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Abstract A simple analytic relation between the phase shifts produced by two supersymmetric (SUSY) partner 

potentials remains valid for both shape invariant potential (SIP) and non-SIP. This relationship for the Eckart 

potential, which is an SIP, has been critically investigated. A possible pitfall in assigning the orbital angular 

momentum for the supersymmetric partner potential has also been indicated. 
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1. Introduction 

Supersymmetric Quantum Mechanics (SSQM) [1-2] has been formulated and studied for about three decades 

which introduced a new conceptual framework for understanding potential problems in Quantum Mechanics 

using the ideas borrowed from quantum field theory [3]. The concept of Supersymmetry (SUSY) is of great 

interest, as it provided a new way of relating Hamiltonians with wholly or partially identical energy spectrum. It 

also explained analytical solvability of a class of potentials, whose partner potentials have the same shape, thus 

introducing the concept of shape invariance. An exhaustive review of different aspects of SSQM can be found in 

reported literature [4]. A potential is said to be shape invariant if its SUSY partner potential has the same 

functional dependence as the original potential, but with different parameters. For any shape invariant potential 

(SIP), the energy eigenvalue spectra can be obtained algebraically. Using SSQM, from a given Hamiltonian 

(H
(1)

), a partner Hamiltonian (H
(2)

) can be obtained by deleting the ground state of H
(1)

, the rest of the 

spectrum of H
(1)

 being identical with that of H
(2)

. The principal result is the energy degeneracy, viz., 

E
(1)

n+1
=E

(2)

n
, (n=0,1,2,...), where E

(i)

n
 is the energy of the n-th excited (bound) state of H

(i)
 (i=1,2). This 

procedure can also be extended to the scattering (unbound) states. From the asymptotic form of the scattering 

wave functions, one can show that the phase shift d
(1)

l
(k) of the l-th partial wave in V

(1)
 bears a simple relation 

with the phase shift d
(2)

l+1
(k) of the (l+1)-th partial wave in V

(2)
 [5]  

 

 d
(2)

l+1
(k)=d

(1)

l
(k)-tan

-1
( 

g
0

k
),  (1) 

where k is the wave number of the incident wave and g
0
=  

2mB
0


2

, B
0

 being the binding energy of the 

ground state in V
(1)

. 
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Now if, V
(2)

 of the partner Hamiltonian H
(2)

 has the same functional shape (but with different parameters a
2
 

and a
1
) as that of the potential V

(1)
 of the original Hamiltonian H

(1)
, i.e.  

 V
(2)

(r;a
1

)=V
(1)

(r;a
2
)+R(a

1
) 

 where   𝑎2 = 𝑓(𝑎1)    (2) 

(the remainder R(a
1

) being independent of r), then the potential is said to be a ‘shape invariant potential (SIP)’. 

Then the entire bound state energy spectrum and corresponding energy eigen functions of H
(1)

 can be obtained 

algebraically [4]. It has been demonstrated that all text book potentials, for which exact analytical solutions are 

possible, are indeed shape invariant. So, it is natural to expect that Eqs. (1) and (2) will lead to an analytic 

expression for d
(1)

l
(k) for all SIPs. But this is true only for a special class of SIPs. Among all known SIPs, for 

which f(a
1
) is a translation, only the Coulomb potential satisfies this criterion [6]. The difference between the 

phase shifts produced by V
(1)

 and V
(2)

 for both SIP and non-SIP do not obey the SSQM predicted relation, if 

V
(1)

 and its supersymmetric partner V
(2)

 are taken with l and (l+1) respectively, whereas it is obeyed when both 

of V
(1)

 and V
(2)

 are taken with the same l. This is to say that if V
(1)

 is the effective potential including the 

centrifugal repulsion term corresponding to the l-th partial wave, then V
(2)

 is just the SUSY partner of V
(1)

, 

without any explicit centrifugal repulsion term corresponding to the (l+1)-th partial wave. Thus, unless the 

parameter involved in the shape invariance relation, Eq. (1), changes automatically from l to (l+1), one must not 

change l for the partner potential. This has been established for the square well and generalized Pöschl-Teller 

potential [7]. In this communication, I present the calculation for the Eckart potential which is shape invariant 

(SIP). 

