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Abstract The onset of Rayleigh-Bénard convection in a horizontal layer of ferrofluid in Brinkman porous medium 

is investigated by using Galerkin weighted residuals method. Linear stability theory based upon normal mode 

analysis is employed to find expressions for Rayleigh number and critical Rayleigh number. The boundaries are 

considered to be free-free. ‘Principle of Exchange of Stabilities’ hold and the oscillatory modes are not allowed. The 

effects of magnetic parameters and Brinkman Darcy number on the stationary convection are investigated both 

analytically and graphically. 
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Nomenclature 

a   wave number   

B   magnetic induction 

Da  Darcy Number 

D̃a  Brinkman Darcy number 

d  depth of fluid layer 

g  acceleration due to gravity 

H  magnetic field 

k  thermal conductivity   

k1   medium permeability  

K1  pyomagnetic coefficient 

M  magnetization 

M1  buoyancy magnetization 

M3                       magnetic parameter 

N  magnetic thermal Rayleigh number 

n  growth rate of disturbances 

p  pressure  

Pr     Prandtl number 

q                   fluid velocity  

R     Rayleigh number 
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Rc                  critical Rayleigh number 

t  time   

T  temperature  

Ta  average temperature 

u, v, w  fluid velocity components  

(x, y, z)   space co-ordinates  

Greek symbols 

α              thermal expansion coefficient 

β  uniform temperature gradient 

μo   magnetic permeability 

μ   viscosity  

ρ  density of the fluid 

ρc  heat capacity of fluid

                  κ     thermal diffusivity  

φ1'  perturbed magnetic potential 

ε  porosity  

ω   dimensionless  frequency of oscillation  

χ  magnetic susceptibility 

Superscripts 

'  non dimensional variables 

' '  perturbed quantities 

Subscripts 

0  lower boundary 

1             upper boundary 

H  horizontal plane 

 

1. Introduction 

Thermal instability in a porous medium has gained momentum recently due to its various applications in the 

engineering and technology, in geophysics, food processing, oil reservoir modeling, building of thermal insulations 

and nuclear reactors. A detailed account of the thermal instability of a Newtonian fluid, under varying assumptions 

of hydrodynamics and hydromagnetics has been given by Chandrasekhar [1]. Lapwood [2] has studied the 

convective flow in a porous medium using linearized stability theory. The Rayleigh instability of a thermal boundary 

layer in flow through a porous medium has been considered by Wooding [3]. The investigation in porous media has 

been started with the simple Darcy model and gradually was extended to Darcy-Brinkman model. A good account of 

convection problems in a porous medium is given by Vafai and Hadim [4], Ingham and Pop [5] and Nield and Bejan 

[6]. 

Ferrofluids is suspensions of magnetic nanoparticles which exhibit a specific feature of the magnetic control of their 

physical parameters and flows appearing in such fluids. This magnetic control can be achieved by means of 

moderate magnetic fields with strength of the order of 10 nm. This sort of magnetic control also enables the design 

of a wide variety of technical applications such as the use of magnetic forces for basic research in fluid dynamics. 

One of the major applications of ferrofluid is its use in medical fields such as the transport of drugs to an injured site 

and the removal of tumors from the body. Ferromagnetic fluid has wide ranges of applications in  instrumentation, 

lubrication, printing, vacuum technology, vibration damping, metals recovery, acoustics and medicine, its 

commercial usage includes vacuum feed through for semiconductor manufacturing in liquid-cooled loudspeakers 

and computer disk drives etc. Owing the applications of the ferrofluid its study is important to the researchers. A 

detailed account on the subject is given in monograph has been given by Rosensweig [7]. This monograph reviews 

several applications of heat transfer through ferrofluid. One such phenomenon is enhanced convective cooling 
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having a temperature-dependent magnetic moment due to magnetization of the fluid. This magnetization, in general, 

is a function of the magnetic field, temperature, salinity and density of the fluid.  In our analysis, we assume that the 

magnetization is aligned with the magnetic field. Convective instability of a ferromagnetic fluid for a fluid layer 

heated from below in the presence of uniform vertical magnetic field has been considered by Finlayson [8]. He 

explained the concept of thermo-mechanical interaction in ferromagnetic fluids. Thermoconvective stability of 

ferromagnetic fluids  was interestingly continued by Lalas & Carmi [9], Shliomis [10], Stiles & Kagan [11], 

Blennerhassett et al. [12], Venkatasubramanian & Kaloni [13], Sunil et al. [14-15] Gupta and Gupta [16] and Zebib 

(1996).While Mahajan [17] studied the Linear and nonlinear convective instability of a ferromagnetic fluid for a 

fluid layer heated from below under various assumptions. 

