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Abstract Divergence measures are useful for comparing two probability distributions. Depending on the nature of
the problem, the different divergences are suitable. So it is always desirable to create a new divergence measure.

In this work, new information inequalities, corresponding to difference of two generalized f- divergences, are
obtained and characterized. Secondly, we obtain new divergence measure corresponding to new convex function
and define the properties. Further, bounds of new divergence in terms of other standard divergences are evaluated.
Comparison of this divergence with others is done as well.

Index terms: New Convex and normalized function, New divergence measure, Comparison graph of divergences,
New information inequalities, Bounds of new divergence.
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Introduction

Let T, :{P =(Py Py Py Py )1 P >0, D P, :1}, N>2 be the set of all complete finite discrete

i=1

probability distributions. If we take P,>0 for somei=123,...,n, then we have to suppose

thatOf(O)zOf(%j:O.

Csiszar’s f- divergence [1] is a generalized information divergence measure, which is given by (1.1), i.e.,

:zqu[qﬂj (11)
And Ef,(P,Q):Cf,(%Z, Pj—Cf,(P,Q)zzn:(pi —q)f {3] L2)

i1 Qi

Similarly (Jain and Saraswat [5]) introduced a generalized measure of information given by

n 40
s (P,Q)=Zqif(u} (13)
= 2q
A
N
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Where f: (0,0) — R (set of real no.) is real, continuous and convex function and

P= ( Py Pyy Pseees pn), Q= (ql, d,, 5., 4, ) € I'y, where [0; and (]; are probability mass functions. Many

known divergences can be obtained from these generalized measures by suitably defining the convex function f.
Some of those are as follows.

n —qa. 2
Chi- square divergence [8] = z*(P,Q) = Z% . (1.4)
= i
Relative JS divergence [9] =F (P,Q) = Z p, log (ij (1.5)
i=L P + G
Relati : _ N _ Pi + 0
elative J- divergence [3] = J5 (P, Q) = Z( p, -0 )Iog T : (1.6)
i=1 i
Relative AG divergence [10] =G ( P, Q) = ( P+ jlog [Mj . (1.7
T\ 2 2p;
Tri o B _n(pi_qi)2
riangular discrimination [2] = A( P, Q) = Z— . (1.8)
i1 P+
J- divergence [6,7] = J (P,Q) = Z( P, — 0 ) log [%j : (1.9)
i=1 i

We can see that J (P,Q) = Z[F (Q.P)+G(Q, P)],A(P,Q) = 2[1—W (P,Q)] and

n
J (P,Q) =J; (P,Q)+ NS (Q, P) ,whereW (P,Q) = ZZ PG is Harmonic mean divergence. Divergences
i1 P+
from (1.4) to (1.7) are non- symmetric and (1.8), (1.9) are symmetric, with respect to probability distribution P, Q €
I',. (1.4) and (1.9) are also known as Pearson divergence and Jeffreys- Kullback- Leibler divergence, respectively.
Beside these, Symmetric Chi- square divergence [4] can be written as the sum of Chi- square divergence and its
adjoint, i.e.,

22 (P.Q)+2*(Q, P)=y/(P,Q)=iZl:(p‘ _qizjcg_pi +qi). (1.10)

New Information Inequalities

In this section, we introduce new information inequalities on difference of two generalized f- divergences. Such
inequalities are for instance needed in order to calculate the relative efficiency of two divergences.

Theorem 2.1 Let f, f,:1 R — Rbe two convex and normalized functions, i.e. f,(1)=f,(1)=0 and
suppose the assumptions:
a. f, and f,are twice differentiable on (a, f) where 0 < @ <1< <0, a0 # 3.

b. There exists the real constants m, M such that m < M and

m< () M, f,(t)>0vte(a, B), 2.1)

()
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If P,Q eI, , then we have the inequalities,

m[EfZ, (P.Q)-S, (P,Q)}g E, (P.Q)-S, (P.Q)<M [Efz, (P.Q)-S, (P,Q)] 22)

Where E;, (P, Q) 'S (P, Q) are given by (1.2) and (1.3) respectively.

