Journal of Scientific and Engineering Research, 2016, 3(1):90-96



**Research Article** 

ISSN: 2394-2630 CODEN(USA): JSERBR

Evaluation and development of bivoltine double hybrids of silkworm *Bombyx mori l*. for commercial exploitation

# Sure Venkata Seshagiri\*, Poosapati Jagannatha Raju, Seetharamulu Jolapuram, Ajay Kumar Goel

Andhra Pradesh State Sericulture Research and Development Institute, Kirikera, Hindupur, Andhra Pradesh, India

Abstract In India, of late much emphasis is being given for bivoltine silkworm rearing to boost up the quality silk production matching international standards. Indian sericulture is dominated by the usage of only one or two bivoltine hybrids, either double/single, that are developed for usage under optimal conditions particular for favourable seasons only. There is a requirement for the development of silkworm double hybrids for commercial exploitation and therefore, attempts are being made to develop bivoltine silkworm hybrids. Earlier on these lines had resulted in the development of bivoltine hybrids and these hybrids have shown minimum impact on the Indian sericulture industry. Keeping this in view, an attempt has been made to develop bivoltine double hybrids tolerant to high temperature with disease resistance. After the screening for high temperature and disease tolerance, 10 promising stocks, five each of oval (APS67, APDR105, APS27, APSHTO5 & AP71) and peanut (APS12C, APS50, APS20, CTIPP & AP72), were selected as breeding resource material and a total of 20 oval foundation crosses and 20 peanut foundation crosses were prepared and reared. Out of which, 7 oval and 8 peanut FC's were short listed and a total of 56 double hybrid combinations (Oval x Peanut type) were prepared and evaluated. During rearing, the important parameters viz., fecundity, yield / 10000 larvae by weight, pupation %, single cocoon weight, shell weight and shell ratio (SR %) measured. Two single hybrids, such as APS45 x APS12 and CSR2 x CSR4 and one double hybrid (CSR6 x CSR26) x (CSR2 x CSR27) were kept as control. The superiority of the hybrids was assessed through evaluation index method and heterosis is also calculated. The study identified two promising bivoltine double hybrids of (FC 25 x 90) and (FC 42 x 96) for large scale laboratory trials.

# Keywords Bivoltine, Bombyx mori, Double hybrid, Disease resistance, High temperature

## Introduction

Bivoltine silk production in India had not reached most of the farmers despite best efforts made by Scientists and extension officials. The major constraints for the popularization of bivoltine silkworm hybrids in India are their inconsistency in cocoon yield and not being suitable for adverse climatic conditions. In India, of late much emphasis is being given for bivoltine silkworm rearing to boost up the quality silk production matching international standards. Exploitation of heterosis through single hybrids in silkworms for economic traits triggered a revolutionary change in overall qualitative and quantitative silk output [1-3]. Maintenance of pure breeds at P1 seed farmers is very important and the failure of one breed affects the production of single hybrid seed. It is well known that survival and fecundity are affected greatly with increase in quantitative traits beyond the threshold level. Although survival could be maintained in single hybrids, they are handicapped by less



number of eggs laid by parental races. The works of various scientists [2, 4] demonstrated the superiority of single, three way and double hybrids over their parental races.