In this paper an attempt as study the linear convective instability of a ferromagnetic fluid in Brinkman Darcy porous 

medium for a fluid layer heated from below by Galerkin weighted. Stability is discussed analytically as well as 

graphically. 

 

2. Mathematical Formulation of the Problem 

Consider an infinite, horizontal layer of an electrically non-conducting incompressible ferromagnetic fluid of 

thickness‘d’, in a porous medium of porosity ε and medium permeability k1. Let the fluid layer is bounded by planes 

z = 0 and z = d and is acted upon by gravity force g (0, 0, -g), a uniform magnetic field k̂Hext

0H  acts outside the 

fluid layer. The layer is heated from below such that a uniform temperature gradient 









dz

dT
 is maintained, 

where T denote the temperature. The temperature T at z = 0 taken to be T0 and T1 at z = d, (T0 > T1) as shown in 

Fig.1. 

 
Figure 1: Geometrical configuration of the problem 

 

The mathematical governing equations under Boussinesq approximation for the above model (Finlayson [8], 

Resenweig [7] and Mahajan [17]) are  

0. q ,                                                                                                                                       (1)                                   

 HMqqg
q








.

k

~p
dt

d
0

2

1

2

0

0  ,                                (2)  
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where  



 .

ε

1

tdt

d
q    stands for convection derivative, q(u, v, w) is the velocity vector, ρ0 is reference 

density, p is the hydrostatic pressure, k1 is medium permeability of fluid, μ is viscosity and  μ̃ is effective viscosity, 

μ0  is magnetic permeability, H magnetic field, M is  magnetization. 

    TkT.qC
dt

dT
C 2

f0m0    ,                                                                                         (3)    

where (ρ0C0)m is heat capacity of  fluid in porous medium, (ρ0C0)f  is heat capacity of  fluid and  k is thermal 

conductivity.  

Maxwell’s equations, in magnetostatic limit: 

0. B , 0 H ,    MH  0B .                                                                                        (4) 

The magnetization has the relationship 

    1100 TTKHHM
H


H

M .              (5) 

Where B is magnetic induction, K1 is thermal conductivity, ,H H MM and  a00 T,HMM  .  

The magnetic susceptibility and pyomagnetic coefficient are defined by 

aT,HH

M

















  

and 

aT,H

1
T

M
K

















 
respectively. 

The density equation of state is taken as 

  aTT1   .                                                                                                               (6) 

Where Ta is the average temperature given by 






 


2

TT
T 10

a ,  

Since the fluid under consideration is confined between two horizontal planes z = 0 and z = d, on these two planes 

certain boundary conditions must be satisfied.  We take case of free-free surface and assume the temperature is 

constant on the boundaries. Therefore boundary conditions (Chandrasekhar [1], Nield and Bejan [6]) are  

0,zat      0H TT    0,w 0,  and   d.zat      0H TT   0,w 1, 
  

(7) 
       

 

2.1. Basic Solutions 

The basic state is assumed to be a quiescent state and is given by                                       

    0w,v,uqw,v,uq b   ,  zpp b  ,   ab TzzTT  ,

 

 
k̂

1

TTK
HH ab1

b 











  ,      

 
k̂

1

TTK
MM ab2

b 











  , extHMH   .                                                                       (8)                          

2.2. The Perturbation Equations 

We shall analyze the stability of the basic state by introducing the following perturbations: 

qqq b
 ,   pzpp b  ,    zTT b  ,   HzHH b     MzMM b

 .                          (9)                    

where q′(u, v, w), δp, θ, H′(H'1, H'2, H'3) and M′(M'1,M'2,M'3)  are perturbations in velocity, pressure, temperature, 

magnetic field and magnetization. These perturbations are assumed to be small and then the linearized perturbation 

equations are  

0. q ,                                                                                                                                          (10) 
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  





























k̂Kk̂

z
1

1

K
k̂g~

k
p

t
1

11
0

22

1

 qq
q

,                          (11) 

w
t

2 



 ,                                                                                                                 (12) 

z
K

zH

M

H

M
1 12

1

2

0

0

1

2

0

0






























  .                                                                                                                         (13) 

 where 11  and   H  is the perturbed magnetic potential, 
 

 
f00

m00

cρ

cρ
  and 

 
f00cρ

k
κ   is  thermal 

diffusivity of the fluid.   

The boundary conditions  

0zat       0D ,TT    0,w 10  and d.zat      0D ,TT    0,w 11 
 

(14)     
 

We introduce non-dimensional variables as  

,
d

z,y,x
)z,y,x( 







 
 ,

d


 qq ,t

d

κ
t

2
 ,p

κ

k
p 1 


 ,

d




 
12

1

1
dK

1





  .  

where 
 

f00cρ

k
κ   is  thermal diffusivity of the fluid.  