Proof: Let us consider two functions

Fo (t)=f.(t)—mf,(t) , (23)

and
Fu (t)=Mf, (t)— f.(t). (2.4)

()

Where “m” and “M” are the minimum and maximum values of the function £ (t) Vte (a , ﬂ ) .
2
since f, (1) = f,(1)=0= F, (1) = F,, (1) =0, 25)
and the functions fl (t) and f2 (t) are twice differentiable. Then in view of (2.1), we have
f(t)
Fo(t)=f(t)-mf)(t)= £, (t)| —5=-m|>0, (2.6)
£(t)
and
" ” " ” fl”(t)
Fu () =Mf(t)— £(t)= f,(t)| M ———= |>0. @.7)
(1)
In view (2.5), (2.6) and (2.7), we can say that the functions F (t) and F, (t) are normalized and convex on (a,
p).

Now, with the help of linearity property, we have,

€, (P.Q)~S:. (P.Q)=Eyr s (P.Q) =S,y (P.0)

=E,(P,Q)-mE(P,Q)-S, (P.Q)+mS, (P,Q), (28)
and  E. (P,Q)-S; (P,Q)=E, (P.Q)=Sy, +(P.Q)
=ME, (P,Q)~E,(P.Q)-MS, (P,Q)+S, (P.Q). (2.9)

since E;. (P,Q) =S, (P,Q)from [5], therefore (2.8) and (2.9) can be written as the followings.
[Efl,(P,Q)—Sfl(P,Q)]—m[Efz,(P,Q)—SfZ(P,Q)]ZOI

ad  M[E;(P.Q)-S, (P.Q)]-[E,(P.Q)-S,(P.Q)]20

o [E,(P.Q)-S,(P.Q)|=m[E,(P.Q)-S, (P.Q)] (2.10)

and  M[E,(P,Q)-S,(P.Q)|>[E,(P.Q)-S,(P.Q)] (2.11)

(2.10) and (2.11), together give the result (2.2).

New Divergence Measure and Properties

e
3 N
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In this section, we obtain new divergence measure for new convex function; further define the properties of new
convex function and new divergence. Firstly,

Let f :(0,00) — R be a function defined as
(3t +1)(t* -1)

f(t)= fdt):@,w e(0,), f,(1)=0, f(t)= o , (3.1)

and
, 2(3t*+1

Properties of function defined by (3.1), are as follows.
a. Since f,(1)=0= f,(t) isanormalized function.
b. since f,"(t)>0Vte(0,00)= f,(t)isaconvex function as well.
C. Since f1’ (t) <0 at(O,l) and f1' (t) > 0at (1, oo) =1 (t) is monotonically decreasing in (0,1) and

monotonically increasing in (1, oo) and fl' (1) =0, fl” (l) =8=%0.

12001
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Figure 3.1: Convex function f, (t)

Now put f1 (t) and fl' (t) in (1.3) and (1.2) respectively, we get the following new divergence measure,

$'(P,Q)=E(P,Q)-S,(P.Q)

1

0 ( P — i )2 (23 pi4 +23 pizqiz +42 pisqi +16 piqi3 + 8qi4)
= . 3.3)
8p’a” (P +)
Properties of new divergence measure defined in (3.3), are as follows.
a S ( P, Q) is convex and non- negative in the pair of probability distribution ( P, Q) el xT,.

'L

b. S*(P,Q) =0if P=Qor p, =q; (Attains its minimum value).

o=
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c. SinceS” ( P, Q) £S” (Q, P) =5 ( P, Q) is non- symmetric divergence measure.

Application of New Information Inequalities

In this section, we obtain bounds of new divergence measure (3.3) by using new inequalities defined in (2.2), in
terms of standard divergences.

Proposition 4.1 Let »°(P,Q),Jz(P,Q),J(P,Q) and S™(P,Q) be defined as in (1.4), (1.6), (1.9) and

(3.3) respectively. For P, QeT’,,, we have
a. IfO0<a<0.65,then

2.863[3 (P,Q)+4%(Q, P)—%JR(P,Q)}SS*(P,Q)

3a*+1 3p8%+1
a(l+a)’ B(1+B)
b. 1f0.65<a <1, then

2( 3o +1 ]{J(P,Q)+ZZ(Q,P)_%JR(P’Q)}SS*(P’Q)

SZmax{

}{J(P,Q)+;(2(Q,P)—%JR(P,Q)] @)

a(l+a)

sz[;g:;)j[J (P,Q)+ 4 (Q,P)—%JR(P,Q)] (4.2)

Proof: Let us consider

f,(t)=(t-1)logt,t (0,0), f,(1)=0, f, (t)= (t;1)+logt and

" 1+t
f(t)=—~

t?
since f,(t)>0v t>0and f,(1)=0, so f,(t) is convex and normalized function respectively. Now,

(4.3)

Put f, (t) in (1.3) and fz'(t) in (1.2), we get the followings.