The double hybrids have clear advantages like easy rearing, better growth and vigour, and yield on par or better than single hybrids [5] and hence the double hybrids could be popularized in India. The polygenic expression in double hybrids is more stable than single crossed hybrids in unfavourable environment due to their flexibility in gene constitution within the population. The increase in egg number is possible only with foundation crosses and in addition, the foundation crosses are easy for rearing at P1 seed farmers and produces quality seed cocoons with high pupation rate than single parents. By utilizing this advantage, all the sericulturally advanced countries like China and Japan have successfully exploited the double hybrid concept commercially and more than 50% of the silk production in China is attributed to double hybrids. For popularization of bivoltine sericulture as in China and Japan, it is imperative to utilize silkworm parental breeds that are tolerant to silkworm diseases and high temperature for synthesizing silkworm double hybrids. The utilization of highly productive bivoltine breeds for the development of single/double hybrids hampered the popularization of bivoltine sericulture in India. Several silkworm hybrids developed for optimal conditions in favourable seasons did not perform up to the level of expectation and failed under adverse conditions. In a single hybrid, hybrid vigour between two genetically distant parents has the potential for better productivity, but the double hybrids involving four parental breeds of various qualitative characteristics (high temperature tolerance, disease tolerance, high productivity) ensure the sustainability and in turn better financial returns to the farmer. The flexibility in genetic constitution within the population and polygenic expression of several economic characteristics in silkworm double hybrids is more stable than the single hybrids under sub-optimal conditions. The development of sustainable silkworm double hybrids characterized for disease tolerance and high temperature tolerance would provide better opportunities for the popularization of bivoltine sericulture in India. In a tropical country like India, for the introduction of bivoltine silkworm breeds it is necessary that the hybrid to have stability in cocoon yield under high temperature and not-so-perfect hygienic environment. The hybrids are usually selected after the hybridization and evaluation for quantitative characteristics alone under optimal conditions. The prolonged and fluctuating hot climatic conditions are not conducive to rear high yielding bivoltine hybrids because of their sensitivity to high temperature and silkworm diseases. This situation warrants reorientation in the approach in identifying silkworm double hybrids which are suitable for favourable (August to February) conditions with emphasis on qualitative and quantitative characteristics and better survival rate. Keeping the facts in view, an attempt has been made at APSSRDI to develop bivoltine double hybrids their viability at field level.

#### **Material and Methods**

Thirty eight productive silkworm genetic stocks from the germplasm repository of APSSRDI were screened for their resistance/tolerance to high temperature (36 °C) and silkworm viruses *viz.*, *Bm*NPV, *Bm*DNV1 and *Bm*IFV. Based on the screening results, 10 promising stocks, five each of oval (APS67, APDR105, APS27, APSHTO5 & AP71) and peanut (APS12C, APS50, APS20, CTIPP & AP72) were selected as breeding resource material and by utilizing these breeds, a total of 100 combinations were prepared in diallel pattern. In the present paper short listing of foundation crosses (FC) and their double hybrids is discussed.

A total of 20 oval foundation crosses and 20 peanut foundation crosses were prepared and reared. Out of these FC combinations, 7 oval (FC2, FC25, FC32, FC33, FC41, FC42 and FC44) and 8 peanut FC's (FC57, FC59, FC69, FC77, FC79, FC90, FC96 and FC98) were short listed and a total of 56 double hybrid combinations (Oval x Peanut type) were prepared.

During rearing, the important parameters like fecundity, yield / 10000 larvae by weight, pupation %, single cocoon weight, shell weight and shell ratio (SR%) were measured. The performance of the newly developed double hybrid combinations were evaluated by subjecting data for evaluation index [6] method. Two single hybrids such as APS45 x APS12 and CSR2 x CSR4 and one double hybrid (CSR6 x CSR26) x (CSR2 x CSR27) were kept as control.



## **Results and Discussion**

The mean rearing performance pertaining to economic traits of the 56 double hybrid combinations are presented in Table 1. Perusal of the data revealed that maximum variation was observed among all the traits of the hybrids such as fecundity which ranged from 514 eggs/laying (FC 2 x 77) to 680 eggs/laying (FC 41 x 59), yield per 10000 larvae by weight ranged from 14.32 kg (FC 25 x 98) to 18.52 kg (FC 33 x 77), pupation rate ranged from 79.50% (FC 33 x 69) to 98.70% (FC 42 x 59), cocoon weight ranged from 1.518 g (FC 25 x 69) to the 2.018 g (FC 25 x 90), shell weight ranged from 0.307 g (FC 25 x 96) to the 0.438 g (FC 42 x 96) where as shell ratio ranged from 18.60% (FC 32 x 98) to 24.20% (FC 41 x 96). Based on the performance and evaluation index (EI) values a total of 15 hybrids were short listed and in the subsequent trials two double hybrids were short listed for further laboratory trials.

