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Abstract The problem of triply diffusive magnetoconvection is considered in the present paper. An attempt is 

made to establish the relationship between various energies in Veronis’ type configurations. The analysis made 

brings out that for Veronis type configuration, the total kinetic energy associated with a disturbance exceeds the 

sum of its total magnetic and concentration energies in some particular parameter regime. Further, this result is 

valid for any combination of dynamically free or rigid boundaries that are either perfectly conducting or 

insulating. 
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1. Introduction 

Thermohaline convection or more generally double diffusive convection has matured into a subject possessing 

fundamental departure from its counterpart, namely single diffusive convection, and is of direct relevance in the 

fields of oceanography, astrophysics, liminology and chemical engineering etc. For a broad and a recent view of 

the subject one may be referred to Brandt and Fernando (1996) [1]. Two fundamental configurations have been 

studied in the context of thermohaline instability problem, the first one by Stern (1960) wherein the temperature 

gradient is stabilizing and the concentration gradient is destabilizing and the second one by Veronis (1965) 

wherein the gradient is destabilizing and the concentration gradient is stabilizing. The main results derived by 

Stern and Veronis for their respective configurations are that both allow the occurrence of a stationary pattern of 

motions or oscillatory motions of growing amplitude provided the destabilizing concentration gradient or the 

temperature gradient is sufficiently large. However, stationary pattern of motion is the preferred mode of setting 

in of instability in case of Stern’s configuration whereas oscillatory motions of growing amplitude are preferred 

in Veronis’ configuration [2-3]. More complicated double-diffusive phenomenon appears if the destabilizing 

thermal/concentration gradient is opposed by the effect of magnetic field or rotation. Mohan (2010) investigated 

the problem of thermohaline convection coupled with cross-diffusions for the Veronis type configuration and  

derived  a semi-circle theorem that prescribed upper limits for the complex growth rate of oscillatory motions of 

neutral or growing amplitude in such a manner that it naturally culminates in sufficient conditions precluding 

the non- existence of such motions [4]. Kumar and Singh (2010) investigated the Rayleigh-Taylor instability of 

a Newtonian viscous fluid overlying Walters’ B’ viscoelastic fluid through porous medium. Kumar and Mohan 

(2012) have considered the hydromagnetic instability of the plane interface between two uniform, superposed 

and streaming Rivlin-Ericksen viscoelastic fluids through porous medium [5-6]. 

All the above researchers have considered the case of two component systems. However, it has been recognized 

later on by Griffiths (1979)) that there are many situations wherein more than two components are present [7]. 

Examples of such multiple diffusive convection fluid systems include the solidification of molten alloys, 

geothermally heated lakes, magmas and their laboratory models and sea water. Griffith (1979), Pearlstein et al. 

(1989) and Lopez (1990) have theoretically studied the onset of convection in a horizontal layer, of infinite 
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extension of a triply diffusive fluid (where the density depends on three independently diffusing agencies with 

different diffusivities).These researchers found that small concentrations of a third component with a smaller 

diffusivity can have a significant effect upon the nature of diffusive instabilities and oscillatory and direct salt 

finger modes are simultaneously unstable under a wide range of conditions, when the density gradients due to 

components with the greatest and smallest diffusivity are of same signs .Some fundamental differences between 

the double and triply convection are noticed by these researchers diffusive. Among these differences, one is that 

if the gradients of two of the stratifying agencies are held fixed ,then three critical values of the Rayleigh 

number of the third agency are sometimes required to specify the linear stability criteria(only one critical 

number is required in double diffusive convection ) [8-9]. Another difference is that the onset of convection may 

occur via a quassiperiodic bifurcation from the motionless basic state. Terrones (1993) studied the effect of 

cross-diffusion on the stability criteria in a triply diffusive system [10]. Ryzhkov and Shevtsova (2007) studied 

the case of multicomonent mixture with application to thermogravitational column [11].  Ryzhkov and 

Shevtsova (2009) also studied the longwave instability of a multicomponent fluid with Soret effect [12]. 