SfZ(P,Q)zian“(p‘;q‘jl g[p'zqq']:%JR(P,Q). 4.4)

2
£, (P.Q)=X(p - '09{2'}2 J(P.Q)+ %" (Q.P). (45)
i=1
" 2(3t* +1
Now, let ¢ (t) = f (t) = ( i ) , Where fl"(t) and fz”(t) are given by (3.2) and (4.3) respectively.

f,(t)  t(1+1)

2(6t° +9t* —2t -1 1 4
And g’(t)= ( . . ),g"(t)=4 3t5-———7
ey  (1+t)
(m\?’:‘\]ournal of Scientific and Engineering Research
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If g'(t)=0=1=0.649793 ~ 0.65

Itis clear that g (t) is decreasing in (0, 0.65] and increasing in (0.65,).
Also g (t) has a minimum value at t=0.65, because 9" (0.65) = 23.0035 > 0. Now,

a. If0<a<0.65,then

mztei(nfﬁ)g(t): 9(0.65)=2.863 (4.6)
B B B a*+1 3p'+1
M —tes(lig)g(t)—max{g(a),g(,B)}—2max{a(1+a),ﬂ(1+ﬂ)} . 4.7)
b. 1f 0.65<a <1, then

. 3a’ +1

m= tel(gfﬁ) g(t)=9(a)= Z(MJ : (4.8)
34° +1

M = sup 9 (t)=0(4) (5(1%)} “9)

The results (4.1) and (4.2) are obtained by using (3.3), (4.4), (4.5), (4.6), (4.7), (4.8) and (4.9) in (2.2).
Proposition 4.2 Let »°(P,Q),F(P,Q) and S™(P,Q) be defined as in (1.4), (1.5) and (3.3) respectively. For

P, QeI',, we have
a. If0<a<0.58,then

4.618 *(Q,P)-F(Q,P)|<S"(P.Q)
32max{3aa+l,3ﬂﬁ+l}[lz(Q,P)—F(Q,P)]. (4.10)
b. 1f 0.58<a <1, then

2(30(4 +1][Zz (Q.P)-F(Q, P)] <S"(P,Q)

(24

sz(%jlj[ 2(QP)-F(Q.P)] @)

Proof: Let us consider
0= bota<(0). 00 )L
fz,’(t) K (4.12)

since f,(t)>0v t>0and f,(1)=0, so f,(t) is convex and normalized function respectively. Now,

Put f, (t) in (1.3) and fz'(t) in (1.2), we get the followings.

S, (P.Q) Z%'Og(p q]=F(Q,P)- (4.13)

A
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; q| p|q| z in _Zpiqi + pi2 + pi qi _ pi
Ef’(P’Q):_-l( Z -2 p a-p)
n(pi-a) Q. +Z 2(Q.P). (4.14)
i=1
£(t) 2(3t +1) ) ” | |
Now, let ¢ (t) i ”(t) = " .where f/(t)and f,’(t)are given by (3.2) and (4.12) respectively.
2
2(9t" -1 1
And g'(t):(t—)’g () (Q,H_t j

If g'(t)=0=1t=+0.5773~0.58 ("t >0)

It is clear that g (t) is decreasing in (0, 0.58] and increasing in (0.58,).

Also g (t) has a minimum value at t=0.58, because g" (0.58) = 41.38 > 0. Now,
a. If0<a<0.58, then

m_telr;fﬁ 9(t)=9(0.58)=4.618 . (4.15)
30 +1 3ﬂ4+1}
M =su t)=maxig(a), =2max , : 4.16
sup 0(6)=max{(a). ()] ~2ma 212 an
b. 1f 0.58<a <1, then

. 3ot +1
m_tel(gfﬁ)g(t)_g(a)_2£ - j (4.17)

36 +1
= sup g(t)= g(ﬂ)=2( pr j (4.18)

te(a,B) ﬂ

The results (4.10) and (4.11) are obtained by using (3.3), (4.13), (4.14), (4.15), (4.16), (4.17) and (4.18) in (2.2).
Proposition 4.3 Let G(P,Q),J(P,Q) and S"(P,Q) be defined as in (1.7), (1.9) and (3.3) respectively. For
P, QeI',, we have

a. If0<a<0.76, then

6.928[ J(P,Q)-G(Q,P)]<S"(P.Q)
3a +1 34% +1 ~
£2max{ T }[J(P,Q) G(Q.P)]. (4.19)
b. 1f 0.76 < <1, then