This paper is organized as follows. In section 2, the necessary calculation for obtaining the phase shift has been 

discussed. In section 3, numerical results are discussed and finally the conclusion is drawn in section 4. 

 

2.  Calculation of the phase shift for Eckart Potential 

Let us consider a spherically symmetric potential V
(1)

(r) having a continuum part in its energy spectrum. The 

energy scale is so chosen that the ground state of orbital angular momentum l in this potential has zero energy. 

Assuming that V
(1)

(r) goes slower than r
-2

 for r→0 and approaches a finite constant value V∞ for r→∞, the 

Schrödinger equation for the ground state of orbital angular momentum l in this potential is 

 H
(1)

y
(1)

0
(r)=[- 


2

2m
 
d

2

dr
2
+Veff

(1)
(r)]y

(1)

0
(r)=0. (3) 

where, Veff
(1)

(r)= 


2

2m
 
l(l+1)

r
2

+V
(1)

(r). Then Veff
(1)

(r) can be expressed as  

 Veff
(1)

(r)= 


2

2m
 

y
(1)

0
''
(r)

y
(1)

0
(r)

. (4) 

The ‘superpotential’ W(r) is defined as [4]  

 W(r)=- 


 2m
 

y
(1)

0
'
(r)

y
(1)

0
(r)

, (5) 

so that 𝑉𝑒𝑓𝑓
 1  𝑟 = 𝑊2 𝑟 −

ħ

 2𝑚
𝑊 ′(𝑟)

           
(6) 

The partner potential Veff
(2)

(r) is given by  



Mahapatra S                                             Journal of Scientific and Engineering Research, 2016, 3(2):193-197 

 

Journal of Scientific and Engineering Research 

195 

 

 𝑉𝑒𝑓𝑓
 2  𝑟 = 𝑊2 𝑟 +

ħ

 2𝑚
𝑊 ′(𝑟) (7) 

From Eqs. (5)–(7), Veff
(2)

(r) can be expressed as [5]  

Veff
(2)

(r)= 


2

2m
 
(l+1)(l+2)

r
2

+V
(1)

(r)- 


2

m
 
d
2

dr
2

[ln{ 

y
(1)

0
(r)

r
l+1

}]. (8) 

From Eq. (8), it can be observed that the r→0 behaviour of Veff
(2)

(r) corresponds to angular momentum l+1, 

since for r→0, y
(1)

0
(r) goes as r

l+1
. Both the potentials Veff

(1)
(r) and Veff

(2)
(r) approach the same value V∞ in 

the limit r→∞. This justifies the subscript (l+1) of d
(2)

. d
(2)

l+1
(k) is the phase shift produced by Veff

(2)
(r), which 

is the supersymmetric partner of Veff
(1)

(r), and not of the potential [V
(2)

(r)+ 


2

2m
 
(l+1)(l+2)

r
2

] (where V
(2)

(r) is 

the supersymmetric partner of V
(1)

(r)), even though d
(2)

l+1
(k) corresponds to the phase shift of the (l+1)-th partial 

wave. 

  

For the Eckart potential [4] (plotted in Fig. 1), the corresponding superpotential W(r) has the form  

 
Figure 1: Plot of Eckart Potential (V(r)) against r with parameters A=1.0, B=3.0, α=0.01 

 

 𝑊 𝑟 = −𝐴cothαr +
𝐵

𝐴
 (9) 

where A, B and α are constants (A
2

<B). 

Substituting W(r) in Eqs. (6) and (7) , we get (for l=0)  

 

  

𝑉𝑒𝑓𝑓
 1  𝑟 = 𝐴2 +

𝐵2

𝐴2
+ 𝐴 𝐴 − 𝛼 𝑐𝑜𝑠𝑒𝑐ℎ2𝛼𝑟 − 2𝐵𝑐𝑜𝑡ℎ𝛼𝑟 

  

  𝑉𝑒𝑓𝑓
 2  𝑟 = 𝐴2 +

𝐵2

𝐴2 + 𝐴 𝐴 + 𝛼 𝑐𝑜𝑠𝑒𝑐ℎ2𝛼𝑟 − 2𝐵𝑐𝑜𝑡ℎ𝛼𝑟  (10) 