Rionero (2013a) studied a triply convective diffusive fluid mixture saturating a porous horizontal layer, heated 

from below and salted from above and obtained sufficient conditions for inhibiting the onset of convection and 

guaranteeing the global nonlinear stability of the thermal conduction solution [13]. Rionero (2013b) also 

investigated the multicomponent diffusive convection in porous layer for the more general case when heated 

from below and salted by m salts partly from above and partly from below [14] . Zhao, Wang and Zhang (2013) 

investigated the problem of triply diffusive convection in Maxwell fluid saturated porous layer and obtained the 

criterion for the onset of stationary and oscillatory convection [15]. Shivkumara and Kumar (2013) investigated 

the bifurcation analysis of a triply diffusive coupled stress fluid in terms of a simplified model consisting of 

seven nonlinear ordinary differential equations. Shivkumara and Kumar (2014) have studied the linear and 

weakly nonlinear triple diffusive convection in a couple stress fluid layer [16-17]. 

Chandrasekhar (1952) in his investigation of magneto hydrodynamic simple Be’nard convection problem sought 

unsuccessfully the regime in terms of the parameters of the system alone, in which the total kinetic energy 

associated with a disturbance exceeds the total magnetic energy associated with it, since these considerations are 

of decisive significance in deciding the validity of the principle of exchange of stabilities. However, the solution 

for w ( ))(sintan ztcons  is not correct mathematically (and Chandrasekhar was aware of it) [18]. 

Banerjee et. al. until 1985 did not pursue their investigation in this direction and consequently did not see this 

connection. This gap in the literature on magnetoconvection has been completed by Banerjee et. al. (1988) who 

presented a simple mathematical proof to establish that Chandrasekhar’s conjecture is valid in the regime

2

1  Q  and further this result is uniformly applicable for any combination of a dynamically free or rigid 

boundary when the region outside the liquid are perfectly conducting or insulating. Banerjee et al. (1988) 

showed that in the parameter regime 1
2

1 


Q
 the total kinetic energy associated with a disturbance is greater 

than the total magnetic energy associated with it. 

Banerjee et. al. (1989) further extended these energy considerations to a more general problem, namely, 

magnetohydrodynamic thermohaline convection problem, of Veronis type and established that in the parameter 

regime ,1
422

1 






 SRQ
the total kinetic energy associated with a disturbance exceeds the sum of its total 

magnetic and thermal energies. A similar characterization theorem in magnetothermohaline convection of the 

Veronis’ type was also established by Banerjee et. al in the subsequent year [19-20]. Mohan et al. (2006) 

derived a characterization theorem in hydromagnetic double diffusive convection and established that the total 

kinetic energy associated with a disturbance is greater than the sum of its total magnetic and concentration 

energies in the parameter regime, 1
4 422

1 






 SRQ
 [21]. 

The present analysis extends these energies considerations to another complex problem, namely, triply diffusive 

magnetoconvection problem (analogous to magnetothermohaline convection of the Veronis type) wherein one 
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destabilizing heat component and two stabilizing concentration components have been considered.   We 

establish here that in the parameter regime 1

4

27

4

27 42
2

42
1

2

1 














 SS RRQ
, the total kinetic energy 

associated with a disturbance exceeds the sum of its total magnetic and concentration energies. Further, this 

result is valid for any combination of dynamically free or rigid boundaries that are either perfectly conducting or 

insulating. 

 

2. Mathematical Formulation and Analysis 

A viscous and finitely heat conducting Boussinesq  fluid is  statically confined between two horizontal 

boundaries z=0 and z=d of infinite horizontal extension and finite vertical depth which are respectively 

maintained at uniform temperatures )( 1010 TTTandT  and uniform concentrations 

)(,),(, 202110112010 SSSSandSS  in the presence of uniform vertical magnetic field .H


 

 Following Griffiths (1979) and Banerjee et al. (1989), the relevant governing equations and boundary 

conditions for the triply diffusive magnetoconvection in their non-dimensional form are given by:         

    zSST haDQDaRaRaRw
p

aDaD 22
2

2
1

222222 







 


  ,      (1)                                 

                     wpaD  22
  ,                                (2)  

1

1

1

22






wp
aD 




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


   ,                                                                            (3)  
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22
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



wp
aD 




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   ,                                                                           (4)  

and  

Dwh
p

aD z
122 











 .                                                                                        (5) 

with 

210  w          on both the boundaries, 

02 wD                              on a tangent stress–free boundary everywhere, 

0Dw                                on a rigid boundary, 

0zh                                   on both the boundaries if the regions outside  

                                               the fluid are perfectly conducting,                          









0

1

zatahDh

zatahDh

zz

zz
     if the regions outside the fluid are insulating. 