2(30( +1][ (P,Q)-G(Q,P)]<S"(P.Q)

(04

sZ[sﬂ;;lj[J (P.Q)-G(Q.P)]. (4.20)

Proof: Let us consider

&é
o
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f,(t)=tlogt,t €(0,), f,(1)=0, f, (t)=1+logt and
f(t)==. (4.21)

since f,(t)>0v t>0and f,(1)=0, so f,(t) is convex and normalized function respectively. Now,

Put f, (t) in (1.3) and fz'(t) in (1.2), we get the followings.

n 40 40
sz(P'Q)ZZ(M}OQ(MJ:G(Q,P). (4.22)
i=1 2 2q|
E. (P.Q)=>(p —qi)log(%}J(P,Q)- (4.23)
i=1 i
" 2(3t* +1
Now, let g (t) = :l"i?) = ( 2 ) ,where f/(t)and f,’(t)are given by (3.2) and (4.21) respectively.
2
4(3t* -1)

And g'(t) =

,g"(t)zlz{utﬂ

Ifg’(t)=0=1+0.7598~ 0.76 ("'t > 0)

t3

It is clear that g (t) is decreasing in (0, 0.76] and increasing in (0.76,00).
Also g (t) has a minimum value at t=0.76, because g"(0.76) = 47.96 > 0. Now,

a. If0<a<0.76,then

m= i(nfﬁ) 9(t)=9(0.76)=6.928 . (4.24)
3o’ +1 38 +1
M= t) = max , = 2max , : 4.25
sup 9(t)=max{g(a).9(A)} [ 7R } (4.29
b. 1If 0.76 < <1, then
. 3ot +1
m:tg(gfﬂ)g(t):g(a):2{ e j (4.26)
348 +1
M = sup g(t):g(ﬂ):Z( s 2+ j (4.27)
te(.5) B

The results (4.19) and (4.20) are obtained by using (3.3), (4.22), (4.23), (4.24), (4.25), (4.26) and (4.27) in (2.2).
Proposition 4.4 Let x*(P,Q),A(P,Q) and S™(P,Q) be defined as in (1.4), (1.8) and (3.3) respectively. For

P, QeI',, we have

(3a4+1){;(2(Q,P)+U (P,Q)—%A(P,Q)}SS*(P,Q)
<(3p* +1){;(2(Q, P)+U (P,Q)—%A(P,Q)] (4.28)
)1.* Journal of Scientific and Engineering Research
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Proof: Let us consider

t—1)° , 2 _
fz(t)=¥,te(0,oo), ,(1)=0, f, (t):ttz L and
2
f)'(t) =5 (4.29)

since f,(t)>0v t>0and f,(1)=0, so f,(t) is convex and normalized function respectively. Now,

Put f, (t) in (1.3) and fz'(t) in (1.2), we get the followings.

sz(P,Q)Z%Z%Z%A(P,Q)- (4.30)
Efz’ (P’Q):g(pi —0; );IS P; +qi) :g(pi ;iQi)Z +iZl:(pi _pci]zi)2 g
=7°(Q,P)+U(P,Q). (4.31)
where U (P,Q) :Zi:(p'_p#zq'

Now, letg(t)= :l”—((i; = (3t4 +1) and g'(t)=12t> >0Vt >0, where f’(t)and f,(t)are given by (3.2)
2
and (4.29), respectively.

It is clear that g (t) is increasing in (0, oo) , SO

m= inf g(t)=g(a)=3a"+1. (4.32)
te(a,B)
M = sup g(t)=g(B)=38"+1. (4.33)
te(a, B)
The result (4.28) is obtained by using (3.3), (4.30), (4.31), (4.32) and (4.33) in (2.2).
Figure4.1: Comparison of divergences
8 .
7 o
6 - New div. (3.3)
5 - e Chi-square
4 div.
=-===J-div
3 -
24 N 4 = Triangular
1 4 discrimination
— — = Symn. Chi-
0 ! ! square div.
0 0.2 0.4 0.6 0.8
a—>

considered pi:(a,l—a),qi:(l—a,a), Whereae(O,l). It is clear from figure that the new
divergence S*(P,Q) has a steeper slope than ZZ(P,Q),J (P,Q),A(P,Q) and l//(P,Q).
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