There after dropping the dashes ( '' ) for simplicity. 

Equations (10)-(14), in non dimensional form can be written as  

0. q ,            (15) 

  k̂
z

RMk̂M1RaD
~

p
tVa

1 1
11

2









qq

q
,      (16) 

w
t

2 



 ,                                                                                                                       (17) 

 
zz

1MM
2

1

2

31

2

3








 .                                                                                                                   (18)

 
Where non-dimensional parameters are given as 

Da

Pr

Va

1
 


 is Vadasz number; 

ρκ

μ
P r  is Prandtl number; 

2

1

d

k
Da  is Darcy number;

 
2

1

d

k~
Da 






is 

is 

Brinkman Darcy number

 μκ

kdgαρ
R 1

2

0 
  is Rayleigh number; 

 
   

1g

K
M 

0

2

10

1



 measure the ratio of 

magnetic to gravitational forces, 
 

  
1μκ

dK
RMN 

422

10

1



 is magnetic thermal Rayleigh number; 

 
  

1

H

M
1

M 
0

0

3














 measure the departure of linearity in the magnetic equation of state and values from one 

 00 HM  higher values are possible for the usual equation of state. 

The dimensionless boundary conditions are 
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0zat      0D1,T    0,w 1  and  1zat      0D 0,T    0,w 1  .   (19) 

Eliminating δp from equation (16), we get 

  .0DRMM1Rw
tVa

1
1aD

~
1

2

H1

2

H1

22 













     

 (20) 

Where ,2

H  is two-dimensional Laplacian operator on horizontal plane.

                                   

 

3.  Normal Mode Analysis  

Analyzing the disturbances of normal modes, we assume that the perturbation quantities are of the form  

     ntyikxikexpΦ(z)Θ(z),W(z),φ,w, yx1  ,                                                                                  (21) 

 
where, kx, ky are wave numbers in x- and y- directions and n is growth rate of disturbances.  

Using equation (21), equations (20) and (17) - (18) become 

      0,DΦRMaΘM1RaWaD
tVa

n
1aDaD

~
1

2

1

22222 











                                             (22) 

0,Θ
n

aDW 22 









                                                                                   (23) 

  0MaDD 3

22  .                                                                                                                (24) 

Where
dz

d
D    and  a

2
 =  k

2
x+ k

2
y is dimensionless the resultant wave number. 

The boundary conditions of the problem in view of normal mode analysis 

 

0,1zat       0D   ,0  0,WD 0,W 2 
 
.
          

                                                                          (25) 

 

4. Method of solution 

The Galerkin weighted residuals method is used to obtain an approximate solute on to the system of equations (22) – 

(24) with the corresponding boundary conditions (25). In this method, the test functions are the same as the base 

(trial) functions. Accordingly W, Θ and Φ are taken as 





n

1p

pp

n

1p

pp

n

1p

pp DCDΦ,B ,WAW .      (26)  

Where Ap, Bp and Cp are unknown coefficients, p =1, 2, 3...N and the base functions Wp, Θp and DΦp are assumed in 

the following form for free-free boundaries are: 

, z pπosCDΦ z,  πposCΘ , z  pπosCW ppp 
      (27) 

Such that Wp, Θp and Φp  satisfy  the corresponding boundary conditions. Using expression for W, Θ and DΦ in 

equations (24) – (26) and multiplying first equation by Wp second equation by Θp and third by DΦp and integrating 

in the limits from zero to unity, we obtain a set of 3N linear homogeneous equations in 3N unknown Ap, Bp and Cp;  

p =1,2,3,...N. For existing of non trivial solution, the vanishing of the determinant of coefficients produces the 

characteristics equation of the system in term of Rayleigh number R. 

 

5.  Linear Stability Analysis  

We confined our analysis to the one term Galerkin approximation; for one term Galerkin approximation, we take 

N=1, the appropriate trial function are given as 

, z   πcosDΦz,   πcosΘ , z   πcosW ppp       (28) 

which satisfies  boundary conditions 
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0zat       0D  ,0  0,WD 0,W 2   and 1zat       0 D  ,0  0,WD 0,W 2  .  (29) 

Substituting solution (29) into equations (22)-(24), integrating each equation from z = 0 to z = 1, by parts, we obtain 

following matrix equation  

 




















































































































0

0

0

D

W

Ma
                           -                      0                   

                                   

0                         
n

J-                      1                   

    RMa              M1Ra-                
Va

n
1JD

~
J

0

0

0

3

2

2

1

2

1

2

a

 

where 
22 aπJ  . 