                                                                                                                                 (6) 

In the above equations (1)–(6), z is real independent variable such that 0 ≤ z ≤ 1, 
dz

d
D   is differentiation 

w.r.t z , w is the vertical velocity,  is the temperature, 21  and  are two concentrations, zh  is the vertical 

magnetic field, a
2
 is the square of the wave number, σ is the Prandtl number, 1  is the magnetic Prandtl 

number, 21  and  are the Lewis numbers for two concentration components respectively, 0TR is the 
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thermal Rayliegh number, RS >0 and 0SR are the concentration Rayliegh numbers for the two concentration 

components respectively,  p = pr + ipi is complex constant in general.  

 

We now prove the following theorem:  

Theorem 1: If (p, w,  ,  , hz), p = pr + ipi, pr ≥ 0 is a solution of (1) – (5) together with        boundary 

conditions (6) with 0TR SR >0 SR >0 and  ,1

4
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 then 

           dzaRaRdzhaDhQdzwaDw SSzz  
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222
  .      

Proof: Multiplying (5) by 
*

zh  (the complex conjugate of hz), integrating the resulting equation over the range of 

z by parts a suitable number of times, and making use of the boundary   conditions (6) we get 

   

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p

dzhaDhaM   ,                                (7) 

where       0hhM
1

2

z0

2

z    . 

Equating the real part of (7), we get 
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             (using Schwartz inequality)   

Since rp  ≥ 0, therefore from (8), we get 
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Using (9), it follows from (8) that 
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  .dzwdzhaDh
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z    (10) 

Since w (0) = 0 = w (1), therefore using Rayleigh-Ritz inequality (1973), we get 
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It follows from (10) and (11) that 
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Multiplying (10) by the complex conjugate of (10) and integrating by parts over the vertical range of z for an 

appropriate number of times and making use of the boundary conditions (6) for 1  we get 
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Since, rp  ≥ 0, therefore, from (13), we get 
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Since 1 (0) = 0 = 1  (1), therefore using Rayleigh-Ritz inequality [1973], we get 
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4 dzDdz   .  (using Schwartz inequality)                                    (15)  

It follows from (14) and (15) that 
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Following the same procedure, we have from equation (4), that 
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Now from (12), (16) and (17), we get 
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Therefore, if 
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 (19) 

and this completes the proof of the theorem.  

We noted that the left hand side of (19) represents the total kinetic energy associated with a disturbance while 

the right hand side represents the sum of its total magnetic and concentration energies, and Theorem 1 may be 

stated in the following equivalent form: 

At the neutral or unstable state in the triply diffusive magnetoconvection problem of the Veronis' type 

configuration, the total kinetic energy associated with a disturbance is greater than the sum of its total magnetic 
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and concentration energies in the parameter regime 
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
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 1  and this result is 

uniformly valid for any combination of dynamically free or rigid boundaries that are either perfectly conducting 

or insulating. 

 

3. Conclusions 

In the present paper, the hydromagnetic triply diffusive convection problem of Veronis’ type configuration is 

considered. The analysis made brings out the following main conclusion: 

At the neutral or unstable state in the hydromagnetic triply diffusive convection   problem of the Veronis’ type 

configuration, the total kinetic energy associated with a   disturbance is greater than the sum of its total magnetic 

and concentration energies in the parameter regime
42
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1
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27

4

27










 SS RRQ
 1 , and this result is 

uniformly valid for any combination of dynamically free or rigid boundaries that are either perfectly conducting 

or insulating. 
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