For the potential V(1)eff(r) (vanishes asymptotically) the radial Schrödinger equation for the l-th partial wave 

takes the form  
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 [- 


2

2m
 
d

2

dr
2
+V(1)eff(r)-E]y

(1)

E
(r)=0. (11) 

The asymptotic solution of Eq. (11) is given by 𝑦𝐸
 1  𝑟 = sin⁡[𝑘𝑟 −

𝑙𝜋

2
+ 𝑑𝑙

 1 (𝑘)], where k=  
2mE


2

. Eq. (11) 

is numerically solved using the Runga-Kutta algorithm from r→0 (subject to y
(1)

E
(0)=0) to two large values of r 

(say R
1

 and R
2

) to obtain h
1
=y

(1)

E
(R

1
) and h

2
=y

(1)

E
(R

2
). Then  

 𝑑𝑙
 1  𝑘 = 𝑡𝑎𝑛−1[

ℎ2 sin  𝑘𝑅1−
𝑙𝜋

2
 −ℎ1 sin  𝑘𝑅2−

𝑙𝜋

2
 

ℎ1 cos  𝑘𝑅2−
𝑙𝜋

2
 −ℎ2 cos  𝑘𝑅1−

𝑙𝜋

2
 
]  (12) 

For calculation of d
(2)

l+1
(k), the above procedure can be followed, replacing V(1)eff(r) by its SUSY partner 

V(2)eff(r) in Eq. (11) without inserting explicit l-dependent term in V(2)eff(r). 

 

3.  Numerical Results and Discussion 

To calculate the phase shift for the Eckart potential, the corresponding Schrödinger equation is solved 

numerically by Runga-Kutta algorithm with appropriate boundary conditions for r→0 and  r→∞Phase shifts 

were calculated using Eq. (12). Calculated phase shifts satisfy the supersymmetric relation Eq. (1), within the 

estimated numerical errors, when d
(1)

l
(k) and d

(2)

l+1
(k) are obtained from the solutions of the Schrödinger 

equation with Veff
(1)

(r) and Veff
(2)

(r) respectively. It is observed that Eq. (1) is valid when V
(1)

 and V
(2)

 are 

taken with same l. But the phase shift relation is not valid if V
(1)

 and V
(2)

 are taken with l and l+1, respectively. 

The calculated results are presented in Table 1. 

Table 1. Results of calculation for the Eckart potential. d
(1)

l
(k) and d

(2)

l+1
(k) stand for the phase shifts produced 

by the potentials V(1)eff(r) and V(2)eff(r), respectively. 

 

 Energy (E) 
d

(1)

l
(k) d

(2)

l+1
(k) d

(1)

l
(k)-d

(2)

l+1
(k) 

tan
-1

( 

g
0

k
) 

 0.310 -1.02774900 0.78960000 1.32424365 1.29928285 

 0.320 1.07363600 -0.24029300 1.31392900 1.29515353 

 0.330 0.06006700 -1.24590400 1.30597100 1.29109763 

 0.340 -0.92826700 0.91697900 1.29634665 1.28711196 

 0.350 1.24893600 -0.03845700 1.28739300 1.28319352 

 0.360 0.30534900 -0.97120900 1.27655800 1.27933953 

 0.370 -0.61461600 1.25799500 1.26898165 1.27554742 

 0.380 -1.51325300 0.36669900 1.26164065 1.27181477 

 0.390 0.74867000 -0.50358900 1.25225900 1.26813932 

 0.400 -0.11220600 -1.35727100 1.24506500 1.26451896 

 

4. Summary and Conclusion 

In this work, the relationship between phase shifts produced by two supersymmetric (SUSY) partner potentials 

has been examined critically for the Eckart potential, which is an SIP. From the numerical results, it is observed 

that the analytic relation (Eq. (1)) between the phase shifts produced by the l-th partial wave of V
(1)

(r); i.e, by 
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the potential V
(1)

eff
(r)=V

(1)
(r)+ 


2

2m
 
l(l+1)

r
2

 and that by its SUSY partner V
(2)

eff
(r) is well obeyed without changing 

the 'l' value in V
(2)

eff
(r), even though d

(2)

l+1
(k) corresponds to the (l+1)-th partial wave. 
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