The non-trivial solution of the above matrix requires that 

 
     3

222

a13

22

1

2 Ma
n

J
Va

n
JJD

~
MMaM1Ra 



















 .     (30) 

Setting n = iω, ( where ω is real and dimensionaless frequency) in equation (30), we get 

.iR 21 
           

 (31) 

 Where

 

   2

13

22

1

2

3

22
2

23

a

1
MMaM1a

Ma
Va

ω
JJD

~

Δ












 ,        (32)

 a n d  

  

 

   
.

MMaM1a

Ma
Va

JJJD
~

Δ
2

13

22

1

2

3

22

2

a

2
























         

(33)

                                                   
Since R is a physical quantity, so it must be real. Hence, it follow from the equation (31) that either ω = 0 (exchange 

of stability, steady state) or Δ2 = 0 (ω # 0 overstability or oscillatory onset). 

But Δ2 # 0, we must have ω = 0, which means that oscillatory modes are not allowed and the Principle of Exchange 

of Stabilities is satisfied. This is the good agreement of the result as obtained by Finlayson [8]. 

(a) Stationary  Convection                 

Consider the case of stationary convection i.e., n = 0, from equation (30), we have 

     
 31

2

3

222

3

22222322

MMaMaa

MaaaaD
~

R



 .                                                                          (34) 

This is the good agreement of the result as obtained by Finlayson [8]. 

In the absence of magnetic parameters M1=M3=0, D̃a =1, the Rayleigh number R for steady onset is given by  

 
2

322

a

a
R


 .                                               (35) 

Consequently critical Rayleigh number is given by
4

27
Rc

2
 .  

This is exactly the same the result as obtained by Chandrasekhar [1] in the classical Bénard problem.
 
  



Chand R et al                                                       Journal of Scientific and Engineering Research, 2014, 1(2):25-34 

 

Journal of Scientific and Engineering Research 

32 

 

In order to investigate the effects of magnetization parameter M3 buoyancy magnetization M1, and Brinkman Darcy 

number D̃a on the stationary convection, we examine the behavior of   
aD

~
d

dR
 and 

dM

dR
,

dM

dR

13

analytically. 

Equation (34), we have 

0
dM

dR

3



 

, 

0
dM

dR

1

 and  

0
aD

~
d

dR
 . 

Thus the magnetization parameters M3 and buoyancy magnetization M1 have destabilizing effect while Brinkman 

Darcy number D̃a has stabilizing effect on the fluid layer. 

 

5. Results and Discussion 

An expression for stationary convection is given by equations (35). It is observed that oscillatory modes not allowed 

for layer of ferrofluid in Brinkman porous medium heated from below. We now discussed the results graphically. 

The stationary convection curves in (R, a) plane for various values of magnetization M3 and for fixed values of 

M1=1000, D̃a =0.1 is as shown in Fig. 2.  It has been found that the stationary Rayleigh number decreases with 

increase in the value of magnetization parameter  M3 thus magnetization parameter M3 have destabilizing effect on 

the stationary convection. 

Figure 3 s h o w s  the variation of stationary Rayleigh number with wave number for different values of different 

value of buoyancy magnetization M1, with fixed value of D̃a=0.1, M3 =6 and it has been found that the stationary 

Rayleigh number decreases with increase in the value of buoyancy magnetization M1, thus buoyancy 

magnetization M1 has destabilizing effect on the stationary convection. 

Figure 4 s h o w s  the variation of stationary Rayleigh number with wave number for different values of different 

value of Brinkman Darcy number D̃a with fixed value of M1=1000, M3 =6 and it has been found that the stationary 

Rayleigh number increases with increase in the value of Brinkman Darcy number D̃a, thus Brinkman Darcy 

number D̃a has stabilizing effect on the stationary convection. 

 

 
 

Figure 2: Variation of critical Rayleigh number R with wave number a for different value of magnetization M3 
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Figure 3: Variation of Rayleigh number R with wave number a for different value of buoyancy magnetization M1 

 

 
Figure 4: Variation of Rayleigh number R with wave number a for different value of Brinkman Darcy Number D̃a  

 

 

6. Conclusions 

A linear analysis of thermal instability for ferrofluid in a Brinkman porous medium is investigated. An expression 

for Rayleigh number for the stationary convection is obtained. We investigated the results both  analytically and 

graphically  

The main conclusions are as follows:  
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1. For the case of stationary convection, the magnetization parameters M3 and buoyancy magnetization M1 

have destabilizing effect while Brinkman Darcy number D̃a has stabilizing effect on the fluid layer. 

2. The oscillatory modes are not allowed for the ferromagnetic fluid heated from below in a Brickman Darcy 

porous medium. 

3. The ‘Principle of exchange of Stabilities’ is valid for the problem.  

4. In the absence of magnetic parameters (M1=M3=0)  and Brickman Darcy porous medium (D̃a =1) obtained  

result is same as the result obtained by Chandrasekhar [1] in the classical Bénard problem.
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