
Available online www.jsaer.com

Journal of Scientific and Engineering Research

82

Journal of Scientific and Engineering Research, 2016, 3(1):82-89

Research Article

ISSN: 2394-2630

CODEN(USA): JSERBR

Comparison of Basic, Bit–at-a-time, and Lookup CRC-32

Mirella A Mioc
1
*, Stefan G Pentiuc

2

1
Computer Science Department, “Politehnica” University of Timisoara, Bd. V. Parvan 2, RO-300223,

Romania
2
Faculty of Electrical Engineering and Computer Science, University “Stefan cel Mare”, Suceava,

Romania

Abstract For keeping the integrity of a message data we can commonly use a Checksum or a CRC (Cyclic

Redundancy Code). It is well-known that there is very little information available about their relative

performance and effectiveness. Despite that fact we would agree that the choice of the CRC-computing method

should be a successful task. For analyze of functioning for common CRCs is possible to use hardware

implementation and software implementation. This paper examines the most commonly used CRC software

implementations and evaluates their comparative computing time. The software implementations for CRC

computing are programs in C language focused on CRC-32 and having as used method: Basic Method, Bit-at-a-

time Method and Lookup Method. The contribution of this paper is, concretely, the idea to choose the quickest

CRC-computing method.

Keywords Cryptosystem, LFSR (Linear Feedback Shift Register), CRC (Cyclic Redundancy Codes),

Irreducible polynomials, Error Detect.

1. Introduction

Cyclic Redundancy Code (CRC) is one of the most widely used error detection technique in data storage devices

and serial data communication system to ensure the correctness of the received and stored data. All types of

communications use nowadays the CRC calculations. Cyclic redundancy codes handle errors especially for the

detection of burst errors. CRCs are widely used in data communications and storage devices. Cyclic redundancy

codes use the properties of LFRS functioning in Galois Fields. Data corruption might occur whenever digital

data is stored or transmitted. Encoding messages by adding a fixed – length check value, for the purpose of error

detection in communication networks are used in systematic cyclic codes. The well-known 32–bit generator

polynomial is used in Ethernet and many other standards. A very important goal in this frame is using of

cryptosystems [1]. Beginning with the AES (Advanced Encryption Standard) [2], all the Encryption and

Decryption Algorithms developed the safe work in networks. CRCs (Cyclic redundancy codes) preserve the

integrity of data in transmission and storage applications. CRC can be implemented by using either software or

hardware methods. A circuit based on a simple shift register is enough for obtaining the necessary computations

in a traditional hardware implementation. The other kind of implementation, meaning the software

implementation, handling the data (as bytes or even words) becomes more convenient and faster. In the

literature several software algorithms have been reported. Usually each algorithm can be analyzed and compared

from the point of view of the speed and storage requirements. In all applications based on working in a Galois

Field [3] is necessary to use irreducible polynomials [4] for increasing the security [5]. Some other aspects

revealed by using LFSR are in the field of testability [6].

Mirella A Mioc & Stefan G Pentiuc Journal of Scientific and Engineering Research, 2016, 3(1):82-89

Journal of Scientific and Engineering Research

83

2. Description of the analyze

Cyclic codes are often used in computer networks for their high error correcting capabilities.

Figure 1: Error control scheme using LFSR as Basic block

G(x) - generator polynomial

M(x) - message to send

R(x) - received message

C(x) - code word (converted M(x))

E(x) - error polynomial

S(x) - syndrome extracted

R`(x) - code word (converted R(x))

 R(x) = C(x) + E(x) (1)

An error is detected if S(x) ≠ 0 and E(x) ≠ 0

LFSRs can be used as a random number generator [7]. In this case the sequence is a pseudo - random sequence,

characterized through the fact that the numbers appear in a random sequence and repeats every 2
n
-1 patterns.

Cryptography [8], automatic testing computer graphics and others are based on the random number generator

[9].

One of the most important uses is the one from the field of error detection and correction [10].

Table 1: Generator Polynomials of Some Common CRCs

S. No. Generator Polynomial Hex Name Degree

1. x
12

+x
11

+x
3
+x

2
+ x+1 80F CRC-12 12

2. x
16

+x
12

+ x
5
+1 1021 CRC-CCITT 16

3. x
16

+x
15

+ x
2
+1 8005 CRC-16 16

4. x
32

+x
26

+x
23

+x
22

+x
16

+x
12

+x
11

+x
10

+x
8
+x7+x5+x

4
+x

2
+ x+1 04C1 1DB7 CRC-32 32

Figure 2: Scheme for CRC – 32

Mirella A Mioc & Stefan G Pentiuc Journal of Scientific and Engineering Research, 2016, 3(1):82-89

Journal of Scientific and Engineering Research

84

Some other aspects about increasing the security are developed in using Digital Signature [11]. Also a modern

and efficient method in security is the use of free distance of convolutional codes [12]. CRC-CCITT is a well-

known CRC used by the Comité Consultatif Internationale Téléphonique.