| S.  | Combination | Fecundity | Yield/10000 | Pupation | SC Wt. | SS           | SR    | EI    |
|-----|-------------|-----------|-------------|----------|--------|--------------|-------|-------|
| No. |             | (No.)     | L by wt.    | (%)      | (g)    | Wt.          | (%)   |       |
|     |             |           |             |          |        | ( <b>g</b> ) |       |       |
| 1   | FC42 x 96   | 597       | 16.120      | 93.60    | 2.011  | 0.438        | 21.78 | 59.20 |
| 2   | FC 25 x 90  | 624       | 16.190      | 94.40    | 2.018  | 0.413        | 20.44 | 57.86 |
| 3   | FC 32 x 69  | 577       | 18.100      | 95.90    | 1.910  | 0.394        | 20.60 | 57.39 |
| 4   | FC 2 x 79   | 622       | 17.840      | 93.20    | 1.786  | 0.405        | 22.70 | 57.39 |
| 5   | FC44 x 90   | 522       | 18.220      | 93.60    | 1.906  | 0.417        | 21.90 | 57.34 |
| 6   | FC41 x 96   | 590       | 16.420      | 90.20    | 1.700  | 0.412        | 24.20 | 57.14 |
| 7   | FC42 x 57   | 568       | 16.740      | 94.40    | 1.769  | 0.411        | 23.30 | 56.93 |
| 8   | FC44 x 96   | 639       | 17.860      | 92.70    | 1.839  | 0.407        | 22.10 | 56.88 |
| 9   | FC42 x 59   | 624       | 17.200      | 98.70    | 1.818  | 0.409        | 22.50 | 56.87 |
| 10  | FC32 x 77   | 654       | 17.100      | 93.40    | 1.746  | 0.392        | 22.40 | 56.45 |
| 11  | FC41 x 90   | 630       | 16.330      | 89.40    | 1.750  | 0.398        | 22.70 | 56.32 |
| 12  | FC41 x 59   | 680       | 16.980      | 91.50    | 1.759  | 0.373        | 21.20 | 55.98 |
| 13  | FC 33 x 77  | 608       | 18.520      | 94.70    | 1.782  | 0.380        | 21.30 | 55.90 |
| 14  | FC44 x 79   | 582       | 17.480      | 94.70    | 1.884  | 0.405        | 21.50 | 55.83 |
| 15  | FC 33 x 57  | 588       | 17.950      | 92.10    | 1.824  | 0.387        | 21.20 | 55.70 |
| 16  | FC 42 x 77  | 555       | 17.560      | 95.90    | 1.877  | 0.402        | 21.42 | 54.93 |
| 17  | FC41 x 57   | 610       | 17.560      | 93.80    | 1.830  | 0.394        | 21.50 | 54.43 |
| 18  | FC 2 x 90   | 589       | 17.320      | 90.50    | 1.768  | 0.393        | 22.20 | 54.25 |
| 19  | FC42 x 79   | 598       | 16.570      | 94.70    | 1.758  | 0.370        | 21.10 | 54.16 |
| 20  | FC44 x 69   | 568       | 16.820      | 88.70    | 1.748  | 0.412        | 23.60 | 53.59 |
| 21  | FC 2 x 57   | 582       | 16.700      | 89.40    | 1.888  | 0.395        | 20.90 | 52.88 |
| 22  | FC 2 x 69   | 624       | 17.000      | 90.40    | 1.741  | 0.359        | 20.60 | 52.81 |
| 23  | FC41 x 98   | 572       | 16.810      | 94.10    | 1.744  | 0.362        | 20.80 | 52.53 |
| 24  | FC41 x 79   | 565       | 17.230      | 89.60    | 1.875  | 0.402        | 21.40 | 51.78 |
| 25  | FC42 x 98   | 536       | 16.210      | 90.90    | 1.720  | 0.384        | 22.30 | 51.69 |
| 26  | FC44 x 57   | 517       | 15.810      | 88.50    | 1.744  | 0.412        | 23.60 | 51.65 |
| 27  | FC 2 x 59   | 621       | 16.500      | 84.70    | 1.718  | 0.364        | 21.20 | 50.44 |
| 28  | FC42 x 90   | 557       | 16.080      | 95.90    | 1.743  | 0.372        | 21.30 | 50.41 |
| 29  | FC44 x 98   | 567       | 16.480      | 90.40    | 1.794  | 0.371        | 20.70 | 49.69 |
| 30  | FC 2 x 96   | 542       | 17.200      | 90.00    | 1.833  | 0.362        | 19.70 | 49.68 |
| 31  | FC44 x 77   | 527       | 17.140      | 86.40    | 1.871  | 0.379        | 20.30 | 49.31 |
| 32  | FC32 x 98   | 581       | 17.100      | 91.50    | 1.838  | 0.342        | 18.60 | 49.00 |
| 33  | FC33 x 90   | 598       | 16.100      | 89.50    | 1.737  | 0.352        | 20.30 | 48.32 |
| 34  | FC32 x 59   | 598       | 15.460      | 90.40    | 1.679  | 0.348        | 20.70 | 48.19 |
| 35  | FC32 x 96   | 591       | 16.520      | 84.70    | 1.753  | 0.345        | 19.70 | 47.45 |

