10. Similarly, to improve the 

effectiveness of the models Zwitering et al. [5] and France et al. [13] gave transformations from empirical 

models to mechanistic models in their studies. Moreover, Beuvink and  Kogut [7] gave the transformations from 

table 1 to table 10 for Gompertz model. Beuvink and Kogut [7] reported that fitting of the modified Gompertz 

model in Table 10 resulted in residual mean squares (RMS) lower than or similar to Gompertz model fit, which 

was influenced by the fact that the Genstat computer program used the parameters of Gompertz model  as 

starting values for modified Gompertz model and tried to lower RMS. Beuvink and Kogut [7] also reported that 

the modified Gompertz model gave a good description of the gas production curves obtained by incubation of 

different feedstuffs with buffered ruminal fluid. In addition, the other parameters from the modified models 

could give valuable additional information about ruminal degradation of feedstuffs [7]. 

The formulas of some mechanistic models were much longer than the formulas of the empirical models (table 

10). Since all calculating processes for finding the parameters are made by using the package programs, the 

major factor limiting the use of a model is not related to the length of the model. It is related to the number of 

parameters [14, 5, 15]. Modified equation of each model seems like a long equation, but number of parameters 

in each equation just varied in the range of 3 to 5. The parameters of each model are biologically important to 

understand what they mean. Indeed, it is very important to know the meanings of the parameters in each model. 

When the meanings of the parameters are known, the model can easily fit in the data set. The models which 

have fewer number of parameters are easy to fit compared with the models with more number of parameters. 

Zwitering et al. [5] emphasized that in case of the model which has fewer number of parameters to define the 

data set, this model should be preferred to the model with more number of parameters. The reasons for this are 

that the models which has more number of parameters are difficult to fit compared with the model with fewer 

number of parameters and the parameters of the models which has more number of parameters have some 

correlations with each. However, France et al. [13] reported that the models which have fewer number of 

parameters may not give enough information about system. This situation should not be ignored. Therefore, 

When selecting a model, the researhers should take into account how much of the system is explained by the 

model and how the model agrees with the system. To do this, many researchers advice some statistical tests and 

criteria such as Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), Mean Square Error 

(MSE), Determination coefficient (R
2
), Accuracy Factor (AF) and  F-ratio test [1, 3, 4, 14, 16,17]. The 

comparison of the models is not given in this study.These criteria will help the researchers to model selection.  

Some researchers generally do not know whether the studied model is mechanistic or empirical. Korkmaz and 

Uckardes [18] mentioned the recognition of this distinction. Moreover, the transformations from some of the 

important sigmoidal empirical models to mechanistic models were gradually given in their study. Similarly, 

transformations of gas production by using rapid early and the slower gas production rates with their own 

fractional decay constants were gradually given in this study. 

 

Conclusion 

In this study, it is shown step by step how to obtain the new models with the parameters which have biological 

meaning from the commonly used four different logistic growth models which have empirical structures. More 

information about the growth with the parameters of the new models will be obtained. Experimental data has not 

been employed since this work has been prepared in a theoretical manner. In other study, the similarities and 

differences of the new forms of the models can be investigated by using experimental data.  
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