In the terminology used in CRC computation the following terms are presented:

For protecting Data Integrity, it is possible to use CRCs and Checksums. Generally speaking, we have the data

to transmit, which is necessary to be protected. Often this data can have dimensions as M bytes and is called

Data Word. The resulting sequence obtained by using CRC or Checksum calculation is named Check Sequence

or Frame Check Sequence (FCS). The new word containing the Data Word and the Check Sequence taken

together became the Code Word.

Figure 3: The Code Word

To verify if the data was not corrupted, the result of the calculation must be equal to the Check Sequence.

Analyzing these two possibilities to obtain the Check Sequence a problem appears: which is the best. Compute

CRC is more difficult than Checksum because the first one detects more possible bit errors than the second one

which detects only 1 and 2-bit errors. Much more than this is to find a good CRC.

Hamming Distance (HD) between two bit strings is the number of bits for changing to convert one to the other.

3. Experimental results

Many case studies focused on analyzing the error detection capabilities obtained by using the common

polynomials. For analyzing the functioning of different common CRCs some software implementations were

used [13]. All these methods are based on working with bit operations. Each of the used CRCs are handled as

hexa symbols, meaning that for the generator polynomial

x
32

+x
26

+x
23

+x
22

+x
16

+x
12

+x
11

+x
10

+x
8
+x7+x5+x

4
+x

2
+ x+1 (2)

the scheme is presented in figure 3 and the coefficients of the polynomial and the following:

 100000100110000010001110110110111

meaning 04C11DB7 in hexa (the first 1 is missing).

In the next three figures, the implementations are presented and represent programs in C language for the

following methods:

- Basic CRC-32;

- Bit-at-a-time CRC-32;

- Lookup CRC.

Here we have three implementations of CRC. Below will be three functions: CRC32_v1, CRC32_v2 and

CRC32_v3.

We start with the first function, CRC32_v1.

Mirella A Mioc & Stefan G Pentiuc Journal of Scientific and Engineering Research, 2016, 3(1):82-89

Journal of Scientific and Engineering Research

85

This function was tested with Intel® VTune™ Amplifier to show the basic hotspots.

Below is a screenshot with CPU Time of all functions which are in the CPP file including our function,

CRC32_v1.

Figure 4: CRC32_v1 function execution time

Our function takes 0.425 seconds to execute.

When the testing module is running the function is called as many times as possible in a five seconds interval.

Basically the call of that function is located in a while block, an example is showed below.

Next we have this function, CRC32_v2.

Mirella A Mioc & Stefan G Pentiuc Journal of Scientific and Engineering Research, 2016, 3(1):82-89

Journal of Scientific and Engineering Research

86

And the results for this function are:

Figure 5: CRC32_v2 function execution time

This function takes 0.052145 seconds to execute.

Finally this is the CRC32_v3 implementation:

Testing result for this function:

Mirella A Mioc & Stefan G Pentiuc Journal of Scientific and Engineering Research, 2016, 3(1):82-89

Journal of Scientific and Engineering Research

87

Figure 6: CRC32_v3 function execution time

This function takes 0.360033 seconds to execute.

For the purpose of accuracy these are the CPU Specs.

Table 2: CPU Specifications

Bellow there is a diagram that shows the average use of CPU and Memory.

Figure 7: Average use of CPU and Memory

Clearly we can see that average use of memory is approximately 2 MB and CPU use level is ~3.5%.

Now, let's break down the data. Here we have a graph with execution time of all three functions.

Figure 8: Execution time of the three functions

Name
3rd generation Intel(R)

Core(TM) Processor family

Frequency 2.2 GHz

Logical CPU Count 8

Mirella A Mioc & Stefan G Pentiuc Journal of Scientific and Engineering Research, 2016, 3(1):82-89

Journal of Scientific and Engineering Research

88

As can be seen from the figure above the computing time for the three computing methods are quite different:

the best one is for the Bit-at-a-time Method. This graph tells us that the less time consuming implementation is

CRC-32_v2 with 0.052145 seconds. One of the most important aspect of the analyze is obtaining the Hamming

Distance. Usually a given Hamming Distance is proposed for being achieved. In the table 3 some HD for

common CRCs are presented. Other important used values are the values for the initial remainder and the Final

XOR obtained value, which is shown in the table 4.

Table 3: Hamming Distance for some common CRCs

Table 4: Basic Information for the common CRCs

There are many researches focused on choosing the best used CRC polynomials for providing a capability to

obtain a less error detection. Beyond this, some other researches had the goal to find the best polynomials

providing good performance for different data word lengths.