Table 1: Rearing performance of bivoltine double hybrid combinations



Journal of Scientific and Engineering Research

| 36  | FC42 x 69   | 547       | 16.240      | 95.20    | 1.677  | 0.361        | 21.60 | 47.19 |
|-----|-------------|-----------|-------------|----------|--------|--------------|-------|-------|
| 37  | FC41 x 77   | 578       | 17.100      | 84.40    | 1.748  | 0.370        | 21.20 | 47.11 |
| 38  | FC 25 x 57  | 568       | 15.240      | 89.70    | 1.646  | 0.355        | 21.60 | 47.08 |
| 39  | FC 32 x 57  | 574       | 16.890      | 91.20    | 1.864  | 0.364        | 19.50 | 47.05 |
| 40  | FC33 x 79   | 571       | 15.740      | 85.70    | 1.747  | 0.359        | 20.60 | 46.86 |
| 41  | FC 2 x 98   | 578       | 15.940      | 86.70    | 1.783  | 0.367        | 20.60 | 46.71 |
| 42  | FC41 x 69   | 547       | 16.100      | 81.60    | 1.773  | 0.373        | 21.00 | 46.28 |
| 43  | FC44 x 59   | 534       | 15.990      | 86.40    | 1.794  | 0.387        | 21.60 | 46.10 |
| 44  | FC33 x 98   | 615       | 15.240      | 86.10    | 1.659  | 0.345        | 20.80 | 46.06 |
| S.  | Combination | Fecundity | Yield/10000 | Pupation | SC Wt. | SS           | SR    | EI    |
| No. |             | (No.)     | L by wt.    | (%)      | (g)    | Wt.          | (%)   |       |
|     |             |           |             |          |        | ( <b>g</b> ) |       |       |
| 48  | FC 2 x 77   | 514       | 15.900      | 85.70    | 1.700  | 0.364        | 21.40 | 43.73 |
| 49  | FC 32 x 79  | 547       | 14.560      | 92.60    | 1.568  | 0.326        | 20.80 | 43.00 |
| 50  | FC 25 x 79  | 564       | 15.110      | 91.60    | 1.602  | 0.322        | 20.10 | 42.20 |
| 51  | FC33 x 59   | 567       | 14.510      | 80.50    | 1.552  | 0.345        | 22.30 | 40.47 |
| 52  | FC 33 x 69  | 597       | 14.680      | 79.50    | 1.652  | 0.332        | 20.10 | 40.06 |
| 53  | FC 25 x 69  | 587       | 14.920      | 88.70    | 1.518  | 0.314        | 20.70 | 39.89 |
| 54  | FC 25 x 98  | 534       | 14.320      | 87.90    | 1.552  | 0.323        | 20.80 | 39.71 |
| 55  | FC 25 x 96  | 574       | 14.520      | 86.70    | 1.558  | 0.307        | 19.70 | 38.70 |
| 56  | FC 25 x 77  | 555       | 15.450      | 88.90    | 1.637  | 0.317        | 19.40 | 36.71 |
|     | Min         | 514       | 14.32       | 79.50    | 1.518  | 0.307        | 18.60 |       |
|     | Max         | 680       | 18.52       | 98.70    | 2.018  | 0.438        | 24.20 |       |
|     | Mean        | 580       | 16.40       | 90.01    | 1.753  | 0.372        | 21.20 |       |
|     | SD          | 34.80     | 1.03        | 4.31     | 0.109  | 0.031        | 1.13  |       |
|     | CV          | 6.00      | 6.26        | 4.79     | 6.218  | 8.323        | 5.35  |       |

The heterosis (%) in double hybrids is presented in Table 2. The data reveals that heterosis percentage in double hybrid-1 (FC 25 x 90) ranged between 2.51 for shell ratio and 20.14 for yield per 10000 larvae by weight against their FC parents. Where as in the double hybrid - 2 (FC 42 x 96), the heterosis percentage ranged from a minimum of 4.30 for yield per 10000 larvae by number to a maximum of 27.10 in yield per 10000 larvae by weight against their FC parents.

| Heterosis in Double Hybrid-1 (FC 25 x FC 90) |            |               |               |          |        |        |       |  |  |  |
|----------------------------------------------|------------|---------------|---------------|----------|--------|--------|-------|--|--|--|
| Breed / FC / DH                              | Fecun-dity | Yield/10000 L | Yield/10000 L | Pupation | SC Wt. | SS Wt. | SR    |  |  |  |
|                                              | (No.)      | (No.)         | (wt.)         | (%)      | (g)    | (g)    | (%)   |  |  |  |
| HTO2                                         | 490        | 9283          | 14.500        | 88.00    | 1.632  | 0.328  | 20.10 |  |  |  |
| APDR105                                      | 487        | 8867          | 14.000        | 90.50    | 1.640  | 0.333  | 20.30 |  |  |  |
| Avg                                          | 489        | 9075          | 14.250        | 89.25    | 1.636  | 0.331  | 20.20 |  |  |  |
| CT1PP                                        | 512        | 9250          | 14.400        | 97.00    | 1.508  | 0.311  | 20.62 |  |  |  |
| APS12C                                       | 504        | 9083          | 12.956        | 89.00    | 1.530  | 0.315  | 20.59 |  |  |  |
| Avg                                          | 508        | 9167          | 13.678        | 93.00    | 1.519  | 0.313  | 20.61 |  |  |  |
| FC25                                         | 499        | 9480          | 15.900        | 92.80    | 1.856  | 0.378  | 20.37 |  |  |  |
| FC90                                         | 592        | 9365          | 16.230        | 93.90    | 1.795  | 0.376  | 20.95 |  |  |  |
| Avg                                          | 545.5      | 9423          | 16.065        | 93.35    | 1.826  | 0.377  | 20.66 |  |  |  |
| DH (25x90)                                   | 627        | 9863          | 19.300        | 96.60    | 2.078  | 0.44   | 21.17 |  |  |  |

Table 2: Heterosis in Double Hybrids

| Heterosis %               |              |                 |        |             |         |       |       |
|---------------------------|--------------|-----------------|--------|-------------|---------|-------|-------|
| over oval                 | 2.15         | 4.46            | 11.58  | 3.98        | 13.45   | 14.37 | 0.82  |
| parents in FC             |              |                 |        |             |         |       |       |
| Heterosis %               |              |                 |        |             |         |       |       |
| over peanut               | 16.54        | 2.17            | 18.66  | 0.97        | 18.17   | 20.13 | 1.66  |
| parents in FC             |              |                 |        |             |         |       |       |
| Heterosis %               | 14.94        | 4.67            | 20.14  | 3.48        | 13.83   | 16.71 | 2.51  |
| over FC in DH             |              |                 |        |             |         |       |       |
| Heterosis in Doub         | ole Hybrid-2 | (FC 42 x FC 96) |        |             |         |       |       |
| APDR105                   | 487 8        | 3867            | 14.000 | 90.50       | 1.562 0 | 0.321 | 20.55 |
| 871PO                     | 494 8        | 3322            | 13.700 | 83.60       | 1.523 0 | ).319 | 20.95 |
| Avg                       | 491 8        | 3595            | 13.850 | 87.05       | 1.543 0 | 0.320 | 20.75 |
| APS12C                    | 521 9        | 9283            | 13.560 | 89.00       | 1.530 0 | 0.321 | 20.98 |
| 4KINSHU                   | 512 8        | 3967            | 14.100 | 88.00       | 1.517 0 | 0.304 | 20.04 |
| Avg                       | 517 9        | 9125            | 13.830 | 88.50       | 1.524 0 | 0.313 | 20.51 |
| FC 42                     | 553          | 9450            | 15.200 | 92.80       | 1.758 0 | ).366 | 20.82 |
| FC 96                     | 612 9        | 9434            | 15.800 | 90.10       | 1.785 0 | 0.381 | 21.34 |
| Avg                       | 583          | 9442            | 15.500 | 91.45       | 1.772 0 | 0.374 | 21.08 |
| DH (42x96)                | 630          | 9848            | 19.700 | 98.20 2     | 2.010 0 | 0.452 | 22.49 |
| Heterosis %               |              |                 |        |             |         |       |       |
| over oval                 | 12.74        | 9.95            | 9.75   | <b>6.61</b> | 13.97 1 | 4.38  | 0.34  |
| parents in FC             |              |                 |        |             |         |       |       |
| Heterosis %               |              |                 |        |             |         |       |       |
| over peanut               | 18.49        | 3.39            | 14.24  | 1.81        | 17.16 2 | 21.92 | 4.07  |
| parents in FC             |              |                 |        |             |         |       |       |
| Heterosis % over FC in DH | 8.15         | 4.30            | 27.10  | 7.38        | 13.46 2 | 21.02 | 6.67  |