For such analyze is necessary to take into account the weight of the polynomials, the data word length (in bits),

effectively the polynomial, and the first weights.

The HD=1 weight is always zero and because of that it is omitted, so that the first weight given is for HD =2 (2-

bit errors in the Code Word).

The analyze of the polynomial

 x
8
+x

5
+x

2
+x

1
+x

0
 (3)

having for data words of 18 to 55 bits the HD=4, will obtain all 1-, 2-, and 3-bit errors for these lengths.

4. Conclusions

In the fight against data corruption, one of the first places is occupied by the CRC. A CRC has a special place in

detecting data corruption. From mathematical point of view, a CRC uses polynomial division and arithmetic

over the field of integers mod 2.

This paper explored different implementation choices for computing one of the most widely used CRC codes.

A complete analyze of all billion possible 32 - bit polynomials is a hard task even for their enumeration and

using all existing filtering and computational techniques.

Almost all of the commonly used CRC polynomials provide significantly less error detection capability than

they might.

Also, the analyze reveals that this polynomials are only good choices for particular message lengths.

For a CRC, the HD depends on the generator polynomials used, on the data word length, and the FCS length.

The comparing software variants approaches can be used with different kind of processors.

Our proposed point of view is to choose the quickest CRC computing method.

References

[1]. Niederreiter, H. (1985, April). A public-key cryptosystem based on shift register sequences. In

Advances in Cryptology—EUROCRYPT’85 (pp. 35-39). Springer Berlin Heidelberg.

[2]. Daemen, J., & Rijmen, V. (2013). The design of Rijndael: AES-the advanced encryption standard.

Springer Science & Business Media.

S. No. Polynomial Hex HD

1. x
32

+x
8
+x

7
+x

6
+x

4
+x

2
+x

1
+x

0
 0x000001D7 8

2. x
32

+x
8
+x

6
+x

5
+x

4
+x

3
+x

0
 0x00000179 7

3. x
32

+x
8
+x

7
+x

6
+x

5
+x

3
+x

2
+x

0
 0x000001ED 6

4. x
32

+x
7
+x

6
+x

5
+x

2
+x

0
 0x000000E5 6

 Polynomial Width Initial Remainder Final XOR Value

CRC-CCITT 0x1021 16 bits 0xFFFF 0x0000

CRC-16 0x8005 16 bits 0x0000 0x0000

CRC-32 0x04C11DB7 32 bits 0xFFFFFFFF 0xFFFFFFFF

Mirella A Mioc & Stefan G Pentiuc Journal of Scientific and Engineering Research, 2016, 3(1):82-89

Journal of Scientific and Engineering Research

89

[3]. Scott, M. (2007). Optimal Irreducible Polynomials for GF (2m) Arithmetic. IACR Cryptology ePrint

Archive, 2007, 192.

[4]. Udar, S., & Kagaris, D. (2007, July). LFSR reseeding with irreducible polynomials. In On-Line Testing

Symposium, 2007. IOLTS 07. 13th IEEE International (pp. 293-298). IEEE.

[5]. Mioc, M. A. (2008, September). Study of using shift registers in cryptosystems for grade 8 irreducible

polynomials. In WSEAS Conference SMO (pp. 23-25).

[6]. Al–Yamani II, A. (2002). Logic BIST: Theory, Problems, and Solutions. Stanford University,

RATS/SUM02.

[7]. Aguirre, J. V., Álvarez, R., Tortosa, L., & Zamora, A. (2008). An optimized pseudorandom generator

using packed matrices. WSEAS Transactions on Information Science and Applications, 5(4), 487-496.

[8]. Schneier, B. (1996). Applied cryptography: protocols. Algorithms, and Source Code in C, 2, 216-222.

[9]. Sedaghat, R., & O’Brien, B. (2003). ASIC Implementation of a Pseudo-random Test Pattern Generator

Using a 32-bit Linear Feedback Shift Register (LFSR). In Proc. International Conference for

Upcoming Engineers, ICUE.

[10]. Peterson, W. W., & Weldon, E. J. (1972). Error-correcting codes. MIT press.

[11]. Alvarez, R., Martinez, F. M., Vicent, J. F., & Zamora, A. (2008). A matricial public key cryptosystem

with digital signature. A A, 1, 1.

[12]. Bose, R. (2006). An efficient method to calculate the free distance of convolutional codes. WSEAS

Transactions on Electronics, 3(10), 525.

[13]. Mioc, M. A. (2012) Analyze of common CRCs functioning using software implementation. Advances

in Data Networks, Communications, Computers and Materials, 192-196.