Improvement of short listed double hybrid - 1 ((FC 25 x 90), double hybrids - 2 (FC 42 x 96)) against single and double hybrids is presented in Table 3. The data reveals that the improvement in double hybrid -1 against single hybrid (APS45 x APS12), is up to a maximum of 22.46 % for the trait fecundity where as against CSR2 x CSR4, 16.98 % improvement was noticed for this trait fecundity followed by 14.29 % for pupation rate. Against the double hybrid (CSR (6x26) x (2x27)) for the trait single cocoon weight, 3.64 % improvement was recorded followed by 2.55% in pupation rate. With regard to double hybrids - 2, the single hybrid (APS45 x APS12) reveals that maximum of 23.05 % was recorded for the trait fecundity where as against CSR2 x CSR4, 17.54 % improvement was noticed for the trait fecundity followed by 16.19 % for pupation rate. Against the double hybrid (CSR (6x26) x (2x27)), 4.25% improvement was recorded for the trait Pupation followed by 3.56% in yield per 10000 larvae by weight.

Silkworm cocoon production depends on silkworm breed, rearing environment, mulberry quality and disease management during rearing. Widespread utilization of hybrids towards achieving sustainability and quality oriented increased production is well established in plants and animals. Silkworm is best exemplified insect where hybrids are invariably used for commercial silk production [7]. Realizing the significant impact of silkworm hybrids for increased quantitative and qualitative productivity of silk besides crop stability on commercial scale, many silkworm breeders in the sericultural countries succeeded in the development of bivoltine silkworm hybrids by exploiting the hybrid vigour that reflected in the improvement of several qualitative and economic traits [2, 8-10]. Successful silkworm breeding efforts also contributed in the evolution

of many productive and qualitatively superior bivoltine hybrids for commercial exploitation in India during the last decade [11-19]. The double hybrids have been commercially exploited in advanced sericultural countries like China, Japan, Brazil and South Korea. Currently in China the double hybrids under use are Sfp.rb x 13a.137 and Sfp.137 x Rb.13a [17]. The advantages of silkworm double hybrids for silk productivity and their successful commercial exploitation in Japan and China enthused Indian R&D efforts to develop the double hybrids [12].

The results clearly indicate that major differences were observed between the pure breeds and foundation crosses with respect to fecundity and pupation. Further it is clear that foundation crosses are more robust than their parents as evidenced by improvement in fecundity, pupation rate, cocoon yield etc. Besides, the farmers can easily handle the foundation crosses for production of seed cocoons. In silkworms, it is well known that selection for one character is found to result in correlated changes in the other quantitative characters of economic importance [20]. With increase in quantitative traits beyond certain level, pupation rate and fecundity are affected greatly. Although pupation rate could be maintained in single cross hybrids, they are poor in egg number. Unless the mother is a hybrid, the fecundity cannot be increased [21]. Moreover, the cost of maintaining pure breeds especially in strains with low fecundity and pupation rate to supply parental stocks for preparation of single hybrids can be high. This necessitated the development of double hybrids possessing genetic material from four parental strains for obtaining sustainable cocoon yield commercially and in the process it is that the FCs are superior over their pure strains especially with reference to pupation rate and fecundity. The double hybrids have proved their merit in for easy rearing and in turn production of seed cocoons with high pupation rate paving way for high egg recovery and in quality seed production.

| Sl.    | Urbrida / DU        | Fecun-     | Yield | Yield/10000 | Pupation | SC Wt.       | SS Wt.       | SR    |
|--------|---------------------|------------|-------|-------------|----------|--------------|--------------|-------|
| No.    | nybrius / Dn        | dity (No.) | (No.) | L by wt.    | (%)      | ( <b>g</b> ) | ( <b>g</b> ) | (%)   |
| DH 1   | FC 25 x FC 90       | 627        | 9863  | 19.30       | 96.60    | 2.078        | 0.440        | 21.17 |
| DH 2   | FC 42 x FC 96       | 630        | 9848  | 19.70       | 98.20    | 2.010        | 0.452        | 22.49 |
| C1     | APS45 x APS12       | 512        | 9240  | 17.89       | 89.25    | 1.889        | 0.415        | 21.97 |
| C2     | CSR2 x CSR4         | 536        | 8925  | 18.95       | 84.52    | 1.980        | 0.427        | 21.57 |
| C3     | CSR                 | 625        | 0625  | 10.02       | 04.20    | 2 005        | 0.445        | 22.20 |
|        | (6x26)x(2x27)       | 023        | 9023  | 19.02       | 94.20    | 2.005        | 0.445        | 22.20 |
| Improv | ement in DH1 vs. C  | ontrol     |       |             |          |              |              |       |
| 1      | DH1 vs. C1          | 22.46      | 6.74  | 7.88        | 8.24     | 10.01        | 6.02         | -3.62 |
| 2      | DH1 vs. C2          | 16.98      | 10.51 | 1.85        | 14.29    | 4.95         | 3.04         | -1.82 |
| 3      | DH1 vs. C3          | 0.32       | 2.47  | 1.46        | 2.55     | 3.64         | -1.17        | -4.64 |
| Improv | vement in DH2 vs. C | ontrol     |       |             |          |              |              |       |
| 1      | DH2 vs. C1          | 23.05      | 6.58  | 10.12       | 10.03    | 6.41         | 8.92         | 2.36  |
| 2      | DH2 vs. C2          | 17.54      | 10.34 | 3.96        | 16.19    | 1.52         | 5.85         | 4.27  |
| 3      | DH2 vs. C3          | 0.80       | 2.32  | 3.56        | 4.25     | 0.25         | 1.53         | 1.27  |

| Table 3 | 3: In | provement     | of short | listed | double | hybrids  | against | control 1 | hvh | orids |
|---------|-------|---------------|----------|--------|--------|----------|---------|-----------|-----|-------|
| I GOIC  |       | ipi o , emene | or shore | motea  | 404010 | 11,01100 | agamot  | control   |     | 11000 |

#### Conclusion

In the present paper two double hybrids viz., FC (25 x 90) and FC (42 x 96) were identified based on their overall superiority and evaluation index values for large scale laboratory trials for further commercial exploitation.

#### References

- [1]. Gamo, T. (1976). On the concept and trends in silkworm breeding. Farming Japan, 10(6): 11 12.
- [2]. Harada, C. (1961). On the heterosis of quantitative characters in silkworm. *Bull. Seric. Expt. Stn.* 17: 50-52.
- [3]. Toyama, K. (1906) Breeding method of silkworm. Sangyo-Shimpo, 158: 283-286.
- [4]. Pannegpet, P. & Jaroonchai, J. (1975). Survey on the practical characters of double cross hybrids of bivoltine silkworm races (2). *Bull. Thai Seri. Res. Train. Centre*, Thailand, 5: 85 86.



- [5]. Nirmal Kumar, S. & Sreerama Reddy, G. (1994). Evaluation and selection of potential parents for silkworm breeding. In: Silkworm Breeding (Proceedings of the National Workshop held on March 18-19, 1994.63-78.
- [6]. Mano, Y., Nirmal Kumar, S., Basavaraja, H.K., Mal Reddy, N, & Datta, R.K. (1992). An index for multiple trait selection or silk yield improvement in *Bombyx mori L. Natl. Conf. Mulb. Seric. Res.*, CSRTI, Mysore, 116.
- [7]. Yokoyama, T. (1976). Breeding of silkworm. Sci. Tech. Seric. 15, 58-61.
- [8]. Chen, H.R., Jin, Y.Y., Huang, Z.X., Ruan, G.H & Yao, L.S. (1994). Breeding of new silkworm variety *Fanhura chunmei* for spring rearings, *Canye Kexue* **20**: 26 -29.
- [9]. Goel, A.K., Sivaprasad, V., Seshagiri, S.V., Seetharamulu, J., Vijaya Lakshmi, L., Ibrahim Basha, K. & Raju, P.J. (2012). Evaluation of bivoltine silkworm (*Bombyx mori* L.) breeds against high temperature and viruses for selection of breeding resource material. Abs: *National Seminar on Advances in Zoology and life processes held at Goa University*, Goa on 9 11<sup>th</sup>, Feb. 2012.
- [10]. He, Y., Sine, Y-H, Jiang, D-X, & Ping Dui (1991). Breeding of the silkworm variety for summer and autumn rearing "Xuhua", "Quixing" and their hybrids. *Canye Kexue*. **17**: 200 207.
- [11]. Basavaraja, H.K., Nirmal Kumar, S., Suresh Kumar, N., Mal Reddy, N., Kshama Giridhar, Ahsan, M. M., & Datta, R.K. (1995). New productive bivoltine hybrids. *Indian Silk*, 34:5 9.
- [12]. Basavaraja, H. K., Suresh Kumar, N. & Dandin, S. B. (2006). Breeding strategies for productivity and quality in Mulberry Silkworm, *Breeders Meet*, 14<sup>th</sup>-15<sup>th</sup> Feb 2006, CSRTI, Berhampore.
- [13]. Basavaraja, H. K., Raju, P.J. & Seshagiri, S.V. (2013). Silkworm breeding in India Present status and future strategies. Lead paper presented in Recent Advances in Modern Biology and Sericulture for Women Empowerment and Rural Development (CD-R), held at KSSRDI, Bangalore during 24 – 26<sup>th</sup> October.
- [14]. Chandrashekhariah and Ramesh Babu, M. (2003). Silkworm breeding in India during the last five decades and what next? In: concept papers in *Mulberry Silkworm Breeders Summit*, 18 19 July, 2003. pp. 6 13.
- [15]. Datta, R.K., Basavaraja, H.K., Mal Reddy, N., Nirmal Kumar, S., Ahsan, M. M., Suresh Kumar, N., & Ramesh Babu, M. (2000). Evolution of new bivoltine hybrids, CSR<sub>2</sub> x CSR<sub>4</sub> and CSR<sub>2</sub> x CSR<sub>5</sub>, Sericologia 40: 151 167.
- [16]. Mal Reddy, N., Basavaraja, H.K., Suresh Kumar, N., Nirmal Kumar, S. & Kalpana, G.V. (2003). Proc. of the Natl. Conf. on Tropical Sericulture for Global competitiveness held at Bangalore from 5 – 7<sup>th</sup> November, 2003.
- [17]. Raje Urs, S., Basavaraja, H.K., Suresh Kumar, N., Kalpana, G.V. & Mal Reddy N. (2009). Heterosis mechanism in Silkworm *Bombyx mori* L – A Review Paper presented in Brainstroming Session on Heterosis Mechanism in Silkworm held at SSTL, Kodathi on 18<sup>th</sup> February, 2009.
- [18]. Seshagiri, S.V., Raju, P.J. & Seetharamulu, J. (2014). Development of bivoltine double hybrids of silkworm, *Bombyx mori* L. for higher productivity. Poster presentation during *the 23<sup>rd</sup> International congress on Sericulture & Silk Industry* held in Bangalore during 24 – 27<sup>th</sup> November, 2014.
- [19]. Suresh Kumar, N., Harjeet Singh, Saha, A.K. & Bindroo, B.B, (2011). Development of bivoltine double hybrid of the silkworm, *Bombyx mori* L. tolerant to high temperature and high humidity conditions of the tropics. Universal Journal of Environmental Research and Technology, 1 (4): 423 – 434.
- [20]. Kobari, K. & Fujimoto, N. (1966). Studies on the selection of cocoon filament length and filament size in *Bombyx mori*. *Nissenzatsu*, 35: 425 – 434.
- [21]. Yokoyama, T. (1979). Silkworm selection and hybridization. In Genetics in relation to insect management, working papers. The Rockfeller Foundation Management, 71-88.